首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 317 毫秒
1.
LIM-kinase 1 (LIMK1) and LIM-kinase 2 (LIMK2) regulate actin cytoskeletal reorganization via cofilin phosphorylation downstream of distinct Rho family GTPases. We report our findings that ROCK, a downstream protein kinase of Rho, specifically activates LIMK2 but not LIMK1 downstream of RhoA. LIMK1 and LIMK2 activities toward cofilin phosphorylation were stimulated by co-expression with the active form of ROCK (ROCK-Delta3), whereas full-length ROCK selectively activates LIMK2 but not LIMK1. Activation of LIMK2 by RhoA was inhibited by Y-27632, a specific inhibitor of ROCK, but Rac1-mediated activation of LIMK1 was not. ROCK directly phosphorylated the threonine 505 residue within the activation segment of LIMK2 and markedly stimulated LIMK2 activity. A LIMK2 mutant with replacement of threonine 505 by valine abolished LIMK2 activities for cofilin phosphorylation and actin cytoskeletal changes, whereas replacement by glutamate enhanced the protein kinase activity and stress fiber formation by LIMK2. These results indicate that ROCK directly phosphorylates threonine 505 and activates LIMK2 downstream of RhoA and that this phosphorylation is essential for LIMK2 to induce actin cytoskeletal reorganization. Together with the finding that LIMK1 is regulated by Pak1, LIMK1 and LIMK2 are regulated by different protein kinases downstream of distinct Rho family GTPases.  相似文献   

2.
LIM kinases (LIMK1 and LIMK2) regulate actin cytoskeletal reorganization through cofilin phosphorylation downstream of distinct Rho family GTPases. Pak1 and ROCK, respectively, activate LIMK1 and LIMK2 downstream of Rac and Rho; however, an effector protein kinase for LIMKs downstream of Cdc42 remains to be defined. We now report evidence that LIMK1 and LIMK2 activities toward cofilin phosphorylation are stimulated in cells by the co-expression of myotonic dystrophy kinase-related Cdc42-binding kinase alpha (MRCKalpha), an effector protein kinase of Cdc42. In vitro, MRCKalpha phosphorylated the protein kinase domain of LIM kinases, and the site in LIMK2 phosphorylated by MRCKalpha proved to be threonine 505 within the activation segment. Expression of MRCKalpha induced phosphorylation of actin depolymerizing factor (ADF)/cofilin in cells, whereas MRCKalpha-induced ADF/cofilin phosphorylation was inhibited by the co-expression with the protein kinase-deficient form of LIM kinases. These results indicate that MRCKalpha phosphorylates and activates LIM kinases downstream of Cdc42, which in turn regulates the actin cytoskeletal reorganization through the phosphorylation and inactivation of ADF/cofilin.  相似文献   

3.
Reorganization of the actin cytoskeleton in response to growth factor signaling, such as transforming growth factor beta (TGF-beta), controls cell adhesion, motility, and growth of diverse cell types. In Swiss3T3 fibroblasts, a widely used model for studies of actin reorganization, TGF-beta1 induced rapid actin polymerization into stress fibers and concomitantly activated RhoA and RhoB small GTPases. Consequently, dominant-negative RhoA and RhoB mutants blocked TGF-beta1-induced actin reorganization. Because Rho GTPases are known to regulate the activity of LIM-kinases (LIMK), we found that TGF-beta1 induced LIMK2 phosphorylation with similar kinetics to Rho activation. Cofilin and LIMK2 co-precipitated and cofilin became phosphorylated in response to TGF-beta1, whereas RNA interference against LIMK2 blocked formation of new stress fibers by TGF-beta1. Because the kinase ROCK1 links Rho GTPases to LIMK2, we found that inhibiting ROCK1 activity blocked completely TGF-beta1-induced LIMK2/cofilin phosphorylation and downstream stress fiber formation. We then tested whether the canonical TGF-beta receptor/Smad pathway mediates regulation of the above effectors and actin reorganization. Adenoviruses expressing constitutively activated TGF-beta type I receptor led to robust actin reorganization and Rho activation, whereas the constitutively activated TGF-beta type I receptor with mutated Smad docking sites (L45 loop) did not affect either actin organization or Rho activity. In line with this, ectopic expression of the inhibitory Smad7 inhibited TGF-beta1-induced Rho activation and cytoskeletal reorganization. Our data define a novel pathway emanating from the TGF-beta type I receptor and leading to regulation of actin assembly, via the kinase LIMK2.  相似文献   

4.
When we were studying phosphorylated proteins in the rat brain after electroconvulsive shock (ECS), we observed the rapid phosphorylation of a 75-kDa protein, which cross-reacted with the anti-phospho-p70 S6 kinase antibody. The phosphorylated protein was purified and identified as moesin, a member of the ezrin/radixin/moesin (ERM) family and a general cross-linker between cortical actin filaments and plasma membranes. The purified moesin from rat brain was phosphorylated at serine and threonine residues. Moesin was rapidly phosphorylated at the threonine 558 residue after ECS in the rat hippocampus, peaked at 1 min, and returned to the basal level by 2 min after ECS. To investigate the mechanism of moesin phosphorylation in neuronal cells, we stimulated a rat hippocampal progenitor cell, H19-7/IGF-IR, with glutamate, and observed the increased phosphorylation of moesin at Thr-558. Glutamate transiently activated RhoA, and constitutively active RhoA increased the basal level phosphorylation of moesin. The inhibition of RhoA and its effector, Rho kinase, abolished increased Thr-558 phosphorylation by glutamate in H19-7/IGF-IR cells, suggesting that the phosphorylation of moesin at Thr-558 in H19-7/IGF-IR cells by glutamate is mediated by RhoA and Rho kinase activation.  相似文献   

5.
The rapid turnover of actin filaments and the tertiary meshwork formation are regulated by a variety of actin-binding proteins. Protein phosphorylation of cofilin, an actin-binding protein that depolymerizes actin filaments, suppresses its function. Thus, cofilin is a terminal effector of signaling cascades that evokes actin cytoskeletal rearrangement. When wild-type LIMK2 and kinase-dead LIMK2 (LIMK2/KD) were respectively expressed in cells, LIMK2, but not LIMK2/KD, phosphorylated cofilin and induced formation of stress fibers and focal complexes. LIMK2 activity toward cofilin phosphorylation was stimulated by coexpression of activated Rho and Cdc42, but not Rac. Importantly, expression of activated Rho and Cdc42, respectively, induced stress fibers and filopodia, whereas both Rho- induced stress fibers and Cdc42-induced filopodia were abrogated by the coexpression of LIMK2/KD. In contrast, the coexpression of LIMK2/KD with the activated Rac did not affect Rac-induced lamellipodia formation. These results indicate that LIMK2 plays a crucial role both in Rho- and Cdc42-induced actin cytoskeletal reorganization, at least in part by inhibiting the functions of cofilin. Together with recent findings that LIMK1 participates in Rac-induced lamellipodia formation, LIMK1 and LIMK2 function under control of distinct Rho subfamily GTPases and are essential regulators in the Rho subfamilies-induced actin cytoskeletal reorganization.  相似文献   

6.
The members of the LIM kinase (LIMK) family, which include LIMK 1 and 2, are serine protein kinases involved in the regulation of actin polymerisation and microtubule disassembly. Their activity is regulated by phosphorylation of a threonine residue within the activation loop of the kinase by p21-activated kinases 1 and 4 and by Rho kinase. LIMKs phosphorylate and inactivate the actin depolymerising factors ADF/cofilin resulting in net increase in the cellular filamentous actin. Hsp90 regulates the levels of the LIM kinase proteins by promoting their homo-dimerisation and trans-phosphorylation. Rnf6 is an E3 ubiquitin ligase responsible for LIMK degradation in neurons. The activity of LIMK1 is also required for microtubule disassembly in endothelial cells. While LIMK1 localizes mainly at focal adhesions, LIMK2 is found in cytoplasmic punctae, suggesting that they may have different cellular functions. LIMK1 was shown to be involved in cancer metastasis, while LIMK2 activation promotes cells cycle progression.  相似文献   

7.
Extracellular signals regulate actin dynamics through small GTPases of the Rho/Rac/Cdc42 (p21) family. Here we show that p21-activated kinase (Pak1) phosphorylates LIM-kinase at threonine residue 508 within LIM-kinase's activation loop, and increases LIM-kinase-mediated phosphorylation of the actin-regulatory protein cofilin tenfold in vitro. In vivo, activated Rac or Cdc42 increases association of Pak1 with LIM-kinase; this association requires structural determinants in both the amino-terminal regulatory and the carboxy-terminal catalytic domains of Pak1. A catalytically inactive LIM-kinase interferes with Rac-, Cdc42- and Pak1-dependent cytoskeletal changes. A Pak1-specific inhibitor, corresponding to the Pak1 autoinhibitory domain, blocks LIM-kinase-induced cytoskeletal changes. Activated GTPases can thus regulate actin depolymerization through Pak1 and LIM-kinase.  相似文献   

8.
RhoE function is regulated by ROCK I-mediated phosphorylation   总被引:7,自引:0,他引:7       下载免费PDF全文
The Rho GTPase family member RhoE regulates actin filaments partly by binding to and inhibiting ROCK I, a serine/threonine kinase that induces actomyosin contractility. Here, we show that ROCK I can phosphorylate multiple residues on RhoE in vitro. In cells, ROCK I-phosphorylated RhoE localizes in the cytosol, whereas unphosphorylated RhoE is primarily associated with membranes. Phosphorylation has no effect on RhoE binding to ROCK I, but instead increases RhoE protein stability. Using phospho-specific antibodies, we show that ROCK phosphorylates endogenous RhoE at serine 11 upon cell stimulation with platelet-derived growth factor, and that this phosphorylation requires an active protein kinase C signalling pathway. In addition, we demonstrate that phosphorylation of RhoE correlates with its activity in inducing stress fibre disruption and inhibiting Ras-induced transformation. This is the first demonstration of an endogenous Rho family member being phosphorylated in vivo and indicates that phosphorylation is an important mechanism to control the stability and function of this GTPase-deficient Rho protein.  相似文献   

9.
10.
A putative Akt kinase phosphorylation site ((64)ydRIRplSYp(73)) was found in Rac1/CDC42 and Rho family proteins (RhoA, RhoB, RhoC, and RhoG). Phosphorylation of Rac1 by Akt kinase was assayed with recombinant Rac1 protein and the fluorescein-labeled Rac1 peptide. It was shown that the Rac1 peptide and the recombinant protein were phosphorylated by the activated recombinant Akt kinase and the lysate of SK-MEL28 cells, a human melanoma cell line. The phosphorylation of Rac1 inhibited its GTP-binding activity without any significant change in GTPase activity. Both the GTP-binding and GTPase activities of Rac1 S71A protein (with the serine residue to be phosphorylated replaced with alanine) were abolished regardless of the treatment of Akt kinase. Akt kinase activity and Rac1 peptide phosphorylation were down-regulated by the treatment of SK-MEL28 cells with wortmannin or LY294002 (a phosphoinositide 3-kinase inhibitor), but JNK/SAPK kinase activity was up-regulated. Thus, the results suggest that Akt kinase of the phosphoinositide 3-kinase signal transduction pathway phosphorylates serine 71 of Rac1 as one of its authentic substrates and modulates the Rac1 signal transduction pathway through phosphorylation.  相似文献   

11.
LIM kinases (LIMK1 and LIMK2) are LIM domain containing serine/threonine kinases that modulate reorganization of actin cytoskeleton through inactivating phosphorylation of cofilin. The Rho family of small GTPases regulates the catalytic activity of LIMK1 and LIMK2 through activating phosphorylation by ROCK or by p21 kinase. Recent studies have suggested that LIMK1 could play a role in modulation of cellular growth by alteration of the cell cycle in breast and prostate tumor cells; however, the direct mitogenic effects of LIMK1 in these tumor cells is yet to be elucidated. Via immunofluorescence, in this study, we show that phosphorylated LIM kinases (pLIMK1/2) are colocalized with γ-tubulin in the centrosomes during the early mitotic phases of human breast and prostate cancer cells (MDA-MB-231 and DU145); apparent colocalization begins in the centrosomes in prophase. As shown by both bright field (MDA-MB-231) and fluorescent immunohistochemistry (MDA-MB-231 and DU145), pLIMK1/2 does not localize to centrosomes during interphase. By bright field immunohistochemistry, the largest area of the centrosome that is stained with pLIMK1/2 occurs at anaphase. In early telophase, reduced staining of pLIMK1/2 at the spindle poles and concomitant accumulation of pLIMK1/2 at the cleavage furrow begins to occur. In late telophase, loss of staining of pLIMK1/2 and of colocalization with γ-tubulin occurs at the poles and pLIMK1/2 became further concentrated at the junction between the two daughter cells. Co-immunoprecipitation studies indicated that γ-tubulin associates with phosphorylated LIMK1 and LIMK2 but not with dephosphorylated LIMK1 or LIMK2. The results suggest that activated LIMK1/2 may associate with γ-tubulin and play a role in mitotic spindle assembly.  相似文献   

12.
PAK4 is the most recently identified member of the PAK family of serine/threonine kinases. PAK4 differs from other members of the PAK family in sequence and in many of its functions. Previously, we have shown that an important function of this kinase is to mediate the induction of filopodia in response to the Rho GTPase Cdc42. Here we show that PAK4 also regulates the activity of the protein kinase LIM kinase 1 (LIMK1). PAK4 was shown to interact specifically with LIMK1 in binding assays. Immune complex kinase assays revealed that both wild-type and constitutively active PAK4 phosphorylated LIMK1 even more strongly than PAK1, and activated PAK4 stimulated LIMK1's ability to phosphorylate cofilin. Immunofluorescence experiments revealed that PAK4 and LIMK1 cooperate to induce cytoskeletal changes in C2C12 cells. Furthermore, dominant negative LIMK1 and a mutant cofilin inhibited the specific cytoskeletal and cell shape changes that were induced in response to a recently characterized constitutively activated PAK4 mutant.  相似文献   

13.
Vascular endothelial growth factor-A (VEGF-A) induces actin reorganization and migration of endothelial cells through a p38 mitogen-activated protein kinase (MAPK) pathway. LIM-kinase 1 (LIMK1) induces actin remodeling by phosphorylating and inactivating cofilin, an actin-depolymerizing factor. In this study, we demonstrate that activation of LIMK1 by MAPKAPK-2 (MK2; a downstream kinase of p38 MAPK) represents a novel signaling pathway in VEGF-A-induced cell migration. VEGF-A induced LIMK1 activation and cofilin phosphorylation, and this was inhibited by the p38 MAPK inhibitor SB203580. Although p38 phosphorylated LIMK1 at Ser-310, it failed to activate LIMK1 directly; however, MK2 activated LIMK1 by phosphorylation at Ser-323. Expression of a Ser-323-non-phosphorylatable mutant of LIMK1 suppressed VEGF-A-induced stress fiber formation and cell migration; however, expression of a Ser-323-phosphorylation-mimic mutant enhanced these processes. Knockdown of MK2 by siRNA suppressed VEGF-A-induced LIMK1 activation, stress fiber formation, and cell migration. Expression of kinase-dead LIMK1 suppressed VEGF-A-induced tubule formation. These findings suggest that MK2-mediated LIMK1 phosphorylation/activation plays an essential role in VEGF-A-induced actin reorganization, migration, and tubule formation of endothelial cells.  相似文献   

14.
Mitogen-activated protein kinase kinase 1 (MKK1), a dual-specificity tyrosine/threonine protein kinase, has been shown to be phosphorylated and activated by the raf oncogene product as part of the mitogen-activated protein kinase cascade. Here we report the phosphorylation and inactivation of MKK1 by phosphorylation on threonine 286 and threonine 292. MKK1 contains a consensus phosphorylation site for p34cdc2, a serine/threonine protein kinase that regulates the cell division cycle, at Thr-286 and a related site at Thr-292. p34cdc2 catalyzes the in vitro phosphorylation of MKK1 on both of these threonine residues and inactivates MKK1 enzymatic activity. Both sites are phosphorylated in vivo as well. The data presented in this report provide evidence that MKK1 is negatively regulated by threonine phosphorylation.  相似文献   

15.
Us3 is a serine-threonine protein kinase encoded by herpes simplex virus 1 (HSV-1). As reported here, we attempted to identify the previously unreported physiological substrate of Us3 in HSV-1-infected cells. Our results were as follows. (i) Bioinformatics analysis predicted two putative Us3 phosphorylation sites in the viral envelope glycoprotein B (gB) at codons 557 to 562 (RRVSAR) and codons 884 to 889 (RRNTNY). (ii) In in vitro kinase assays, the threonine residue at position 887 (Thr-887) in the gB domain was specifically phosphorylated by Us3, while the serine residue at position 560 was not. (iii) The phosphorylation of gB Thr-887 in Vero cells infected with wild-type HSV-1 was specifically detected using an antibody that recognized phosphorylated serine or threonine residues with arginine at the −3 and −2 positions. (iv) The phosphorylation of gB Thr-887 in infected cells was dependent on the kinase activity of Us3. (v) The replacement of Thr-887 with alanine markedly upregulated the cell surface expression of gB in infected cells, whereas replacement with aspartic acid, which sometimes mimics constitutive phosphorylation, restored the wild-type phenotype. The upregulation of gB expression on the cell surface also was observed in cells infected with a recombinant HSV-1 encoding catalytically inactive Us3. These results supported the hypothesis that Us3 phosphorylates gB and downregulates the cell surface expression of gB in HSV-1-infected cells.  相似文献   

16.
p160ROCK mediates RhoA activation of Na-H exchange.   总被引:4,自引:0,他引:4       下载免费PDF全文
The ubiquitously expressed Na-H exchanger, NHE1, acts downstream of RhoA in a pathway regulating focal adhesion and actin stress fiber formation. p160ROCK, a serine/threonine protein kinase, is a direct RhoA target mediating RhoA-induced assembly of focal adhesions and stress fibers. Here, stress fiber formation induced by p160ROCK was inhibited by the addition of a specific NHE1 inhibitor, ethylisopropylamiloride, in CCL39 fibroblasts, and was absent in PS120 mutant fibroblasts lacking NHE1. In CCL39 cells, NHE1 activity was stimulated by expression of mutationally active p160ROCK, but not by mutationally active protein kinase N, another RhoA target kinase. Expression of a dominant interfering p160ROCK inhibited RhoA-, but not Cdc42- or Rac-activation of NEH1. In addition, the p160ROCK-specific inhibitor Y-27632 inhibited increases in NHE1 activity in response to RhoA, and to lysophosphatidic acid (LPA), which stimulates RhoA, and it also inhibited LPA-increased phosphorylation of NHE1. A C-terminal truncation of NHE1 abolished both LPA-induced phosphorylation and activation of the exchanger. Furthermore, mutationally active p160ROCK phosphorylated an NHE1 C-terminal fusion protein in vitro, and this was inhibited in the presence of Y-27632. Phosphopeptide maps indicated that identical residues in NHE1 were phosphorylated by p160ROCK in vivo and in vitro. These findings identify p160ROCK as an upstream, possibly direct, activator of NHE1, and suggest that NHE1 activity and phosphorylation are necessary for actin stress fiber assembly induced by p160ROCK.  相似文献   

17.
TAK1 (transforming growth factor-beta-activated kinase 1), a mitogen-activated protein kinase kinase kinase, is activated by various cytokines, including interleukin-1 (IL-1). However, the precise regulation for TAK1 activation at the molecular level is still not fully understood. Here we report that dual phosphorylation of Thr-178 and Thr-184 residues within the kinase activation loop of TAK1 is essential for TAK1-mediated NFkappaB and AP-1 activation. Once co-overexpressed with TAB1, TAK1 mutant with alanine substitution of these two residues fails to activate IKKbeta-mediated NFkappaB and JNK-mediated AP-1, whereas TAK1 mutant with replacement of these two sites with acidic residues acts like the TAK1 wild type. Consistently, TAK1 mutant with alanine substitution of these two residues severely inhibits IL-1-induced NFkappaB and AP-1 activities, whereas TAK1 mutant with replacement of these two sites with acidic residues slightly enhances IL-1-induced NFkappaB and AP-1 activities compared with the TAK1 wild-type. IL-1 induces the phosphorylation of endogenous TAK1 at Thr-178 and Thr-184. Reconstitution of TAK1-deficient mouse embryo fibroblast cells with wild-type TAK1 or a TAK1 mutant containing threonine 178 and 184 to alanine mutations revealed the importance of these two sites in IL-1-mediated IKK-NFkappaB and JNK-AP-1 activation as well as IL-1-induced IL-6 gene expression. Our finding is the first report that substitution of key serine/threonine residues with acidic residues mimics the phosphorylated state of TAK1 and renders TAK1 active during its induced activation.  相似文献   

18.
Stromal cell-derived factor 1 alpha (SDF-1alpha), the ligand for G-protein-coupled receptor CXCR4, is a chemotactic factor for T lymphocytes. LIM kinase 1 (LIMK1) phosphorylates cofilin, an actin-depolymerizing and -severing protein, at Ser-3 and regulates actin reorganization. We investigated the role of cofilin phosphorylation by LIMK1 in SDF-1alpha-induced chemotaxis of T lymphocytes. SDF-1alpha significantly induced the activation of LIMK1 in Jurkat human leukemic T cells and peripheral blood lymphocytes. SDF-1alpha also induced cofilin phosphorylation, actin reorganization, and activation of small GTPases, Rho, Rac, and Cdc42, in Jurkat cells. Pretreatment with pertussis toxin inhibited SDF-1alpha-induced LIMK1 activation, thus indicating that Gi protein is involved in LIMK1 activation. Expression of dominant negative Rac (DN-Rac), but not DN-Rho or DN-Cdc42, blocked SDF-1alpha-induced activation of LIMK1, which means that SDF-1alpha-induced LIMK1 activation is mediated by Rac but not by Rho or Cdc42. We used a cell-permeable peptide (S3 peptide) that contains the phosphorylation site (Ser-3) of cofilin to inhibit the cellular function of LIMK1. S3 peptide inhibited the kinase activity of LIMK1 in vitro. Treatment of Jurkat cells with S3 peptide inhibited the SDF-1alpha-induced cofilin phosphorylation, actin reorganization, and chemotactic response of Jurkat cells. These results suggest that the phosphorylation of cofilin by LIMK1 plays a critical role in the SDF-1alpha-induced chemotactic response of T lymphocytes.  相似文献   

19.
Accumulating evidence has implicated Rho GTPases, including Rac1, in many aspects of cancer development. Recent findings suggest that phosphorylation might further contribute to the tight regulation of Rho GTPases. Interestingly, sequence analysis of Rac1 shows that Rac1 T108 within the 106PNTP109 motif is likely an extracellular signal-regulated kinase (ERK) phosphorylation site and that Rac1 also has an ERK docking site, 183KKRKRKCLLL192 (D site), at the C terminus. Indeed, we show here that both transfected and endogenous Rac1 interacts with ERK and that this interaction is mediated by its D site. Green fluorescent protein (GFP)-Rac1 is threonine (T) phosphorylated in response to epidermal growth factor (EGF), and EGF-induced Rac1 threonine phosphorylation is dependent on the activation of ERK. Moreover, mutant Rac1 with the mutation of T108 to alanine (A) is not threonine phosphorylated in response to EGF. In vitro ERK kinase assay further shows that pure active ERK phosphorylates purified Rac1 but not mutant Rac1 T108A. We also show that Rac1 T108 phosphorylation decreases Rac1 activity, partially due to inhibiting its interaction with phospholipase C-γ1 (PLC-γ1). T108 phosphorylation targets Rac1 to the nucleus, which isolates Rac1 from other guanine nucleotide exchange factors (GEFs) and hinders Rac1''s role in cell migration. We conclude that Rac1 T108 is phosphorylated by ERK in response to EGF, which plays an important role in regulating Rac1.  相似文献   

20.
Satisfactory therapeutic strategies for septic shock are still missing. Previously we found elevated levels of Wnt5A in patients with severe sepsis and septic shock. Wnt5A is released by activated macrophages but knowledge of its effects in the vascular system remains scant. Here we investigate the response of human coronary artery endothelial cells (HCAEC) to Wnt5A. We used a genome-wide differential expression approach to define novel targets regulated by Wnt5A. Gene ontology analysis of expression profiles revealed clusters of genes involved in actin cytoskeleton remodeling as the predominant targets of Wnt5A. Wnt5A targeted Rho-associated protein serine/threonine kinase (ROCK), leading to phosphorylation of LIM kinase-2 (LIMK2) and inactivation of the actin depolymerization factor cofilin-1 (CFL1). Functional experiments recording cytoskeletal rearrangements in living cells showed that Wnt5A enhanced stress fiber formation as a consequence of reduced actin depolymerization. The antagonist Wnt inhibitory factor 1 (WIF1) that specifically interferes with the WIF domain of Ryk receptors prevented actin polymerization. Wnt5A disrupted β-catenin and VE-cadherin adherens junctions forming inter-endothelial gaps. Functional experiments targeting the endothelial monolayer integrity and live recording of trans-endothelial resistance revealed enhanced permeability of Wnt5A-treated HCAEC. Ryk silencing completely prevented Wnt5A-induced endothelial hyperpermeability. Wnt5A decreased wound healing capacity of HCAEC monolayers; this was restored by the ROCK inhibitor Y-27632. Here we show that Wnt5A acts on the vascular endothelium causing enhanced permeability through Ryk interaction and downstream ROCK/LIMK2/CFL1 signaling. Wnt5A/Ryk signaling might provide novel therapeutic strategies to prevent capillary leakage in systemic inflammation and septic shock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号