首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the hepatitis delta virus (HDV) RNA replication, synthesis of either the mRNA for the delta antigen (HDAg) or the full-length antigenomic RNA is determined by selective usage of the potent poly(A) signal on the antigenome. To elucidate the regulatory mechanism, HDV cDNA cotransfection system was used to examine the potential effect of the secondary structure of the nascent RNA and that of the HDAg on HDV polyadenylation in transfected cells. We found that when the nascent RNA species could fold itself to form the rodlike structure, the HDV polyadenylation was suppressed 3 to 5 fold by the HDAg. In addition, we observed that the small and the large HDAg exerted a similar suppressive effect on the HDV polyadenylation, though they played different roles in HDV replication. We concluded that the HDV polyadenylation could be regulated by the structure of the nascent antigenomic RNA and by either the small or large HDAg.  相似文献   

2.
The structure and replication of the single-stranded circular RNA genome of hepatitis delta virus (HDV) are unique relative to those of known animal viruses, and yet there are real similarities between HDV and certain infectious RNAs of plants. Therefore, since some of the latter RNAs have been shown to undergo in vitro site-specific cleavage and even ligation, we tested the hypothesis that similar events might also occur for HDV RNA. In partial confirmation of this hypothesis, we found that in vitro the RNA complementary to the HDV genome, the antigenomic RNA, could undergo a self-cleavage that was not only more than 90% efficient but also occurred only at a single location. This cleavage was found to produce junction fragments consistent with a 5'-hydroxyl and a cyclic 2',3'-monophosphate. Since the observed cleavage was both site-specific and occurred only once per genome length, we propose that the site may be relevant to the normal intracellular replication of the HDV genome. Because the site is located almost adjacent to the 3' end of the delta antigen-coding region, the only known functional open reading frame of HDV, we suggest that the cleavage may have a role not only in genome replication but also in RNA processing, helping to produce a functional mRNA for the translation of delta antigen.  相似文献   

3.
4.
5.
6.
7.
8.
The RNA genome of human hepatitis delta virus (HDV) is an unusual small circular single-stranded species that can fold on itself to form an unbranched rod-like structure. This RNA is replicated in the nucleus by RNA-directed RNA synthesis coupled with RNA processing events. During processing events a subgenomic, polyadenylated RNA that is complementary to the genome and expressed in the cytoplasm as the small form of the delta antigen, a 195-amino-acid protein essential for genome replication is produced. The strategies of RNA virus genome organization and expression are very diverse; those used by HDV seem unique among animal viruses, although there are some distant similarities with those used by some plant pathogens.  相似文献   

9.
10.
11.
12.
The hepatitis delta virus (HDV) genome is a circular, single-stranded, rod-shaped, 1.7-kb RNA that replicates via a rolling-circle mechanism. Viral ribozymes function to cleave replication intermediates which are then ligated to generate the circular product. HDV expresses two forms of a single protein, the small and large delta antigens (delta Ag-S and delta Ag-L), which associate with viral RNA in a ribonucleoprotein (RNP) structure. While delta Ag-S is required for RNA replication, delta Ag-L inhibits this process but promotes the assembly of the RNP into mature virions. In this study, we have expressed full-length and deleted HDV RNA inside cells to determine the minimal RNA sequences required for self-cleavage, ligation, RNP packaging, and virion assembly and to assess the role of either delta antigen in each of these processes. We report the following findings. (i) The cleavage and ligation reactions did not require either delta antigen and were not inhibited in their presence. (ii) delta Ag-L, in the absence of delta Ag-S, formed an RNP with HDV RNA which could be assembled into secreted virus-like particles. (iii) Full-length HDV RNAs were stabilized in the presence of either delta antigen and accumulated to much higher levels than in their absence. (iv) As few as 348 nucleotides of HDV RNA were competent for circle formation, RNP assembly, and incorporation into virus-like particles. (v) An HDV RNA incapable of folding into the rod-like structure was not packaged by delta Ag-L.  相似文献   

13.
The ribozyme self-cleavage site in the antigenomic sequence of hepatitis delta virus (HDV) RNA is 33-nt downstream of the poly(A) site for the delta antigen mRNA. An HDV antigenomic ribozyme precursor RNA that included the upstream poly(A) processing site was used to test the hypothesis that nonribozyme sequence near the poly(A) site could affect ribozyme activity. Relative to ribozyme precursor without the extra upstream sequences, the kinetic profile for self-cleavage of the longer precursor was altered in two ways. First, only half of the precursor RNA self-cleaved. The cleaved fraction could be increased or decreased with mutations in the upstream sequence. These mutations, which were predicted to alter the relative stability of competing secondary structures within the precursor, changed the distribution of alternative RNA structures that are resolved in native-gel electrophoresis. Second, the active fraction cleaved with an observed rate constant that was higher than that of the ribozyme without the upstream sequences. Moreover, the higher rate constants occurred at lower, near-physiological, divalent metal ion concentrations (1–2 mM). Modulation of ribozyme activity, through competing alternative structures, could be part of a mechanism that allows a biologically significant choice between maturation of the mRNA and processing of replication intermediates.  相似文献   

14.
Modahl LE  Lai MM 《Journal of virology》2000,74(16):7375-7380
Hepatitis delta virus (HDV) contains two types of hepatitis delta antigens (HDAg) in the virion. The small form (S-HDAg) is required for HDV RNA replication, whereas the large form (L-HDAg) potently inhibits it by a dominant-negative inhibitory mechanism. The sequential appearance of these two forms in the infected cells regulates HDV RNA synthesis during the viral life cycle. However, the presence of almost equal amounts of S-HDAg and L-HDAg in the virion raised a puzzling question concerning how HDV can escape the inhibitory effects of L-HDAg and initiate RNA replication after infection. In this study, we examined the inhibitory effects of L-HDAg on the synthesis of various HDV RNA species. Using an HDV RNA-based transfection approach devoid of any artificial DNA intermediates, we showed that a small amount of L-HDAg is sufficient to inhibit HDV genomic RNA synthesis from the antigenomic RNA template. However, the synthesis of antigenomic RNA, including both the 1.7-kb HDV RNA and the 0.8-kb HDAg mRNA, from the genomic-sense RNA was surprisingly resistant to inhibition by L-HDAg. The synthesis of these RNAs was inhibited only when L-HDAg was in vast excess over S-HDAg. These results explain why HDV genomic RNA can initiate replication after infection even though the incoming viral genome is complexed with equal amounts of L-HDAg and S-HDAg. These results also suggest that the mechanisms of synthesis of genomic versus antigenomic RNA are different. This study thus resolves a puzzling question about the early events of the HDV life cycle.  相似文献   

15.
M Y Kuo  M Chao    J Taylor 《Journal of virology》1989,63(5):1945-1950
Beginning with three partial cDNA clones of the RNA genome of human hepatitis delta virus (HDV), we assembled the complete 1,679-base sequence on a single molecule and then inserted a trimer of this into plasmid pSLV, a simian virus 40-based eucaryotic expression vector. This construct was used to transfect both monkey kidney (COS7) and human hepatocellular carcinoma (HuH7) cell lines. In this way we obtained replication of the HDV RNA genome and the appearance, in the nucleoli, of the delta antigen, the only known virus-coded protein. This proved both that the HDV genome could replicate in nonliver as well as liver cells and that there was no requirement for the presence of hepatitis B virus sequences or proteins. When the pSVL construct was made with a dimer of an HDV sequence with a 2-base-pair deletion in the open reading frame, genome replication was reduced at least 40-fold. However, when we cotransfected with a plasmid that expressed the correct delta antigen, the mutated dimer achieved a level of genome replication comparable to that of the nonmutated sequence. We thus conclude that the delta antigen can act in trans and is essential for replication of the HDV genome.  相似文献   

16.
17.
18.
19.
Editing on the genomic RNA of human hepatitis delta virus.   总被引:5,自引:2,他引:3       下载免费PDF全文
H Zheng  T B Fu  D Lazinski    J Taylor 《Journal of virology》1992,66(8):4693-4697
It has been shown previously that during replication of the genome of human hepatitis delta virus (HDV), a specific nucleotide change occurs to eliminate the termination codon for the small delta antigen (G. Luo, M. Chao, S.-Y. Hsieh, C. Sureau, K. Nishikura, and J. Taylor, J. Virol. 64:1021-1027, 1990). This change creates an extension in the length of the open reading frame for the delta antigen from 195 to 214 amino acids. These two proteins, the small and large delta antigens, have important and distinct roles in the life cycle of HDV. To further investigate the mechanism of this specific nucleotide alteration, we developed a sensitive assay involving the polymerase chain reaction to monitor changes on HDV RNA sequences as they occurred in transfected cells. We found that the substrate for the sequence change was the viral genomic RNA rather than the antigenomic RNA. This sequence change occurred independently of genome replication or the presence of the delta antigen. Less than full-length genomic RNA could act as a substrate, but only if it also contained a corresponding RNA sequences from the other side of the rodlike structure, which is characteristic of HDV. We were also able to reproduce the HDV base change in vitro, by addition of purified viral RNA to nuclear extracts of cells from a variety of species.  相似文献   

20.
Hepatitis delta virus mutant: effect on RNA editing.   总被引:6,自引:5,他引:1       下载免费PDF全文
During the replication cycle of hepatitis delta virus (HDV), RNA editing occurs at position 1012 on the 1679-nucleotide RNA genome. This changes an A to G in the amber termination codon, UAG, of the small form of the delta antigen (delta Ag). The resultant UGG codon, tryptophan, allows the translation of a larger form of the delta Ag with a 19-amino-acid C-terminal extension. Using HDV cDNA-transfected cells, we examined the editing potential of HDV RNA mutated from G to A at 1011 on the antigenome, adjacent to normal editing site at 1012. Four procedures were used to study not only the editing of the A at 1012, but also that of the new A at 1011: (i) nucleotide sequencing, (ii) a PCR-based RNA-editing assay, (iii) immunoblot assays, and (iv) immunofluorescence. Five findings are reported. (i) Even after the mutation at 1011, editing still occurred at 1012. (ii) Site 1011 itself now acted as a novel RNA-editing site. (iii) Sites 1011 and 1012 were edited independently. (iv) At later times, both sites became edited, thereby allowing the synthesis of the large form of the delta Ag (delta Ag-L). (v) Via immunofluorescence, such double editing became apparent as a stochastic event, in that groups of cells arose in which the changes had taken place. Evaluation of these findings and of those from previous studies of the stability of the HDV genomic sequence (H.J. Netter et al., J. Virol. 69:1687-1692, 1995) supports both the recent reevaluation of HDV RNA editing as occurring on antigenomic RNA (Casey and Gerin, personal communication) and the interpretation that editing occurs via the RNA-modifying enzyme known as DRADA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号