首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the expression of a novel glycophospholipid, phosphatidylglucoside (PtdGlc), in adult mouse brains. Immunohistochemical analysis with DIM21 antibody, a monoclonal anti-PtdGlc antibody, revealed robust PtdGlc staining in the two primary neurogenic regions of the adult rodent brain, the subventricular zone (SVZ) lining the lateral ventricle and the subgranular zone of the dentate gyrus. Intriguingly, the staining pattern of PtdGlc appeared to overlap that of glial fibrillary acidic protein, an adult neural stem cell marker in these regions. Further immunohistochemical analysis revealed that PtdGlc expression on the cell membranes of adult SVZ neural stem cells significantly overlapped with other proposed adult neural stem cell markers. Moreover, PtdGlc(+) cells isolated from adult mouse SVZs by fluorescence-activated cell sorting with anti-PtdGlc antibody efficiently generated neurospheres in cell culture. These cells differentiated into neurons, astrocytes, and oligodendrocytes in vitro, directly demonstrating that PtdGlc-expressing cells possessed multipotency. Our data suggest that PtdGlc could be a useful adult stem cell marker.  相似文献   

2.
The effects of specific mitogens and substrates on the proliferative capacity and the differentiated phenotypic plasticity of neural precursor cell populations isolated from the adult rat subventricular zone (SVZ) were examined. SVZ cells were grown on uncoated tissue culture plastic, extracellular matrix, or poly-D-ornithine with either laminin or fibronectin. SVZ neural precursor cells could not be generated with platelet-derived growth factor (PDGF), granulocyte macrophage colony stimulating factor, stem cell factor, heparin-binding epidermal growth factor (HB-EGF), granulocyte colony stimulating factor, or ciliary neurotrophic factor (CNTF), but could be with EGF, fibroblast growth factor 2 (FGF2), and FGF2 plus heparin. Varying combinations of substrate and mitogen resulted in very different expansion rates and/or lineage potential. Neurons, oligodendrocytes, and astrocytes differentiated from all cultures, but EGF-generated neural precursor cells were more restricted to an astrocytic lineage and FGF2-generated neural precursor cells had a greater capacity for neuronal differentiation. In both EGF- and FGF2-generated cell populations, CNTF increased the number of differentiated astrocytes, triiodothyronine oligodendrocytes, PDGF neurons, and brain-derived neurotrophic factor neurons only from EGF cells. Electrophysiological analysis of differentiated cells showed three distinct phenotypes, glial, neuronal, and presumed precursor cells, although the neuronal properties were immature. Collectively, these data indicate that CNS neural precursor cell populations isolated with different mitogens and substrates are intrinsically different and their characteristics cannot be directly compared.  相似文献   

3.
There is an emerging understanding of the importance of the vascular system within stem cell niches. Here, we examine whether neural stem cells (NSCs) in the adult subventricular zone (SVZ) lie close to blood vessels, using three-dimensional whole mounts, confocal microscopy, and automated computer-based image quantification. We found that the SVZ contains a rich plexus of blood vessels that snake along and within neuroblast chains. Cells expressing stem cell markers, including GFAP, and proliferation markers are closely apposed to the laminin-containing extracellular matrix (ECM) surrounding vascular endothelial cells. Apical GFAP+ cells are admixed within the ependymal layer and some span between the ventricle and blood vessels, occupying a specialized microenvironment. Adult SVZ progenitor cells express the laminin receptor alpha6beta1 integrin, and blocking this inhibits their adhesion to endothelial cells, altering their position and proliferation in vivo, indicating that it plays a functional role in binding SVZ stem cells within the vascular niche.  相似文献   

4.
In the early chick embryo, Pdgfa is expressed in the epiblast, outlining the migration route that mesoderm cells expressing the receptor, Pdgfralpha, follow to form somites. Both expression of a dominant-negative PDGFRalpha and depletion of endogenous PDGFRalpha ligands through injection of PDGFRalpha-Fc fragments, inhibit the migration of mesoderm cells after their ingression through the primitive streak. siRNA-mediated downregulation of Pdgfa expression in the epiblast on one side of the streak strongly blocks the migration of mesoderm cells into that side. Beads soaked in PDGFA elicit a directional attractive movement response in mesoderm cells, showing that PDGFA can provide directional information. Surprisingly, however, PDGF signalling is also required for directional movement towards other attractants, such as FGF4. PDGF signalling controls N-cadherin expression on mesoderm cells, which is required for efficient migration. PDGF signalling activates the PI3 kinase signalling pathway in vivo and activation of this pathway is required for proper N-cadherin expression.  相似文献   

5.
The heat shock protein HSP90 serves as a chaperone for receptor protein kinases, steroid receptors, and other intracellular signaling molecules. Targeting HSP90 with ansamycin antibiotics disrupts the normal processing of clients of the HSP90 complex. The platelet-derived growth factor receptor alpha (PDGFRalpha) is a tyrosine kinase receptor up-regulated and activated in several malignancies. Here we show that the PDGFRalpha forms a complex with HSP90 and the co-chaperone cdc37 in ovarian, glioblastoma, and lung cancer cells. Treatment of cancer cell lines expressing the PDGFRalpha with the HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) promotes degradation of the receptor. Likewise, phospho-Akt, a downstream target, is degraded after treatment with 17-AAG. In contrast, PDGFRalpha expression is not affected by 17-AAG in normal human smooth muscle cells or 3T3 fibroblasts. PDGFRalpha degradation by 17-AAG is inhibited by the proteasome inhibitor MG132. High molecular weight, ubiquitinated forms of the receptor are detected in cells treated with 17-AAG and MG132. Degradation of the receptor is also inhibited by a specific neutralizing antibody to the PDGFRalpha but not by a neutralizing antibody to PDGF or by imatinib mesylate (Gleevec). Ultimately, PDGFRalpha-mediated cell proliferation is inhibited by 17-AAG. These results show that 17-AAG promotes PDGFRalpha degradation selectively in transformed cells. Thus, not only mutated tyrosine kinases but also overexpressed receptors in cancer cells can be targeted by 17-AAG.  相似文献   

6.
A specialized vascular niche for adult neural stem cells   总被引:5,自引:0,他引:5  
Stem cells reside in specialized niches that regulate their self-renewal and differentiation. The vasculature is emerging as an important component of stem cell niches. Here, we show that the adult subventricular zone (SVZ) neural stem cell niche contains an extensive planar vascular plexus that has specialized properties. Dividing stem cells and their transit-amplifying progeny are tightly apposed to SVZ blood vessels both during homeostasis and regeneration. They frequently contact the vasculature at sites that lack astrocyte endfeet and pericyte coverage, a modification of the blood-brain barrier unique to the SVZ. Moreover, regeneration often occurs at these sites. Finally, we find that circulating small molecules in the blood enter the SVZ. Thus, the vasculature is a key component of the adult SVZ neural stem cell niche, with SVZ stem cells and transit-amplifying cells uniquely poised to receive spatial cues and regulatory signals from diverse elements of the vascular system.  相似文献   

7.
Radial Glia (RG) cells constitute the major population of neural progenitors of the mouse developing brain. These cells are located in the ventricular zone (VZ) of the cerebral cortex and during neurogenesis they support the generation of cortical neurons. Later on, during brain maturation, RG cells give raise to glial cells and supply the adult mouse brain of Neural Stem Cells (NSC). Here we used a novel transgenic mouse line expressing the CreER(T2) under the control of AspM promoter to monitor the progeny of an early cohort of RG cells during neurogenesis and in the post natal brain. Long term fate mapping experiments demonstrated that AspM-expressing RG cells are multi-potent, as they can generate neurons, astrocytes and oligodendrocytes of the adult mouse brain. Furthermore, AspM descendants give also rise to proliferating progenitors in germinal niches of both developing and post natal brains. In the latter--i.e. the Sub Ventricular Zone--AspM descendants acquired several feature of neural stem cells, including the capability to generate neurospheres in vitro. We also performed the selective killing of these early progenitors by using a Nestin-GFP(flox)-TK allele. The forebrain specific loss of early AspM expressing cells caused the elimination of most of the proliferating cells of brain, a severe derangement of the ventricular zone architecture, and the impairment of the cortical lamination. We further demonstrated that AspM is expressed by proliferating cells of the adult mouse SVZ that can generate neuroblasts fated to become olfactory bulb neurons.  相似文献   

8.
Induced pluripotent stem cells (iPSCs) prepared from somatic cells might become a novel therapeutic tool in regenerative medicine, especially for the central nervous system (CNS). In this study, we attempted to induce O4-positive (O4+) oligodendrocytes from adult human fibroblast-derived iPSCs in vitro. We used two adult human iPSC cell lines, 201B7 and 253G1. 201B7 was induced by four-gene transduction (oct4, sox2, klf4, c-myc), and 253G1 was induced by three-gene transduction (oct4, sox2, klf4). We treated these cells with two in vitro oligodendrocyte-directed differentiation protocols that were optimized for human embryonic stem cells. One protocol used platelet-derived growth factor as the major mitogen for oligodendrocyte lineage cells, and the other protocol used epidermal growth factor (EGF) as the mitogen. Although the differentiation efficiency was low (less than 0.01%), we could induce O4+ oligodendrocytes from 253G1 cells using the EGF-dependent differentiation protocol. This is the first report of the in vitro induction of oligodendrocytes differentiation from human iPSCs.  相似文献   

9.
In the adult rodent brain, the subventricular zone (SVZ) represents a special niche for neural stem cells; these cells proliferate and generate neural progenitors. Most of these migrate along the rostral migratory stream to the olfactory bulb, where they differentiate into interneurons. SVZ-derived progenitors can also be recruited spontaneously to damaged brain areas to replace lost cells, including oligodendrocytes in demyelinated lesions. In this study, we searched for factors able to enhance this spontaneous recruitment of endogenous progenitors. Previous studies have suggested that epidermal growth factor (EGF) could stimulate proliferation, migration, and glial differentiation of SVZ progenitors. In the present study we examined EGF influence on endogenous SVZ cell participation to brain repair in the context of demyelinated lesions. We induced a focal demyelinated lesion in the corpus callosum by lysolecithin injection and showed that intranasal heparin-binding epidermal growth factor (HB-EGF) administration induces a significant increase in SVZ cell proliferation together with a stronger SVZ cell mobilization toward the lesions. Besides, HB-EGF causes a shift of SVZ-derived progenitor cell differentiation toward the astrocytic lineage. However, due to the threefold increase in cell recruitment by EGF treatment, the absolute number of SVZ-derived oligodendrocytes in the lesion of treated mice is higher than in controls. These results suggest that enhancing SVZ cell proliferation could be part of future strategies to promote SVZ progenitor cell mobilization toward brain lesions.  相似文献   

10.
Sonic hedgehog controls stem cell behavior in the postnatal and adult brain   总被引:24,自引:0,他引:24  
Sonic hedgehog (Shh) signaling controls many aspects of ontogeny, orchestrating congruent growth and patterning. During brain development, Shh regulates early ventral patterning while later on it is critical for the regulation of precursor proliferation in the dorsal brain, namely in the neocortex, tectum and cerebellum. We have recently shown that Shh also controls the behavior of cells with stem cell properties in the mouse embryonic neocortex, and additional studies have implicated it in the control of cell proliferation in the adult ventral forebrain and in the hippocampus. However, it remains unclear whether it regulates adult stem cell lineages in an equivalent manner. Similarly, it is not known which cells respond to Shh signaling in stem cell niches. Here we demonstrate that Shh is required for cell proliferation in the mouse forebrain's subventricular zone (SVZ) stem cell niche and for the production of new olfactory interneurons in vivo. We identify two populations of Gli1+ Shh signaling responding cells: GFAP+ SVZ stem cells and GFAP- precursors. Consistently, we show that Shh regulates the self-renewal of neurosphere-forming stem cells and that it modulates proliferation of SVZ lineages by acting as a mitogen in cooperation with epidermal growth factor (EGF). Together, our data demonstrate a critical and conserved role of Shh signaling in the regulation of stem cell lineages in the adult mammalian brain, highlight the subventricular stem cell astrocytes and their more abundant derived precursors as in vivo targets of Shh signaling, and demonstrate the requirement for Shh signaling in postnatal and adult neurogenesis.  相似文献   

11.
We have shown previously that oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells isolated from adult rat optic nerves can be distinguished in vitro from their perinatal counterparts on the basis of their much slower rates of division, differentiation, and migration when grown in the presence of cortical astrocytes or PDGF. This behavior is consistent with in vivo observations that there is only a modest production of oligodendrocytes in the adult CNS. As such a behavior is inconsistent with the likely need for a rapid generation of oligodendrocytes following demyelinating damage to the mature CNS, we have been concerned with identifying in vitro conditions that allow O-2Aadult progenitor cells to generate rapidly large numbers of progeny cells. We now provide evidence that many slowly dividing O-2Aadult progenitor cells can be converted to rapidly dividing cells by exposing adult optic nerve cultures to both PDGF and bFGF. In addition, these O-2Aadult progenitor cells appear to acquire other properties of O-2Aperinatal progenitor cells, such as bipolar morphology and high rate of migration. Although many O-2Aadult progenitor cells in cultures exposed to bFGF alone also divide rapidly, these cells are multipolar and migrate little in vitro. Oligodendrocytic differentiation of O-2Aadult progenitor cells, which express receptors for bFGF in vitro, is almost completely inhibited in cultures exposed to bFGF or bFGF plus PDGF. As bFGF and PDGF appear to be upregulated and/or released after injury to the adult brain, this particular in vitro response of O-2Aadult progenitor cells to PDGF and bFGF may be of importance in the generation of large numbers of new oligodendrocytes in vivo following demyelination.  相似文献   

12.
Neural stem cells reside in the subventricular zone (SVZ) of the adult mammalian brain. This germinal region, which continually generates new neurons destined for the olfactory bulb, is composed of four cell types: migrating neuroblasts, immature precursors, astrocytes, and ependymal cells. Here we show that SVZ astrocytes, and not ependymal cells, remain labeled with proliferation markers after long survivals in adult mice. After elimination of immature precursors and neuroblasts by an antimitotic treatment, SVZ astrocytes divide to generate immature precursors and neuroblasts. Furthermore, in untreated mice, SVZ astrocytes specifically infected with a retrovirus give rise to new neurons in the olfactory bulb. Finally, we show that SVZ astrocytes give rise to cells that grow into multipotent neurospheres in vitro. We conclude that SVZ astrocytes act as neural stem cells in both the normal and regenerating brain.  相似文献   

13.

Neural stem cells (NSCs) are multipotent, self-renewable cells who are capable of differentiating into neurons, astrocytes, and oligodendrocytes. NSCs reside at the subventricular zone (SVZ) of the adult brain permanently to guarantee a lifelong neurogenesis during neural network plasticity or undesirable injuries. Although the specious inaccessibility of adult NSCs niche hampers their in vivo identification, researchers have been seeking ways to optimize adult NSCs isolation, expansion, and differentiation, in vitro. NSCs were isolated from rhesus monkey SVZ, expanded in vitro and then characterized for NSCs-specific markers expression by immunostaining, real-time PCR, flow cytometry, and cell differentiation assessments. Moreover, cell survival as well as self-renewal capacity were evaluated by TUNEL, Live/Dead and colony assays, respectively. In the next step, to validate SVZ-NSCs identity in other species, a similar protocol was applied to isolate NSCs from adult rat’s SVZ as well. Our findings revealed that isolated SVZ-NSCs from both monkey and rat preserve proliferation capacity in at least nine passages as confirmed by Ki67 expression. Additionally, both SVZ-NSCs sources are capable of self-renewal in addition to NESTIN, SOX2, and GFAP expression. The mortality was measured meager with over 95% viability according to TUNEL and Live/Dead assay results. Eventually, the multipotency of SVZ-NSCs appraised authentic after their differentiation into neurons, astrocytes, and oligodendrocytes. In this study, we proposed a reliable method for SVZ-NSCs in vitro maintenance and identification, which, we believe is a promising cell source for therapeutic approach to recover neurological disorders and injuries condition.

  相似文献   

14.
The SVZ (subventricular zone) contains neural stem cells and progenitors of various potentialities. Although initially parsed into A, B, and C cells, this germinal zone is comprised of a significantly more diverse population of cells. Here, we characterized a subset of postnatal PRPs (PDGF-AA-responsive precursors) that express functional PDGFα and β receptors from birth to adulthood. When grown in PDGF-AA, dissociated neonatal rat SVZ cells divided to produce non-adherent clusters of progeny. Unlike the self-renewing EGF/FGF-2-responsive precursors that produce neurospheres, these PRPs failed to self-renew after three passages; therefore, we refer to the colonies they produce as spheroids. Upon differentiation these spheroids could produce neurons, type 1 astrocytes and oligodendrocytes. When maintained in medium supplemented with BMP-4 they also produced type 2 astrocytes. Using lineage tracing methods, it became evident that there were multiple types of PRPs, including a subset that could produce neurons, oligodendrocytes, and type 1 and type 2 astrocytes; thus some of these PRPs represent a unique population of precursors that are quatropotential. Spheroids also could be generated from the newborn neocortex and they had the same potentiality as those from the SVZ. By contrast, the adult neocortex produced less than 20% of the numbers of spheroids than the adult SVZ and spheroids from the adult neocortex only differentiated into glial cells. Interestingly, SVZ spheroid producing capacity diminished only slightly from birth to adulthood. Altogether these data demonstrate that there are PRPs that persist in the SVZ that includes a unique population of quatropotential PRPs.  相似文献   

15.
Neural stem cells are maintained in the subventricular zone (SVZ) of the adult mammalian brain. Here, we review the cellular organization of this germinal layer and propose lineage relationships of the three main cell types found in this area. The majority of cells in the adult SVZ are migrating neuroblasts (type A cells) that continue to proliferate. These cells form an extensive network of tangentially oriented pathways throughout the lateral wall of the lateral ventricle. Type A cells move long distances through this network at high speeds by means of chain migration. Cells in the SVZ network enter the rostral migratory stream (RMS) and migrate anteriorly into the olfactory bulb, where they differentiate into interneurons. The chains of type A cells are ensheathed by slowly proliferating astrocytes (type B cells), the second most common cell type in this germinal layer. The most actively proliferating cells in the SVZ, type C, form small clusters dispersed throughout the network. These foci of proliferating type C cells are in close proximity to chains of type A cells. We discuss possible lineage relationships among these cells and hypothesize which are the neural stem cells in the adult SVZ. In addition, we suggest that interactions between type A, B, and C cells may regulate proliferation and initial differentiation within this germinal layer. © 1998 John Wiley & Sons, Inc. J Neurobiol 36: 234–248, 1998  相似文献   

16.
Calcitriol, a hormonal form of Vitamin D, regulates growth of normal and cancer cells of various origins by modulation of peptide growth factors signaling. Platelet-Derived Growth Factor (PDGF) signaling pathway is involved in prostate cancer progression. We studied the expression of PDGF receptors in human prostate primary stromal cells and cancer epithelial cell lines and growth response to PDGF-BB isoform. We found that the expression of PDGF receptors and PDGF-BB-mediated cell growth are regulated by calcitriol in prostate cells. Quantitative RT-PCR analysis revealed a lower level of mRNA for PDGF receptors in LNCaP and PC-3 cells than in primary stromal cells. Western blotting showed a high amount of PDGFRalpha and beta proteins in primary stromal cells that could not be detected in LNCaP, which may explain the resistance of LNCaP cells to growth-promoting effect of PDGF-BB. Addition of Epidermal Growth Factor (EGF) to the culture medium induces the expression of PDGFRbeta and restores responsiveness of LNCaP to PDGF-BB to some extent. Calcitriol down-regulates PDGFRbeta expression and negatively regulates PDGF-mediated cell growth. Calcitriol does not affect PDGFRalpha and PDGF-B mRNA expression. We suggest that inhibition of PDGFRbeta expression by calcitriol might reduce responsiveness of prostate cells to mitogenic action of PDGF-BB.  相似文献   

17.
The subventricular zone (SVZ) is a major reservoir for stem cells in the adult mammalian brain. Neural stem cells supply the olfactory bulb with new interneurons and provide cells that migrate towards lesioned brain areas. Neuropeptide Y (NPY), one of the most abundant neuropeptides in the brain, was previously shown to induce neuroproliferation on mice SVZ cells. In the present study, performed in rats, we demonstrate the endogenous synthesis of NPY by cells in the SVZ that suggests that NPY could act as an autocrine/paracrine factor within the SVZ area. We observed that NPY promotes SVZ cell proliferation as previously reported in mice, but does not affect self-renewal of SVZ stem cells. Additionally, this study provides the first direct evidence of a chemokinetic activity of NPY on SVZ cells. Using pharmacological approaches, we demonstrate that both the mitogenic and chemokinetic properties of NPY involve Y1 receptor-mediated activation of the ERK1/2 MAP kinase pathway. Altogether, our data establish that NPY through Y1 receptors activation controls chemokinetic activity and, as for mice, is a major neuroproliferative regulator of rat SVZ cells.  相似文献   

18.
Understanding mechanisms that govern cell fate decisions will lead to developing techniques for induction of adult stem cell differentiation to desired cell outcomes and, thus, production of an autologos source of cells for regenerative medicine. Recently, we demonstrated that stem cells derived from adult central nervous system or bone marrow grown with other cell lineages or with more undifferentiated cells sometimes take on those characteristics. This indicates that manipulating extracellular factors may be sufficient to alter some developmental restrictions regulated by the epigenetic system. In this study, using pharmacological agents that interfere with the main components of the epigenetic program such as DNA methylation and histone deacetylation, we induce high-level expression of embryonic and neural stem cell (NSC) marker Sox2 in bone marrow-derived mesenchymal stem cells (MSCs). Exposure of these modified cells to a neural environment via juxtacrine and paracrine interactions promote efficient generation of neural stem-like cells as well as cells with neuronal and glial characteristics. We concluded that the manipulation strategy used in this study can be a useful method for efficient production of NSC-like cells from MSCs.  相似文献   

19.
In previous studies, we found that progesterone was able to induce the expression of platelet-derived growth factor (PDGF) in human breast cancer MCF7 cells. Knowing that imatinib mesylate targets PDGF receptor tyrosine kinase activity, the aim of the present study was to examine the effects of imatinib on progesterone-treated MCF7 cells. Expression of phosphorylated (activated) platelet-derived growth factor receptor-alpha (PDGFRalpha) was detected in MCF7 cells. Interestingly, phosphorylated-PDGFRalpha expression was significantly downregulated by imatinib. The effects of imatinib on cell growth, apoptosis and migration were then analyzed. Imatinib effectively inhibited anchorage-dependent colony formation, and cell viability as evaluated by MTT assay. Corroborating these findings, a significant increase in the percentage of apoptotic cells was also observed when cells were treated with imatinib. Surprisingly, these inhibitory effects were all enhanced by the presence of progesterone. Cell migration assays did also show a reduction in the migratory capacity after incubation with imatinib. These findings reveal that imatinib acts by decreasing MCF7 cell viability, growth and migration, with concomitant increase in apoptosis. Furthermore, incubation with progesterone seems to prompt cells to the inhibitory action of imatinib, probably by sustaining PDGFRalpha activity. The current study points out imatinib as a possible therapeutic strategy in progesterone-dependent breast cancer.  相似文献   

20.
Capela A  Temple S 《Neuron》2002,35(5):865-875
Adult neural stem cells are rare, and little is known about their unique characteristics, leaving their in vivo identity enigmatic. We show that Lewis X (LeX), a carbohydrate expressed by embryonic pluripotent stem cells, is made by adult mouse subventricular zone (SVZ) stem cells and shed into their environment. Only 4% of acutely isolated SVZ cells are LeX(+); this subpopulation, purified by FACS, contains the SVZ stem cells. Ependymal cells are LeX(-), and purified ependymal cells do not make neurospheres, resolving the controversial claim that these are stem cells. Thus, LeX expression by adult CNS stem cells aids their in vivo identification, allows their enrichment, and raises new questions about the role of this unusual carbohydrate in stem cell biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号