首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Botryosphaeriaceae represents an important and diverse family of latent fungal pathogens of woody plants. We address the question of host range of these fungi by sampling leaves and branches of four native South African trees, including Acacia karroo (Fabaceae), Celtis africana (Cannabaceae), Searsia lancea (Anacardiaceae), and Gymnosporia buxifolia (Celastraceae). Two new species of the Botryosphaeriaceae, namely Tiarosporella africana sp. nov. and Aplosporella javeedii sp. nov. were identified, together with five known species, including Neofusicoccum parvum, Neofusicoccum kwambonambiense, Spencermartinsia viticola, Diplodia pseudoseriata, and Botryosphaeria dothidea. Most Botryosphaeriaceae occurred on more than one host. With the exception of S. lancea, which was infected by A. javeedii all the hosts were infected by more than one Botryosphaeriaceae species. Collectively, the results suggest that some intrinsic host factors, possibly combined with local environmental conditions, affect the distribution and co-infectivity of various hosts by the Botryosphaeriaceae. This would counteract the general ability of a species in the Botryosphaeriaceae to infect a broad range of plants. The combination of host and environmental factors might also explain why some Botryosphaeriaceae with apparently broad host ranges, are found on different suites of hosts in different areas of the world.  相似文献   

3.
Neotyphodium and Epichloë spp are closely related asexual and sexual endophytic fungi, respectively, that form mutualistic associations with cool season grasses of the subfamily Pooideae. The endophytes confer a number of advantages to their hosts, but also can cause animal toxicoses and these effects are, in many cases, due to the production of fungal secondary metabolites. In filamentous fungi, secondary metabolite genes are commonly clustered and, for those pathways involved in non-ribosomal peptide synthesis, a non-ribosomal peptide synthetase (NRPS) gene is always found as a key component of the cluster. Members of this gene family encode large multifunctional enzymes that synthesize a diverse range of bioactive compounds and in numerous cases have been shown to serve as pathogenicity or virulence factors, in addition to suggested roles in niche adaptation. We have used a degenerate PCR approach to identify members of the NRPS gene family from symbiotic fungi of the Neotyphodium/Epichloë complex, and have shown that collectively, at least 12 NRPS genes exist within the genomes examined. This suggests that secondary metabolites are important during the life cycles of these fungi with their hosts. Indeed, both the ergovaline and peramine biosynthetic pathways, which confer competitive abilities to Neotyphodium and Epichloë symbioses, contain NRPS genes at their core. The distribution of these genes among different Neotyphodium/Epichloë lineages suggests that a common ancestor contributed most of the complement of NRPS genes, which have been either retained or lost during the evolution of these fungi.  相似文献   

4.
5.
6.
7.

Background

Although the majority of bacteria are innocuous or even beneficial for their host, others are highly infectious pathogens that can cause widespread and deadly diseases. When investigating the relationships between bacteria and other living organisms, it is therefore essential to be able to separate pathogenic organisms from non-pathogenic ones. Using traditional experimental methods for this purpose can be very costly and time-consuming, and also uncertain since animal models are not always good predictors for pathogenicity in humans. Bioinformatics-based methods are therefore strongly needed to mine the fast growing number of genome sequences and assess in a rapid and reliable way the pathogenicity of novel bacteria.

Methodology/Principal Findings

We describe a new in silico method for the prediction of bacterial pathogenicity, based on the identification in microbial genomes of features that appear to correlate with virulence. The method does not rely on identifying genes known to be involved in pathogenicity (for instance virulence factors), but rather it inherently builds families of proteins that, irrespective of their function, are consistently present in only one of the two kinds of organisms, pathogens or non-pathogens. Whether a new bacterium carries proteins contained in these families determines its prediction as pathogenic or non-pathogenic. The application of the method on a set of known genomes correctly classified the virulence potential of 86% of the organisms tested. An additional validation on an independent test-set assigned correctly 22 out of 24 bacteria.

Conclusions

The proposed approach was demonstrated to go beyond the species bias imposed by evolutionary relatedness, and performs better than predictors based solely on taxonomy or sequence similarity. A set of protein families that differentiate pathogenic and non-pathogenic strains were identified, including families of yet uncharacterized proteins that are suggested to be involved in bacterial pathogenicity.  相似文献   

8.
Bacteria in the genus Polaribacter, belonging to the family Flavobacteriaceae, are typically isolated from marine environments. Polaribacter dokdonensis DSW-5, the type strain of the species, is a Gram-negative bacterium isolated from the East Sea of Korea. Whole genome shotgun sequencing was performed with the HiSeq 2000 platform and paired-end reads were generated at 188-fold coverage. The sequencing reads were assembled into two contigs with a total length of 3.08 Mb. The genome sequences of DSW-5 contain 2,776 proteincoding sequences and 41 RNA genes. Comparison of average nucleotide identities among six available Polaribacteria genomes including DSW-5 suggested that the DSW-5 genome is most similar to that of Polaribacter sp. MED152, which is a proteorhodopsin-containing marine bacterium. A phylogenomic analysis of the six Polaribacter strains and 245 Flavobacteriaceae bacteria confirmed a close relationship of the genus Polaribacter with Tenacibaculum and Kordia. DSW-5’s genome has a gene encoding proteorhodopsin and genes encoding 85 enzymes belonging to carbohydrate-active enzyme families and involved in polysaccharide degradation, which may play important roles in energy metabolism of the bacterium in the marine ecosystem. With genes for 238 CAZymes and 203 peptidases, DSW-5 has a relatively high number of degrading enzymes for its genome size suggesting its characteristics as a free-living marine heterotroph.  相似文献   

9.
Volvariella volvacea is one of a few commercial cultivated mushrooms mainly using straw as carbon source. In this study, the genome of V. volcacea was sequenced and assembled. A total of 285 genes encoding carbohydrate-active enzymes (CAZymes) in V. volvacea were identified and annotated. Among 15 fungi with sequenced genomes, V. volvacea ranks seventh in the number of genes encoding CAZymes. In addition, the composition of glycoside hydrolases in V. volcacea is dramatically different from other basidiomycetes: it is particularly rich in members of the glycoside hydrolase families GH10 (hemicellulose degradation) and GH43 (hemicellulose and pectin degradation), and the lyase families PL1, PL3 and PL4 (pectin degradation) but lacks families GH5b, GH11, GH26, GH62, GH93, GH115, GH105, GH9, GH53, GH32, GH74 and CE12. Analysis of genome-wide gene expression profiles of 3 strains using 3′-tag digital gene expression (DGE) reveals that 239 CAZyme genes were expressed even in potato destrose broth medium. Our data also showed that the formation of a heterokaryotic strain could dramatically increase the expression of a number of genes which were poorly expressed in its parental homokaryotic strains.  相似文献   

10.
《Fungal biology》2014,118(5-6):516-523
The characterisation of the secretome of phytopathogenic fungi may contribute to elucidate the molecular mechanisms of pathogenesis. This is particularly relevant for Diplodia corticola, a fungal plant pathogen belonging to the family Botryosphaeriaceae, whose genome remains unsequenced. This phytopathogenic fungus is recognised as one of the most important pathogens of cork oak, being related to the decline of cork oak forests in the Iberian Peninsula.Unfortunately, secretome analysis of filamentous fungi is limited by the low protein concentration and by the presence of many interfering substances, such as polysaccharides, which affect the separation and analysis by 1D and 2D gel electrophoresis. We compared six protein extraction protocols concerning their suitability for further application with proteomic workflows. The protocols involving protein precipitation were the most efficient, with emphasis on TCA–acetone protocol, allowing us to identify the most abundant proteins on the secretome of this plant pathogen. Approximately 60 % of the spots detected were identified, all corresponding to extracellular proteins. Most proteins identified were carbohydrate degrading enzymes and proteases that may be related to D. corticola pathogenicity.Although the secretome was assessed in a noninfection environment, potential virulence factors such as the putative glucan-β-glucosidase, neuraminidase, and the putative ferulic acid esterase were identified.The data obtained forms a useful basis for a deeper understanding of the pathogenicity and infection biology of D. corticola. Moreover, it will contribute to the development of proteomics studies on other members of the Botryosphaeriaceae.  相似文献   

11.
The ascomycete fungus, Fusarium graminearum (teleomorph Gibberella zeae), is the most common causal agent of Fusarium head blight (FHB), a devastating disease for cereal crops worldwide. F. graminearum produces ascospores (sexual spores) and conidia (asexual spores), which can serve as disease inocula of FHB. Meanwhile, Fusarium-infected grains are often contaminated with mycotoxins such as trichothecenes (TRIs), fumonisins, and zearalenones, among which TRIs are related to the pathogenicity of F. graminearum, and these toxins are hazardous to humans and livestock. In recent years, with the complete genome sequencing of F. graminearum, an increasing number of functional genes involved in the production of secondary metabolites, hyphal differentiation, sexual and asexual reproduction, virulence and pathogenicity have been identified from F. graminearum. In this review, the secondary metabolite synthesis, hyphal development and pathogenicity related genes in F. graminearum were thoroughly summarized, and the genes associated with secondary metabolites, sexual reproduction, energy metabolism, and pathogenicity were highlighted.  相似文献   

12.
13.
The strain Janthinobacterium sp. SLB01 was isolated from the diseased freshwater sponge Lubomirskia baicalensis (Pallas, 1776) and the draft genome was published previously. The aim of this work is to analyze the genome of the Janthinobacterium sp. SLB01 to search for pathogenicity factors for Baikal sponges. We performed genomic analysis to determine virulence factors, comparing the genome of the strain SLB01 with genomes of other related J. lividum strains from the environment. The strain Janthinobacterium sp. SLB01 contained genes encoding violacein, alpha-amylases, phospholipases, chitinases, collagenases, hemolysin, and a type VI secretion system. In addition, the presence of conservative clusters of genes for the biosynthesis of secondary metabolites of tropodithietic acid and marinocine was found. We present genes for antibiotic resistance, including five genes encoding various lactamases and eight genes for penicillin-binding proteins, which are conserved in all analyzed strains. Major differences were found between the Janthinobacterium sp. SLB01 and J. lividum strains in the spectra of genes for glycosyltransferases and glycoside hydrolases, serine hydrolases, and trypsin-like peptidase, as well as some TonB-dependent siderophore receptors. Thus, the study of the analysis of the genome of the strain SLB01 allows us to conclude that the strain may be one of the pathogens of freshwater sponges.  相似文献   

14.
Metagenomic analysis referring to CAZymes (Carbohydrate-Active enZymes) of CAZy classes encoded by the most abundant genes in rhizosphere versus bulk soil microbes of the wild plant Moringa oleifera was conducted. Results indicated that microbiome signatures and corresponding CAZy datasets differ between the two soil types. CAZy class glycoside hydrolases (GH) and its α-amylase family GH13 in rhizobiome were proven to be the most abundant among CAZy classes and families. The most abundant bacteria harboring these CAZymes include phylum Actinobacteria and its genus Streptomyces and phylum Proteobacteria and its genus Microvirga. These CAZymes participate in KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway “Starch and sucrose metabolism” and mainly use the “double displacement catalytic mechanism” in their reactions. We assume that microbiome of the wild plant Moringa oleifera is a good source of industrially important enzymes that act on starch hydrolysis and/or biosynthesis. In addition, metabolic engineering and integration of certain microbes of this microbiomes can also be used in improving growth of domestic plants and their ability to tolerate adverse environmental conditions.  相似文献   

15.
Rhizoctonia solani is a soilborne pathogen with a broad host range. An anastomosis group (AG) system based on hyphal fusions has been established to distinguish between different R. solani subgroups in this species complex. Members of the AG2-2IIIB subgroup can cause serious problems in sugar beet production, resulting in Rhizoctonia root and crown rot. In this review, we summarize the current molecular advances in the R. solani sugar beet pathosystem. The draft genome of R. solani AG2-2IIIB has an estimated size of 56.02 Mb, larger than any of the R. solani AGs sequenced to date. The genome of AG2-2IIIB has been predicted to harbor 11,897 protein-encoding genes, including a high number of carbohydrate-active enzymes (CAZymes). The highest number of CAZymes was observed for polysaccharide lyase family 1 (PL-1), glycoside hydrolase family 43 (GH-43), and carbohydrate esterase family 12 (CE-12). Eleven single-effector candidates were predicted based on AG2-2IIIB genome data. The RsLysM, RsRlpA, and RsCRP1 genes were highly induced upon early-stage infection of sugar beet seedlings, and heterologous expression in Cercospora beticola and model plant species demonstrated their involvement in virulence. However, despite the progress achieved thus far on the molecular interactions in this pathosystem, many aspects remain to be elucidated, including the development of efficient transformation systems, important for functional studies, and the silencing of undesirable traits in the sugar beet crop.  相似文献   

16.

Background

Trunk diseases threaten the longevity and productivity of grapevines in all viticulture production systems. They are caused by distantly-related fungi that form chronic wood infections. Variation in wood-decay abilities and production of phytotoxic compounds are thought to contribute to their unique disease symptoms. We recently released the draft sequences of Eutypa lata, Neofusicoccum parvum and Togninia minima, causal agents of Eutypa dieback, Botryosphaeria dieback and Esca, respectively. In this work, we first expanded genomic resources to three important trunk pathogens, Diaporthe ampelina, Diplodia seriata, and Phaeomoniella chlamydospora, causal agents of Phomopsis dieback, Botryosphaeria dieback, and Esca, respectively. Then we integrated all currently-available information into a genome-wide comparative study to identify gene families potentially associated with host colonization and disease development.

Results

The integration of RNA-seq, comparative and ab initio approaches improved the protein-coding gene prediction in T. minima, whereas shotgun sequencing yielded nearly complete genome drafts of Dia. ampelina, Dip. seriata, and P. chlamydospora. The predicted proteomes of all sequenced trunk pathogens were annotated with a focus on functions likely associated with pathogenesis and virulence, namely (i) wood degradation, (ii) nutrient uptake, and (iii) toxin production. Specific patterns of gene family expansion were described using Computational Analysis of gene Family Evolution, which revealed lineage-specific evolution of distinct mechanisms of virulence, such as specific cell wall oxidative functions and secondary metabolic pathways in N. parvum, Dia. ampelina, and E. lata. Phylogenetically-informed principal component analysis revealed more similar repertoires of expanded functions among species that cause similar symptoms, which in some cases did not reflect phylogenetic relationships, thereby suggesting patterns of convergent evolution.

Conclusions

This study describes the repertoires of putative virulence functions in the genomes of ubiquitous grapevine trunk pathogens. Gene families with significantly faster rates of gene gain can now provide a basis for further studies of in planta gene expression, diversity by genome re-sequencing, and targeted reverse genetic approaches. The functional validation of potential virulence factors will lead to a more comprehensive understanding of the mechanisms of pathogenesis and virulence, which ultimately will enable the development of accurate diagnostic tools and effective disease management.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1624-z) contains supplementary material, which is available to authorized users.  相似文献   

17.
《Fungal biology》2023,127(5):1043-1052
Macrophomina phaseolina (Tassi) Goid. is a fungal pathogen that causes root and stem rot in several economically important crops. However, most of disease control strategies have shown limited effectiveness. Despite its impact on agriculture, molecular mechanisms involved in the interaction with host plant remains poorly understood. Nevertheless, it has been proven that fungal pathogens secrete a variety of proteins and metabolites to successfully infect their host plants. In this study, a proteomic analysis of proteins secreted by M. phaseolina in culture media supplemented with soybean leaf infusion was performed. A total of 250 proteins were identified with a predominance of hydrolytic enzymes. Plant cell wall degrading enzymes together peptidases were found, probably involved in the infection process. Predicted effector proteins were also found that could induce plant cell death or suppress plant immune response. Some of the putative effectors presented similarities to known fungal virulence factors. Expression analysis of ten selected protein-coding genes showed that these genes are induced during host tissue infection and suggested their participation in the infection process. The identification of secreted proteins of M. phaseolina could be used to improve the understanding of the biology and pathogenesis of this fungus. Although leaf infusion was able to induce changes at the proteome level, it is necessary to study the changes induced under conditions that mimic the natural infection process of the soil-borne pathogen M. phaseolina to identify virulence factors.  相似文献   

18.
Complete enzymatic degradation of plant polysaccharides is a result of combined action of various carbohydrate-active enzymes (CAZymes). In this paper, we demonstrate the potential of the filamentous fungus Scytalidium candidum 3C for processing of plant biomass. Structural annotation of the improved assembly of S. candidum 3C genome and functional annotation of CAZymes revealed putative gene sequences encoding such proteins. A total of 190 CAZyme-encoding genes were identified, including 104 glycoside hydrolases, 52 glycosyltransferases, 28 oxidative enzymes, and 6 carbohydrate esterases. In addition, 14 carbohydrate-binding modules were found. Glycoside hydrolases secreted during the growth of S. candidum 3C in three media were analyzed with a variety of substrates. Mass spectrometry analysis of the fungal culture liquid revealed the presence of peptides identical to 36 glycoside hydrolases, three proteins without known enzymatic function belonging to the same group of families, and 11 oxidative enzymes. The activity of endohemicellulases was determined using specially synthesized substrates in which the glycosidic bond between monosaccharide residues was replaced by a thiolinkage. During analysis of the CAZyme profile of S. candidum 3C, four β-xylanases from the GH10 family and two β-glucanases from the GH7 and GH55 families were detected, partially purified, and identified.  相似文献   

19.
20.
Fungal secondary metabolites are an important source of bioactive compounds for agrochemistry and pharmacology. Over the past decade, many studies have been undertaken to characterize the biosynthetic pathways of fungal secondary metabolites. This effort has led to the discovery of new compounds, gene clusters, and key enzymes, and has been greatly supported by the recent releases of fungal genome sequences. In this review, we present results from a search for genes involved in secondary metabolism and their clusters in the genome of the rice pathogen, Magnaporthe grisea, as well as in other fungal genomes. We have also performed a phylogenetic analysis of recently discovered genes encoding hybrids between a polyketide synthase and a single non-ribosomal peptide synthetase module (PKS–NRPS), as M. grisea seems rich in these enzymes compared with other fungi. Using results from expression and functional studies, we discuss the role of these PKS-NRPS in the avirulence and pathogenicity of M. grisea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号