首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Pollination service in agricultural crops increases significantly with pollinator diversity and wild pollinator abundance. Differences in the foraging behaviour of pollinating insects are one of the reasons why pollinator diversity and abundance enhances crop pollination. Here, we focused on the foraging behaviour of honey bees and bumble bees in sweet cherry orchards. In addition, we studied the influence of bee diversity and abundance on the foraging behaviour of honey bees and bumble bees. Honey bees were found to visit fewer flowers than bumble bees. Bumble bees also showed a higher probability of changing trees between rows than honey bees. Both visitation rate and probability of row changes of honey bees increased with bumble bee diversity and with bumble bee abundance. We also found that the probability of row changes of honey bees increased with increasing bumble bee abundance. These effects of bumble bee richness and abundance on the pollination behaviour of honey bees can improve the pollination performance of honey bees in crops that depend on cross pollination. Our results highlight the higher pollination performance of bumble bees and the facilitative effect of wild pollinators to crop pollination.  相似文献   

2.
Animal-mediated pollination is essential for the production and quality of fruits and seeds of many crops consumed by humans. However, crop pollination services might be compromised when wild pollinators are scarce. Managed pollinators are commonly used in crops to supplement such services with the assumption that they will enhance crop yield. However, information on the spatiotemporal pollinator-dependence of crops is still limited. We assessed the contribution of commercial bumble bee colonies compared to the available pollinator community on strawberry (‘Fortuna’ variety) flower visitation and strawberry quality across a landscape gradient of agricultural intensification (i.e. polytunnel berry crop cover). We used colonies of bumble bees in winter and in spring, i.e. when few and most wild pollinators are in their flight period, respectively. The placement of colonies increased visits of bumble bees to strawberry flowers, especially in winter. The use of bumble bee colonies did not affect flower visitation by other insects, mainly honey bees, hoverflies and other Diptera. Flower visitation by both honey bees and wild insects did not vary between seasons and was unrelated to the landscape gradient of berry crop cover. Strawberries were of the highest quality (i.e. weight) when insect-mediated pollination was allowed, and their quality was positively related to wild flower visitors in winter but not in spring. However, increased visits to strawberry flowers by managed bumble bees and honey bees had no effect on strawberry weight. Our results suggest that the pollination services producing high quality strawberry fruits are provided by the flower visitor community present in the study region without the need to use managed bumble bees.  相似文献   

3.
1. In many flowering plants, bumble bees may forage as both pollinators and nectar robbers. This mixed foraging behaviour may be influenced by community context and consequently, potentially affect pollination of the focal plant. 2. Salvia przewalskii is both pollinated and robbed exclusively by bumble bees. In the present study area, it was legitimately visited by two species of bumble bees with different tongue length, Bombus friseanus and Bombus religiosus, but it was only robbed by Bombus friseanus, the shorter‐tongued bumble bee. The intensity of nectar robbing and pollinator visitation rate to the plant were investigated across 26 communities in the Hengduan Mountains in East Himalaya during a 2‐year project. For each of these communities, the floral diversity, and the population size and floral resource of S. przewalskii were quantified. The abundances of the two bumble bee species were also recorded. 3. Both nectar robbing and pollinator visitation rate were influenced by floral diversity. However, pollinator visitation rate was not affected by nectar robbing. The results revealed that relative abundance of the two bumble bee species significantly influenced the incidence of nectar robbing but not the pollinator visitation rate. Increased abundance of B. religiosus, the legitimate visitors, exacerbated nectar robbing, possibly by causing B. friseanus to shift to robbing; however, pollinator visitation remained at a relatively high level. 4. The results may help to explain the persistence of both nectar robbing and pollination, and suggest that, in comparison to pollination, nectar robbing is a more unstable event in a community.  相似文献   

4.
Recent declines in managed honey bee, Apis mellifera L., colonies have increased interest in the current and potential contribution of wild bee populations to the pollination of agricultural crops. Because wild bees often live in agricultural fields, their population density and contribution to crop pollination may be influenced by farming practices, especially those used to reduce the populations of other insects. We took a census of pollinators of squash and pumpkin at 25 farms in Virginia, West Virginia, and Maryland to see whether pollinator abundance was related to farming practices. The main pollinators were Peponapis pruinosa Say; honey bees, and bumble bees (Bombus spp.). The squash bee was the most abundant pollinator on squash and pumpkin, occurring at 23 of 25 farms in population densities that were commonly several times higher than that of other pollinators. Squash bee density was related to tillage practices: no-tillage farms hosted three times as great a density of squash bees as tilled farms. Pollinator density was not related to pesticide use. Honey bee density on squash and pumpkin was not related to the presence of managed honey bee colonies on farms. Farms with colonies did not have more honey bees per flower than farms that did not keep honey bees, probably reflecting the lack of affinity of honey bees for these crops. Future research should examine the economic impacts of managing farms in ways that promote pollinators, particularly pollinators of crops that are not well served by managed honey bee colonies.  相似文献   

5.
  1. Crop pollination generally increases with pollinator diversity and wild pollinator visitation. To optimize crop pollination, it is necessary to investigate the pollination contribution of different pollinator species. In the present study, we examined this contribution of honey bees and non‐Apis bees (bumble bees, mason bees and other solitary bees) in sweet cherry.
  2. We assessed the pollination efficiency (fruit set of flowers receiving only one visit) and foraging behaviour (flower visitation rate, probability of tree change, probability of row change and contact with the stigma) of honey bees and different types of non‐Apis bees.
  3. Single visit pollination efficiency on sweet cherry was higher for both mason bees and solitary bees compared with bumble bees and honey bees. The different measures of foraging behaviour were variable among non‐Apis bees and honey bees. Adding to their high single visit efficiency, mason bees also visited significantly more flower per minute, and they had a high probability of tree change and a high probability to contact the stigma.
  4. The results of the present study highlight the higher pollination performance of solitary bees and especially mason bees compared with bumble bees and honey bees. Management to support species with high pollination efficiency and effective foraging behaviour will promote crop pollination.
  相似文献   

6.
Introduced plants may be important foraging resources for honey bees and wild pollinators, but how often and why pollinators visit introduced plants across an entire plant community is not well understood. Understanding the importance of introduced plants for pollinators could help guide management of these plants and conservation of pollinator habitat. We assessed how floral abundance and pollinator preference influence pollinator visitation rate and diversity on 30 introduced versus 24 native plants in central New York. Honey bees visited introduced and native plants at similar rates regardless of floral abundance. In contrast, as floral abundance increased, wild pollinator visitation rate decreased more strongly for introduced plants than native plants. Introduced plants as a group and native plants as a group did not differ in bee diversity or preference, but honey bees and wild pollinators preferred different plant species. As a case study, we then focused on knapweed (Centaurea spp.), an introduced plant that was the most preferred plant by honey bees, and that beekeepers value as a late‐summer foraging resource. We compared the extent to which honey bees versus wild pollinators visited knapweed relative to coflowering plants, and we quantified knapweed pollen and nectar collection by honey bees across 22 New York apiaries. Honey bees visited knapweed more frequently than coflowering plants and at a similar rate as all wild pollinators combined. All apiaries contained knapweed pollen in nectar, 86% of apiaries contained knapweed pollen in bee bread, and knapweed was sometimes a main pollen or nectar source for honey bees in late summer. Our results suggest that because of diverging responses to floral abundance and preferences for different plants, honey bees and wild pollinators differ in their use of introduced plants. Depending on the plant and its abundance, removing an introduced plant may impact honey bees more than wild pollinators.  相似文献   

7.
This study examined the use of honey bees, Apis mellifera L., to supplement bumble bee, Bombus spp., pollination in commercial tomato, Lycopersicon esculentum Miller, greenhouses in Western Canada. Honey bee colonies were brought into greenhouses already containing bumble bees and left for 1 wk to acclimatize. The following week, counts of honey and bumble bees foraging and flying throughout the greenhouse were conducted three times per day, and tomato flowers open during honey bee pollination were marked for later fruit harvest. The same counts and flower-marking also were done before and after the presence of honey bees to determine the background level of bumble bee pollination. Overall, tomato size was not affected by the addition of honey bees, but in one greenhouse significantly larger tomatoes were produced with honey bees present compared with bumble bees alone. In that greenhouse, honey bee foraging was greater than in the other greenhouses. Honey bees generally foraged within 100 m of their colony in all greenhouses. Our study invites further research to examine the use of honey bees with reduced levels of bumble bees, or as sole pollinators of greenhouse tomatoes. We also make specific recommendations for how honey bees can best be managed in greenhouses.  相似文献   

8.
Plants might be under selection for both attracting efficient pollinators and deterring wasteful visitors. Particular floral traits can act as exploitation barriers by discouraging the unwelcome visitors. In the genus Penstemon, evolutionary shifts from insect pollination to more efficient hummingbird pollination have occurred repeatedly, resulting in the convergent evolution of floral traits commonly present in hummingbird-pollinated flowers. Two of these traits, a reduced or reflexed lower petal lip and a narrow corolla, were found in a previous flight-cage study to affect floral handling time by bumble bees, therefore potentially acting as “anti-bee” traits affecting preference. To test whether these traits do reduce bumble bee visitation in natural populations, we manipulated these two traits in flowers of bee-pollinated Penstemon strictus to resemble hummingbird-adapted close relatives and measured the preferences of free-foraging bees. Constricted corollas strongly deterred bee visitation in general, and particularly reduced visits by small bumble bees, resulting in immediate specialization to larger, longer-tongued bumble bees. Bees were also deterred—albeit less strongly—by lipless flowers. However, we found no evidence that lip removal and corolla constriction interact to further affect bee preference. We conclude that narrow corolla tubes and reduced lips in hummingbird-pollinated penstemons function as exploitation barriers that reduce bee access to nectaries or increase handling time.  相似文献   

9.
Pollen dispersal success in entomophilous plants is influenced by the amount of pollen produced per flower, the fraction of pollen that is exported to other flowers during a pollinator visit, visitation frequency, and the complementarity between pollen donor and recipients. For bumble bee-pollinated Polemonium viscosum the first three determinants of male function are correlated with morphometric floral traits. Pollen production is positively related to corolla and style length, whereas pollen removal per visit by bumble bee pollinators is a positive function of corolla flare. Larger-flowered plants receive more bumble bee visits than small-flowered individuals. We found no evidence of tradeoffs between pollen export efficiency and per visit accumulation of outcross pollen; each was influenced by unique aspects of flower morphology. Individual queen bumble bees of the principal pollinator species, Bombus kirbyellus, were similar in male, female, and absolute measures of pollination effectiveness. An estimated 2.9% of the pollen that bumble bees removed from flowers during a foraging bout was, on average, deposited on stigmas of compatible recipients. Significant plant-to-plant differences in pollen production, pollen export per visit, and outcross pollen receipt were found for co-occurring individuals of P. viscosum indicating that variation in these fitness related traits can be seen by pollinator-mediated selection.  相似文献   

10.
Capitol Reef National Park in central Utah, USA surrounds 22 managed fruit orchards started over a century ago by Mormon pioneers. Honey bees are imported for pollination, although the area in which the Park is embedded has over 700 species of native bees, many of which are potential orchard pollinators. We studied the visitation of native bees to apple, pear, apricot, and sweet cherry over 2 years. Thirty species of bees visited the flowers but, except for pear flowers, most were uncommon compared to honey bees. Evidence that honey bees prevented native bees from foraging on orchard crop flowers was equivocal: generally, honey bee and native bee visitation rates to the flowers were not negatively correlated, nor were native bee visitation rates positively correlated with distance of orchards from honey bee hives. Conversely, competition was tentatively suggested by much larger numbers of honey bees than natives on the flowers of apples, apricots and cherry; and by the large increase of native bees on pears, where honey bee numbers were low. At least one-third of the native bee species visiting the flowers are potential pollinators, including cavity-nesting species such as Osmia lignaria propinqua, currently managed for small orchard pollination in the US, plus several fossorial species, including one rosaceous flower specialist (Andrena milwaukiensis). We suggest that gradual withdrawal of honey bees from the Park would help conserve native bee populations without decreasing orchard crop productivity, and would serve as a demonstration of the commercial value of native pollinators.  相似文献   

11.
Almond trees are one of the most important crops in the Balearic Islands. The pollination of almonds is limited to the activity of insects, and cross‐pollination is necessary for fruit development. Currently, honey bees and wild bee populations are declining considerably due to multiple causes, such as the use of pesticides, diseases and habitat loss. An alternative to increase the almond production is the use of commercial pollinators. In this long‐term (3 years) study, the effect of the introduction of Bombus terrestris colonies on almond production was evaluated in two orchards. Two experimental designs were carried out to study the best management of this pollinator. For 2 years, all bumble bee colonies were placed in the middle of the plot and during the last year, the bumble bee colonies were distributed homogenously in the plot. Fruit set and the foraging behaviour of bumble bees during the blossoming period was determined, and the effect of different environmental variables on the visitation rate of bumble bees was assessed by means of a generalized linear mixed model (GLMM). Moreover, for the first time, the spatial distribution of fruit set was evaluated. Our results show that fruit set was significantly higher in the fields where B. terrestris had been introduced than in the control plots. This increased production resulted in a positive economic balance for the farmer. Moreover, bumble bees showed to prefer trees in a southwest orientation that were close to their colony. The activity of bumble bees showed to be significantly influenced by wind speed (the higher the speed the more flowers are visited by B. terrestris) and time after flowering (visitation rate decreased with days after flowering). In order to improve its management and obtain the highest possible almond production, it is important to understand the activity and behaviour of this pollinator.  相似文献   

12.

Background and Aims

Studies of the effects of pollination on floral scent and bee visitation remain rare, particularly in agricultural crops. To fill this gap, the hypothesis that bee visitation to flowers decreases after pollination through reduced floral volatile emissions in highbush blueberries, Vaccinium corymbosum, was tested. Other sources of variation in floral emissions and the role of floral volatiles in bee attraction were also examined.

Methods

Pollinator visitation to blueberry flowers was manipulated by bagging all flowers within a bush (pollinator excluded) or leaving them unbagged (open pollinated), and then the effect on floral volatile emissions and future bee visitation were measured. Floral volatiles were also measured from different blueberry cultivars, times of the day and flower parts, and a study was conducted to test the attraction of bees to floral volatiles.

Key Results

Open-pollinated blueberry flowers had 32 % lower volatile emissions than pollinator-excluded flowers. In particular, cinnamyl alcohol, a major component of the floral blend that is emitted exclusively from petals, was emitted in lower quantities from open-pollinated flowers. Although, no differences in cinnamyl alcohol emissions were detected among three blueberry cultivars or at different times of day, some components of the blueberry floral blend were emitted in higher amounts from certain cultivars and at mid-day. Field observations showed that more bees visited bushes with pollinator-excluded flowers. Also, more honey bees were caught in traps baited with a synthetic blueberry floral blend than in unbaited traps.

Conclusions

Greater volatile emissions may help guide bees to unpollinated flowers, and thus increase plant fitness and bee energetic return when foraging in blueberries. Furthermore, the variation in volatile emissions from blueberry flowers depending on pollination status, plant cultivar and time of day suggests an adaptive role of floral signals in increasing pollination of flowers.  相似文献   

13.
Summary In alpine Polemonium viscosum, plants having sweet-scented flowers are primarily pollinated by queens of the bumble bee species, Bombus kirbyellus. In this paper we ask whether two aspects of the pollination effectiveness of bumble bees, visitation rate and pollination efficiency, vary significantly with flower size in sweet-flowered P. viscosum.(i) Bumble bees visited plants with large flowers on 80–90% of encounters, but visited those with smaller flowers on only 49% of encounters. (ii) However, the gain in pollination that large-flowered plants obtained via increased visitation was countered in part because bumble bees deposited fewer outcross pollen grains per visit on stigmas of large flowers than on those of small ones. When both visitation rate and pollination efficiency are taken into account, the predicted value of a single bumble bee encounter declines from 1.06 seeds for flowers larger than 18 mm in diameter to 0.55 seeds for flowers smaller than 12 mm in diameter. Our results suggest that bumble bee pollinators of P. viscosum prefer flower morphologies that are poorly suited for precise pollination. Such behavioral complexities are likely to place constraints on the evolution of optimal floral design.  相似文献   

14.
To achieve maximised and sustainable crop productivity, it is critical that we develop crop-specific strategies for managing pollination. Honey bees (Apis mellifera) and stingless bees (Tetragonula carbonaria) are considered effective pollinators of macadamia (Macadamia integrifolia). The introduction of managed honey bee or stingless bee hives into orchards is likely to boost the numbers of these insects visiting flowers; however, there is a lack of published information and consensus regarding their management for pollination. Here, we identify factors that affect the distribution of both honey bees and stingless bees across cultivated macadamia, and establish whether increased flower visitation leads to higher nut set. A gradient of bee visitation rates was created by placing colonies on the ends of a four-hectare block, and mixed-effect models were applied to assess forager abundance and nut set with respect to distance from hive, time of day, cultivar, and floral display size. Distance from colony had a strong effect on stingless bee numbers, with >96% of individuals recorded within 100 metres of colonies, whereas the distribution of honey bees was more closely related to daily floral display: trees with greater numbers of flowers attracted more honey bees. Simplified surveys conducted in a further 17 macadamia blocks confirm that these are broadly occurring distribution patterns. Bee abundance alone did not significantly predict nut production; however, an indirect effect of bee visits to flowers is inferred, as nut production increased with size of floral display. To encourage a more even distribution of bees and uniform pollination, we recommend placement of stingless bee hives to maximise their distribution through a block (e.g. at 100-m intervals) and management practices that promote even distributions of flowers across trees.  相似文献   

15.
Evidence for pollinator declines has led to concern that inadequate pollination services may limit crop yields. The global trade in commercial bumble bee (Bombus spp.) colonies provides pollination services for both glasshouse and open-field crops. For example, in the United Kingdom, commercial colonies of nonnative subspecies of the bumble bee Bombus terrestris L. imported from mainland Europe are widely used for the pollination of raspberries, Rubus idaeus L. The extent to which these commercial colonies supplement the services provided by wild pollinators has not been formally quantified and the impact of commercial bumble bees on native bees visiting the crop is unknown. Here, the impacts of allowing commercially available bumble bee colonies to forage on raspberry canes are assessed in terms of the yield of marketable fruit produced and the pollinator communities found foraging on raspberry flowers. No differences were found in the abundance, diversity, or composition of social bee species observed visiting raspberry flowers when commercial bumble bees were deployed compared with when they were absent. However, weight of marketable raspberries produced increased when commercial bees were present, indicating that wild pollinator services alone are inadequate for attaining maximum yields. The findings of the study suggests that proportional yield increases associated with deployment of commercial colonies may be small, but that nevertheless, investment in commercial colonies for raspberry pollination could produce very significant increases in net profit for the grower. Given potential environmental risks associated with the importation of nonnative bumble bees, the development of alternative solutions to the pollination deficit in raspberry crops in the United Kingdom may be beneficial.  相似文献   

16.
The foraging behavior of bees is a complex phenomenon that depends on numerous physical features of flowers. Of particular importance are accessibility of floral rewards, floral proportions, symmetry and orientation. The flowers of Roepera are characterized by the presence of staminal scales (SS), which play an important role in nectar protection. We studied two species of Roepera with different symmetry and flower orientation, which are mainly visited by honeybees (Apis mellifera). We aimed to show how the foraging behavior of honey bees is affected by the function of SS, floral symmetry and orientation. The foraging behavior was documented by video photography. Handling time, access to nectar, percentage of pollen/nectar foraging, percentage of pollen contact and pollen deposition site on the honey bee's body were assessed. The morphometric features of the honey bees and flowers were analyzed. We found that the SS restricted pollinator access to nectar. Our results indicated consistency of visitation patterns in zygomorphic, laterally oriented flowers of R. fuscata versus random patterns in actinomorphic, diversely oriented flowers of R. leptopetala. The relative proportions of SS and proboscis length appear to be crucial for the success of pollinators. The directionality of the honey bees' movement, together with the different positioning of reproductive organs, plays an important role in the accuracy of pollen transfer and pollination efficiency.  相似文献   

17.
Plant density varies naturally, from isolated plants to clumped individuals, and this can influence pollinator foraging behaviour and plant reproductive success. In addition, the effect of conspecific density on reproduction may depend on the pollination system, and deceptive species differ from rewarding ones in this regard, a high density being often associated with low fruit set in deceptive plants. In our study, we aimed to determine how local conspecific density and floral display size (i.e. number of flowers per plant) affect fruit set in a deceptive orchid (Orchis militaris) through changes in pollinator visitation. We measured fruit set in a natural population and recorded pollinator abundance and foraging behaviour within plots of different O. militaris densities. Detailed data were recorded for the most abundant potential pollinators of O. militaris, i.e. solitary bees. Floral display size was negatively correlated to fruit set in medium‐density plots, but uncorrelated in low‐ and high‐density plots. Plot density had no effect on solitary bee abundance and visitation, which may be due to low pollinator abundance within the study site. The proportion of visited flowers per inflorescence was negatively influenced by floral display size, which is in line with previous studies. In addition, solitary bees spent decreasing time in successive flowers within an inflorescence, and the time spent per flower was negatively affected by ambient temperature. Our results suggest that pollinator behaviour during visitation is poorly linked to pollen deposition and reproductive success in O. militaris.  相似文献   

18.
Greenhouse tomatoes, Lycopersicon esculentum Miller (Solanaceae), are autogamous, but facilitated pollination results in increased fruit size and set. Previous research examining honey bee pollination in greenhouse tomato crops established that fruit quality resulting from honey bee visitation is often comparable to bumble bees (Bombus spp.) and significantly better than in flowers that receive no facilitated pollination. However, management alternatives have not been studied to improve tomato fruit quality when honey bees are the only pollination option available for the high-value greenhouse industry. We investigated whether the quantity of brood (eggs, larvae, and pupae) in a honey bee colony in the winter and screening on greenhouse vents in the summer would encourage honey bee foraging on tomato flowers. We also established the influence of time of year on the potential for honey bees to be effective pollinating agents. We constructed small honey bee colonies full of naive forager bees with either two frames of brood ("brood colonies") or two empty frames ("no-brood") and compared total fruit set and the number of tomato seeds resulting from fruit potentially visited by honey bees in each of these treatments to bagged flowers that received no facilitated pollination. There was no significant difference in the quality of fruit resulting from honey bees from "brood" and "no-brood" colonies. However, these fruits produced significantly more seeds than bagged flowers restricted from facilitated pollination. Honey bees from brood and no-brood colonies also resulted in 98% fruit set compared with 80% fruit set in bagged flowers that received no facilitated pollination. During the summer, the number of seeds per fruit did not differ significantly between unbagged flowers potentially visited by honey bees in screened greenhouses and unscreened greenhouses and bagged flowers that received no facilitated pollination. However, time of year did have a significant influence on the quality of fruit produced by honey bees compared with flowers that received no facilitated pollination, because no difference in seed number was observed between the treatments after mid-April. The results from this study demonstrate that the management of brood levels and vent screening cannot be used to improve the quality of fruit resulting from honey bee pollination and that honey bees can be a feasible greenhouse pollination alternative only during the winter.  相似文献   

19.
Yellow crazy ant (Anoplolepis gracilipes (F. Smith); “YCA”) is known for its aggressive predatory ability and ability to exert exploitation competition on both native and other invasive ants via floral nectar. We argue that YCA invasion can exert both interference and exploitation competition on legitimate pollinators. In pumpkin fields (Cucurbita maxima L.) of south India, YCA infested the flowers, particularly the pistillate flowers, for nectar foraging. Pumpkin is a honey bee-mediated cross-pollinated monoecious plant that produces disproportionately very few pistillate flowers. We hypothesize that YCA presence in the flowers can affect the visitation rate and foraging time of honey bees in the flowers, the fruit set in pumpkins, and can exert predatory pressure on the honey bees if the bees linger in ant-colonized flowers. Both YCA and honey bees preferred to forage on the limited pistillate flowers in the plants. After colonizing the flowers, YCA did not retreat for hours, even upon disturbance by competitors, such as honey bees. Both the visitation frequency and the foraging time of honey bees were drastically reduced in ant-colonized flowers, and none of the ant-colonized flowers developed into fruits, suggesting that the YCA exert both an ecological and evolutionary pressure on pumpkin. The ants preyed upon about 17% of the honey bees that lingered in ant-colonized flowers, and the time the bees spent foraging predicted the fate of the bees. Exploitation competition exerted by the YCA on pumpkin may have far-reaching consequences for the pollination and productivity of this cash crop.  相似文献   

20.
Although commercially reared colonies of bumble bees (Bombus sp.) are the primary pollinator world-wide for greenhouse tomatoes (Lycopersicon esculentum Mill.) previous research indicates that honey bees (Apis mellifera L.) might be a feasible alternative or supplement to bumble bee pollination. However, management methods for honey bee greenhouse tomato pollination scarcely have been explored. We 1) tested the effect of initial amounts of brood on colony population size and flight activity in screened greenhouses during the winter, and 2) compared foraging from colonies with brood used within screened and unscreened greenhouses during the summer. Brood rearing was maintained at low levels in both brood and no-brood colonies after 21 d during the winter, and emerging honey bees from both treatments had significantly lower weights than bees from outdoor colonies. Honey bee flight activity throughout the day and over the 21 d in the greenhouse was not influenced by initial brood level. In our summer experiment, brood production in screened greenhouses neared zero after 21 d but higher levels of brood were reared in unscreened greenhouses with access to outside forage. Flower visitation measured throughout the day and over the 21 d the colonies were in the greenhouse was not influenced by screening treatment. An economic analysis indicated that managing honey bees for greenhouse tomato pollination would be financially viable for both beekeepers and growers. We conclude that honey bees can be successfully managed for greenhouse tomato pollination in both screened and unscreened greenhouses if the foraging force is maintained by replacing colonies every 3 wk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号