首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Partial reduction of molecular oxygen produces reactive oxyradicals, including the superoxide anion radical (O - 2 ) and hydroxyl radical (·OH). The gas gland functions under hyperoxic and acidic conditions and therefore is likely to be subjected to enhanced oxidative stress. Aspects of pro- and antioxidant processes in gas gland were compared with other tissues likely to be subject to differing degrees of oxyradical production, viz. liver (site of chemically-mediated oxyradical production), gills and skeletal muscle. Antioxidant enzyme activities (superoxide dismutase, catalase, selenium-dependent and total glutathione peroxidase) per g wet weight were highest in liver and lowest in muscle. Catalase and glutathione peroxidase activies per g wet weight were higher in gills than in gas gland, whereas the reverse was seen for superoxide dismutase. Cytosolic superoxide dismutase activities per mg protein were two- and nine-fold higher in gas gland than in liver and gills. The pH characteristics of the antioxidant enzymes were generally similar in all the tissues. Glutathione, vitamin E and unsaturated (peroxidizable) lipid levels were generally highest in liver followed by gas gland. Lipid peroxidation (malonaldehyde equivalents) was evident in all tissues except gas gland. Hydrogen peroxide and O - 2 were involved in the NAD(P)H-dependent ferric/EDTA-mediated formation of ·OH (as measured by 2-keto-4-methiolbutyrate oxidation) by mitochondrial and postmitochondrial fractions of gas gland. Tissue maximal potentials for ·OH production paralled superoxide dismutase but not catalase or glutathione peroxidase activities. Overall, the results confirm the presence of effective antioxidant defences in gas gland and support previous workers' contentions of a central role for superoxide dismutase in this process.Abbreviations EDTA di-sodium ethylenediaminetetra-acetic acid - G-6-P glucose-6-phosphate - GPX total glutathione peroxidase - GSH reduced glutathione - GSSG oxidised glutathione - GST glutathion-S-transferase - HPLC high performance liquid chromatography - KMBA 2-keto-4-methiolbutyric acid - MOPS 3-[N-morpholino] propane-sulphonic acid - PMS postmitochondrial supernatant - Se-GPX selenium-dependent glutathion peroxidase - SOD superoxide dismutase - TCA trichloroacetic acid  相似文献   

2.
Glutathione S-transferases (GSTs) of Oesophagostomum dentatum possess considerable similarity to synthetic prostaglandin D synthase (PGDS), and therefore their ability to convert prostaglandin (PG) H2 to PGD2in vitro was investigated with a commercial Prostaglandin D Synthase Inhibitor Screening Assay Kit. Fractioned homogenates of O. dentatum third-stage larvae only displayed cytosolic but not microsomal GST. Both total larval homogenate and isolated GST could metabolise PGH2 to PGD2, which could be inhibited by the GST inhibitor sulfobromophthalein (SBP) in a dose-dependent manner, whereas reactions to the specific PGDS inhibitor HQL-79 were not dose-dependent. Inhibition of larval development by SBP in vitro was abolished by the addition of PGD2 but not by PGH2, supporting the assumption that GST acts as PGDS and is important for nematode development. Since motility and viability of O. dentatum larvae are reduced in vitro by various inhibitors of eicosanoid metabolism, enzymes of this pathway, including GST, constitute putative intervention targets.  相似文献   

3.
Very little is known about the capacity of soil chytrids to withstand freezing in the field. Tolerance to freezing was tested in 21 chytrids isolated from cropping and undisturbed soils in temperate Australia. Samples of thalli grown on peptone–yeast–glucose (PYG) agar were incubated for seven days at −15 °C. Recovery of growth after thawing and transferring to fresh medium at 20 °C indicated survival. All isolates in the Blastocladiales and Spizellomycetales survived freezing in all tests. All isolates in the Chytridiales also survived freezing in some tests. None of the isolates in the Rhizophydiales survived freezing in any of the tests. However, some isolates in the Rhizophydiales recovered growth after freezing if they were grown on PYG agar supplemented with either 1 % sodium chloride or 1 % glycerol prior to freezing. After freezing, the morphology of the thalli of all isolates was observed under LM. In those isolates that recovered growth after transfer to fresh media, mature zoosporangia were observed in the monocentric isolates and resistant sporangia or resting spores in the polycentric isolates. Encysted zoospores in some monocentric isolates also survived freezing. In some of the experiments the freezing and thawing process caused visible structural damage to the thalli. The production of zoospores after freezing and thawing was also used as an indicator of freeze tolerance. The chytrids in this study responded differently to freezing. These data add significantly to our limited knowledge of freeze tolerance in chytrids but leave many questions unanswered.  相似文献   

4.
The freeze tolerant wood frog Rana sylvatica was studied to determine the impact of the freezing and thawing of this frog on the activity of γ-glutamyltranspeptidase in the liver. On exposure to ?2·5°C, for 1, 12 and 24 h, frogs were found to be cool, covered with ice crystals and frozen, respectively. Thawing for 24 h at 4°C recovered the frogs completely. A 45 per cent decrease in the liver weight: body weight ratio was notable after 1 h at ?2·5°C, suggestive of an early hepatic capacitance response. A glycemic response to freezing was observed: blood glucose levels exhibited a 55 per cent decrease after 1 h at ?2·5°C on cooling; a 10·5-fold increase after 12 h at ?2·5°C on the initiation of freezing; and a 22-fold increase after 24 h at ?2·5°C in the fully frozen state. Blood glucose levels remained elevated four-fold in the thawed state. Plasma insulin levels were increased twofold in the frozen state and 1·8-fold in the thawed state, while plasma ketone levels were increased 1·8-fold in the frozen state and 1·5-fold in the thawed state. Plasma total T3 levels were decreased by 22 per cent in the frozen state and normalized on thawing. In homogenates and plasma membranes isolated from the livers of Rana sylvatica, the activity of γ-glutamyltranspeptidase was found to be elevated at all stages of the freeze–thaw process. After 1, 12 and 24 h at ?2·5°C, activities were increased 2·5-, 2·3-, 2·4-fold respectively in the homogenates and 2·5-, 2·2-, 2·4-fold respectively in the plasma membranes. After thawing, activities were still increased 1·9-fold in both homogenates and plasma membranes. In homogenates prepared from the kidneys of Rana sylvatica, the activity of γ-glutamyltranspeptidase was increased 1·4-fold after 1 h at ?2·5°C after which it returned to normal. The role of thyroid hormone in producing the increase in γ-glutamyltranspeptidase in the liver of Rana sylvatica in response to freezing is discussed as is the significance of the enzyme increase in terms of hepatic cytoprotection and freeze tolerance.  相似文献   

5.
Atlantic cod, Gadus morhua, respond to starvation first by mobilising hepatic lipids, then muscle and hepatic glycogen and finally muscle proteins. The dual role of proteins as functional elements and energetic reserves should lead to a temporal hierarchy of mobilisation where the nature of a function dictates its conservation during starvation. We examined (1) whether lysosomal and anti-oxidant enzymes in liver and white muscle are spared during prolonged starvation, (2) whether the responses of these enzymes in muscle vary longitudinally. Hepatic contents of lysosomal proteases decreased with starvation, whereas those of catalase (CAT) increased and lysosomal enzymes of carbohydrate metabolism and glutathione S-transferase (GST) did not change. In white muscle, starvation decreased the specific activity of lysosomal enzymes of carbohydrate degradation and doubled that of cathepsin D (CaD). The activity of anti-oxidant enzymes and acid phosphatase in muscle was unchanged with starvation. In white muscle neither lysosomal enzymes nor anti-oxidant enzymes varied significantly with sampling position. In cod muscle, antioxidant enzymes, CaD and acid phosphatase are spared during a period of starvation that decreases lysosomal enzymes of carbohydrate metabolism and decreases glycolytic enzyme activities. In cod liver, the anti-oxidant enzymes, CAT and GST, were also spared during starvation.  相似文献   

6.
Unsymmetrical dichalcogenides, a class of organoselenium compounds, were screened for antioxidant activity in rat brain homogenates in vitro. Unsymmetrical dichalcogenides (1-3) were tested against lipid peroxidation induced by sodium nitroprusside (SNP) or malonate, and reactive species (RS) production induced by sodium azide in rat brain homogenates. Compounds 1 (without a substituent at the phenyl group), 2 (chloro substituent at the phenyl group bounded to the sulfur atom) and 3 (chloro substituent at the phenyl group bounded to the selenium atom) protected against lipid peroxidation induced by SNP. The IC50 values followed the order 3<2<1. Lipid peroxidation induced by malonate was also reduced by dichalcogenides 1, 2 and 3. The IC50 values were 3相似文献   

7.
Three glutathione-S-transferase (GST) isozymes (Q1, Q2, and Q3) from the northern quahog (Mercinaria mercinaria) were purified and separated with a combination of affinity and ion exchange chromatography. SDS-PAGE analysis of the separated quahog GSTs indicated there are four distinct subunits of the enzyme with molecular masses ranging between 23 and 27 kDa. The electrophoretic analysis in combination with GST information from literature indicates that among the quahog GST isozymes, there is a single homodimer and two heterodimers. Enzymatic kinetic analysis of the homodimeric quahog GST (Q3) using 1-chloro-2,4-dinitrobenzene and glutathione as reactants resulted in V max and K m values of 33.2 mol min–1 mg–1 and 0.40 mM, respectively. A pH profile analysis of the Q3 GST indicates that the optimum catalytic pH is 7.6. The Q3 isozyme composes about 28% of the ion exchange purified GSTs but accounts for only 9% of the total GST enzymatic activity (25 mol min–1 mg–1). An analysis investigating the dependence of the Q3 GST activity on temperature resulted in a retention of enzymatic activity (50–30% at temperature extremes from –13°C to 100°C), suggesting a unconventional role for the Q3 GST in quahog metabolism.  相似文献   

8.
Jörg R. Konze  Hans Kende 《Planta》1979,146(3):293-301
Homogenates of etiolated pea (Pisum sativum L.) shoots formed ethylene upon incubation with 1-aminocyclopropane-1-carboxylic acid (ACC). In-vitro ethylene formation was not dependent upon prior treatment of the tissue with indole-3-acetic acid. When homogenates were passed through a Sephadex column, the excluded, high-molecular-weight fraction lost much of its ethylene-synthesizing capacity. This activity was largely restored when a heat-stable, low-molecular-weight factor, which was retarded on the Sephadex column, was added back to the high-molecular-weight fraction. The ethylene-synthesizing system appeared to be associated, at least in part, with the particulate fraction of the pea homogenate. Like ethylene synthesis in vivo, cell-free ethylene formation from ACC was oxygen dependent and inhibited by ethylenediamine tetraacetic acid, n-propyl gallate, cyanide, azide, CoCl3, and incubation at 40°C. It was also inhibited by catalase. In-vitro ethylene synthesis could only be saturated at very high ACC concentrations, if at all. Ethylene production in pea homogenates, and perhaps also in intact tissue, may be the result of the action of an enzyme that needs a heat-stable cofactor and has a very low affinity for its substrate, ACC, or it may be the result of a chemical reaction between ACC and the product of an enzyme reaction. Homogenates of etiolated pea shoots also formed ethylene with 2-keto-4-mercaptomethyl butyrate (KMB) as substrate. However, the mechanism by which KMB is converted to ethylene appears to be different from that by which ACC is converted.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - IAA indole-3-acetic acid - KMB 2-keto-4-mercaptomethyl butyrate - SAM S-adenosylmethionine  相似文献   

9.
Trigonopsis variabilis induced for D-amino acid oxidase and catalase was immobilized by entrapment in Polyacrylamide beads obtained by radiation polymerisation. Permeabilization of the cells was found to be essential for optimal activity of the enzymes in free cells. However, the process of entrapment itself was found to eliminate the permeability barrier of cells immobilized in Polyacrylamide. The two enzymes exhibited a differential response on Polyacrylamide entrapment. Thus, D-amino acid oxidase activity was stabilized to heat inactivation whereas catalase in the same cells showed a destabilization on entrapment in Polyacrylamide. The coimmobilized enzyme preparation showed an operational half life of 7–9 days after which the D-amino acid oxidase activity remained stable at a value 35–40% of that of the initial activity for a study period of 3 weeks. Coimmobilization of MnO2 was not effective in enhancing the operational life of the enzyme preparation.  相似文献   

10.
Foliar spraying ofArabidopsis thaliana (Columbia ecotype) plants with a 1.0-mM salicylic acid (SA) solution significantly improved their tolerance to subsequent paraquat (PQ)-induced oxidative damage. Leaf injuries, including losses of chlorophyll, protein, and fresh weight, were reduced. Our analysis of antioxidant enzymes in the leaves showed that SA pre-treatment effectively retarded rapid decreases in the activities of Superoxide dismutase (SOD), catalase, and ascorbate peroxidase that are normally associated with PQ exposure. In addition, guaiacol peroxidase activity was remarkably increased. In a native gel assay of peroxidase (POD) isozymes, staining activity of the POD1 isozyme, which disappeared in plants exposed only to 10 μM PQ, was significantly recovered by the 1.0-mM SA pre-treatment POD2 isozyme activity was also pronounced in all SA-treated plants compared with the control. A 12-h SA pre-treatment, without subsequent PQ stress, also caused a small increase in the endogenous H2O2 content that accompanies the symptoms of mild leaf injuries. This enhanced level occurred in parallel with a slight SOD increase and a catalase decrease. From our results, it can be assumed that, due to the small increase in SOD as well as catalase inactivation via SA pre-treatment, a moderate increase in H2O2 levels may occur. In turn, a large induction of guaiacol peroxidase leads to enhanced PQ tolerance inA. thaliana plants.  相似文献   

11.
Creatine kinase (CK) was analyzed from skeletal muscle of wood frogs, Rana sylvatica, a species that survives natural whole body freezing during the winter months. Muscle CK activity increased by 35% and apparent Km creatine decreased by 29% when frogs froze. Immunoblotting analysis showed that this activity increase was not due to a change in total CK protein. Frog muscle CK was regulated by reversible protein phosphorylation; in vitro incubations with 32P-ATP under conditions that facilitated the actions of various protein kinases (PKA, PKG, PKC, CaMK or AMPK) resulted in immunoprecipitation of 32P-labeled CK. Furthermore, incubations that stimulated CaMK or AMPK altered CK kinetics. Incubation under conditions that facilitated protein phosphatases (PP2B or PP2C) reversed these effects. Phosphorylation of CK increased activity, whereas dephosphorylation decreased activity. Ion-exchange chromatography revealed that two forms of CK with different phosphorylation states were present in muscle; low versus high phosphate forms dominated in muscle of control versus frozen frogs, respectively. However, CK from control versus frozen frogs showed no differences in susceptibility to urea denaturation or sensitivity to limited proteolysis by thermolysin. The increased activity, increased substrate affinity and altered phosphorylation state of CK in skeletal muscle from frozen frogs argues for altered regulation of CK under energy stress in ischemic frozen muscle.  相似文献   

12.
The respective role of alcohol dehydrogenase, of the microsomal ethanol-oxidizing system, and of catalase in ethanol metabolism was assessed quantitatively in liver slices using various inhibitors and ethanol at a final concentration of 50 mm. Pyrazole (2 mm) virtually abolished cytosolic alcohol dehydrogenase activity but inhibited ethanol metabolism in liver slices by only 50–60%. The residual pyrazole-insensitive ethanol oxidation in liver slices remained unaffected by in vitro addition of the catalase inhibitor sodium azide (1 mm). At this concentration, sodium azide completely abolished catalatic activity of catalase in liver homogenate as well as peroxidatic activity of catalase in liver slices in the presence of dl-alanine. Similarly, in vivo administration of 3-amino-1,2,4-triazole, a compound which inhibits the activity of catalase but not that of the microsomal ethanol-oxidizing system, failed to decrease both the overall rates of ethanol oxidation and the activity of the pyrazole-insensitive pathway. Finally, butanol, a substrate and inhibitor of the microsomal ethanol-oxidizing system but not of catalase-H2O2, significantly decreased the pyrazole-insensitive ethanol metabolism in liver slices. These results indicate that alcohol dehydrogenase is responsible for half or more of ethanol metabolism by liver slices and that the microsomal ethanol-oxidizing system rather than catalase-H2O2 accounts for most if not all of the alcohol dehydrogenase-independent pathway.  相似文献   

13.
14.
Shoots of two species of moss, Plagiomnium undulatum (Hedw.) Kop. and Plagiomnium affine (Funck) Kop., were subjected to freezing at various temperatures. After thawing, the activities of different photosynthetic reactions were determined in relation to the ages of the leaves. Analysis of the fast kinetics of chlorophyll-a fluorescence of individual leaves showed that young and old tissues were considerably less frost tolerant than mature ones. In principle, the pattern of freeze inactivation of photosynthetic reactions resembles that observed in higher plants. The decreases in the amplitude of Fv (variable fluorescence) and the ratio of Fv to Fm (maximum fluorescence) with increasing freezing stress reflect a progressive inactivation of photosystem II (PSII)-mediated electron transport, i.e. inhibition of photoreaction to photochemistry and-or electron donation to the photochemical reaction, and thus a decline in the potential photochemical efficiency of PSII. The insignificant change in the F0 (constant fluorescence) level during progressive decline of Fv indicates that the excitation-energy transfer between antenna pigments and from those to reaction centres of PSII was little impaired by lethal freezing stress. Sugar analyses of various stem sections showed that ontogenetic variation in the frost tolerance of leaves cannot be attributed to differences in the cellular levels of sucrose, glucose and fructose.Abbreviations and Symbols DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - Fm maximum fluorescence - F0 constant (initial) fluorescence - Fv variable fluorescence  相似文献   

15.
In Arabidopsis thaliana leaves a strong increase of H2O2 content was induced by application of methyl jasmonate (JAMe) through the root system, but the induction only slightly depended on JAMe concentration. The activity of superoxide dismutase and ascorbic acid peroxidase increased at lower JAMe concentrations and decreased at higher ones. Catalase activity decreased proportionally to JAMe concentration (in comparison with control plants). The sum of ascorbic acid and dehydroascorbate content at 10−6 M JAMe was similar to the control, but at higher concentrations it increased, especially due to a higher ascorbate accumulation. Methyl jasmonate applied directly to the extract of leaves (in vitro experiment) also induced a strong increase in H2O2 level, even at a low concentration (10−8 M). Since lower JAMe concentrations induced weak superoxide dismutase and did not change catalase and peroxidase activity, it is suggested that in this case a high level of hydrogen peroxide was not the result of the activity of the mentioned enzymes. JAMe-induction of H2O2 increase at the highest JAMe concentration resulted from SOD activity. Our in vivo and in vitro experiments suggest that jasmonate can influence oxidative stress not only through gene expression but also by its direct effect on enzyme activity.  相似文献   

16.
The purpose of this study was to determine whether decreased oxidative stress would increase the resistance to cardiac contracture induced by H2O2 in hypothyroid rats. Male Wistar rats were divided into two groups: control and hypothyroid. Hypothyroidism was induced via thyroidectomy. Four weeks post surgery, blood samples were collected to perform thyroid hormone assessments, and excised hearts were perfused at a constant flow with or without H2O2 (1 mmol/L), being divided into two sub‐groups: control, hypothyroid, control + H2O2, hypothyroid + H2O2. Lipid peroxidation (LPO) was evaluated by chemiluminescence (CL) and thiobarbituric acid reactive substances (TBARS) methods, and protein oxidation by carbonyls assay in heart homogenates. Cardiac tissue was also screened for superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) activities, and for total radical‐trapping antioxidant potential (TRAP). Analyses of SOD and glutathione‐S‐transferase (GST) protein expression were also performed in heart homogenates. Hypothyroid hearts were found to be more resistant to H2O2‐induced contracture (60% elevation in LVEDP) as compared to control. CL, TBARS, carbonyl, as well as SOD, CAT, GPx activities and TRAP levels were reduced (35, 30, 40, 30, 16, 25, and 33%, respectively) in the cardiac homogenates of the hypothyroid group as compared to controls. A decrease in SOD and GST protein levels by 20 and 16%, respectively, was also observed in the hypothyroid group. These results suggest that a hypometabolic state caused by thyroid hormone deficiency can lead to an improved response to H2O2 challenge and is associated with decreased oxidative myocardial damage. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The effect of hydrogen peroxide on the survival and activity of antioxidant and associated enzymes in Saccharomyces cerevisiae has been studied. A difference found in the response of wild-type yeast strains treated with hydrogen peroxide was probably related to the different protective effects of antioxidant enzymes in these strains. Exposure of wild-type YPH250 cells to 0.25 mM H2O2 for 30 min increased activities of catalase and superoxide dismutase (SOD) by 3.4-and 2-fold, respectively. However, no activation of catalase in the EG103 strain, as well as of SOD in the YPH98 and EG103 wild strains was detected, which was in parallel to lower survival of these strains under oxidative stress. There is a strong positive correlation (R 2 = 0.95) between activities of catalase and SOD in YPH250 cells treated with different concentrations of hydrogen peroxide. It is conceivable that catalase would protect SOD against inactivation caused by oxidative stress and vice versa. Finally, yeast cell treatment with hydrogen peroxide can lead to either a H2O2-induced increase in activities of antioxidant and associated enzymes or their decrease depending on the H2O2 concentration used or the yeast strain specificity. Published in Russion in Biokhimiya, 2006, Vol. 71, No. 9, pp. 1243–1252.  相似文献   

18.
BackgroundThe North American wood frog, Rana sylvatica, endures whole body freezing while wintering on land and has developed multiple biochemical adaptations to elude cell/tissue damage and optimize its freeze tolerance. Blood flow is halted in the frozen state, imparting both ischemic and oxidative stress on cells. A potential build-up of H2O2 may occur due to increased superoxide dismutase activity previously discovered. The effect of freezing on catalase (CAT), which catalyzes the breakdown of H2O2 into molecular oxygen and water, was investigated as a result.MethodsThe present study investigated the purification and kinetic profile of CAT in relation to the phosphorylation state of CAT from the skeletal muscle of control and frozen R. sylvatica.ResultsCatalase from skeletal muscle of frozen wood frogs showed a significantly higher Vmax (1.48 fold) and significantly lower Km for H2O2 (0.64 fold) in comparison to CAT from control frogs (5 °C acclimated). CAT from frozen frogs also showed higher overall phosphorylation (1.73 fold) and significantly higher levels of phosphoserine (1.60 fold) and phosphotyrosine (1.27 fold) compared to control animals. Phosphorylation via protein kinase A or the AMP-activated protein kinase significantly decreased the Km for H2O2 of CAT, whereas protein phosphatase 2B or 2C action significantly increased the Km.ConclusionThe physiological consequence of freeze-induced CAT phosphorylation appears to improve CAT function to alleviate H2O2 build-up in freezing frogs.General significanceAugmented CAT activity via reversible phosphorylation may increase the ability of R. sylvatica to overcome oxidative stress associated with ischemia.  相似文献   

19.
The association of an ATPase with the yeast peroxisomal membrane was established by both biochemical and cytochemical procedures. Peroxisomes were purified from protoplast homogenates of the methanol-grown yeast Hansenula polymorpha by differential and sucrose gradient centrifugation. Biochemical analysis revealed that ATPase activity was associated with the peroxisomal peak fractions which were identified on the basis of alcohol oxidase and catalase activity. The properties of this ATPase closely resembled those of the mitochondrial ATPase of this yeast. The enzyme was Mg2+-dependent, had a pH optimum of approximately 8.5 and was sensitive to N,N-dicyclohexylcarbodiimide (DCCD), oligomycin and azide, but not to vanadate. A major difference was the apparent K m for ATP which was 4–6 mM for the peroxisomal ATPase compared to 0.6–0.9 mM for the mitochondrial enzyme.Cytochemical experiments indicated that the peroxisomal ATPase was associated with the membranes surrounding these organelles. After incubations with CeCl3 and ATP specific reaction products were localized on the peroxisomal membrane, both when unfixed isolated peroxisomes or formaldehyde-fixed protoplasts were used. This staining was strictly ATP-dependent; in controls performed i) in the absence of substrate, ii) in the presence of glycerol 2-phosphate instead of ATP, or iii) in the presence of DCCD, staining was invariably absent. Similar staining patterns were observed in subcellular fractions and protoplasts of Candida utilis and Trichosporon cutaneum X4, grown in the presence of ethanol/ethylamine or ethylamine, respectively.Abbreviations MES 2-(N-Morpholino)ethanesulfonic acid - DCCD N,N-dicyclohexylcarbodiimide  相似文献   

20.
Cells exposed to temperature a few degrees higher than their growth temperature synthesize heat shock proteins (hsp) which may then compose even 20% of total protein content. This paper examined the in vitro protective effect of heat shock protein DnaK (70 kDa) from Escherichia coli against the heat inactivation of lactate dehydrogenase isoenzyme LDH-A4. The LDH-A4 isoenzyme was purified from fish skeletal muscle using the affinity chromatography on Oxamate-agarose. The enzyme was then heated in the absence and the presence of DnaK protein in a water bath at either 51 or 55°C. The LDH activity was determined by measuring the change in absorbency at 340 nm min−1 at 30°C. The addition of DnaK protein to the LDH-A4 isoenzyme before heat treatment can protect enzyme activity against mild thermal inactivation. Incubation of the LDH-A4 isoenzyme at 51°C in the presence of DnaK protein stimulates its activity by about 30%. The presence of 2 mM ATP can raise LDH activity by another 10%. No significant recovery was observed when DnaK protein was added to LDH at 25°C following earlier inactivation. The maximal activities (Vmax) in the presence of DnaK protein are almost twice those without DnaK protein in the case of heat-treated LDH-A4 isoenzyme at 51°C. The observed protection of LDH-A4 activity increased with the increasing DnaK protein concentration in the incubation medium. Results suggested that the presence of DnaK protein can protect LDH-A4 from heat inactivation. This action may be important as a part of cellular chaperone machinery capable of repairing heat-induced protein damage. It may have a fundamental role in the acquisition of the thermotolerance to stress temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号