首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The myelin-associated glycoprotein (MAG) is a heavily glycosylated integral membrane glycoprotein which is a minor component of isolated rat peripheral nervous system (PNS) myelin. Immunocytochemically MAG has been localized in the periaxonal region of PNS myelin sheaths. The periaxonal localization and biochemical features of MAG are consistent with the hypothesis that MAG plays a role in maintaining the periaxonal space of myelinated fibers. To test this hypothesis, MAG was localized immunocytochemically in 1-micron sections of the L5 ventral root from rats exposed to B,B'-iminodipropionitrile. In chronic states of B,B'-iminodipropionitrile intoxication, Schwann cell periaxonal membranes and the axolemma invaginate into giant axonal swellings and separate a central zone of normally oriented axoplasm from an outer zone of maloriented neurofilaments. Ultrastructurally, the width of the periaxonal space (12-14 nm) in the ingrowths is identical to that found in normally myelinated fibers. These Schwann cell ingrowths which are separated from compact myelin by several micra are stained intensely by MAG antiserum. Antiserum directed against Po protein, the major structural protein of compact PNS myelin, does not stain the ingrowths unless compact myelin is present. These results demonstrate the periaxonal localization of MAG and support a functional role for MAG in maintaining the periaxonal space of PNS myelinated fibers.  相似文献   

3.
《The Journal of cell biology》1986,103(6):2439-2448
The cellular and subcellular localization of the neural cell adhesion molecules L1, N-CAM, and myelin-associated glycoprotein (MAG), their shared carbohydrate epitope L2/HNK-1, and the myelin basic protein (MBP) were studied by pre- and post-embedding immunoelectron microscopic labeling procedures in developing mouse sciatic nerve. L1 and N-CAM showed a similar staining pattern. Both were localized on small, non-myelinated, fasciculating axons and axons ensheathed by non- myelinating Schwann cells. Schwann cells were also positive for L1 and N-CAM in their non-myelinating state and at the onset of myelination, when the Schwann cell processes had turned approximately 1.5 loops. Thereafter, neither axon nor Schwann cell could be detected to express the L1 antigen, whereas N-CAM was found in the periaxonal area and, more weakly, in compact myelin of myelinated fibers. Compact myelin, Schmidt-Lanterman incisures, paranodal loops, and finger-like processes of Schwann cells at nodes of Ranvier were L1-negative. At the nodes of Ranvier, the axolemma was also always L1- and N-CAM-negative. The L2/HNK-1 carbohydrate epitope coincided in its cellular and subcellular localization most closely to that observed for L1. MAG appeared on Schwann cells at the time L1 expression ceased. MAG was then expressed at sites of axon-myelinating Schwann cell apposition and non-compacted loops of developing myelin. When compaction of myelin occurred, MAG remained present only at the axon-Schwann cell interface; Schmidt- Lanterman incisures, inner and outer mesaxons, and paranodal loops, but not at finger-like processes of Schwann cells at nodes of Ranvier or compacted myelin. All three adhesion molecules and the L2/HNK-1 epitope could be detected in a non-uniform staining pattern in basement membrane of Schwann cells and collagen fibrils of the endoneurium. MBP was detectable in compacted myelin, but not in Schmidt-Lanterman incisures, inner and outer mesaxon, paranodal loops, and finger-like processes at nodes of Ranvier, nor in the periaxonal regions of myelinated fibers, thus showing a complementary distribution to MAG. These studies show that axon-Schwann cell interactions are characterized by the sequential appearance of cell adhesion molecules and MBP apparently coordinated in time and space. From this sequence it may be deduced that L1 and N-CAM are involved in fasciculation, initial axon-Schwann cell interaction, and onset of myelination, with MAG to follow and MBP to appear only in compacted myelin. In contrast to L1, N- CAM may be further involved in the maintenance of compact myelin and axon-myelin apposition of larger diameter axons.  相似文献   

4.
Myelin-Associated Glycoprotein and Other Proteins in Trembler Mice   总被引:5,自引:4,他引:1  
The myelin-associated glycoprotein (MAG) and other myelin proteins were quantitated in homogenates of whole sciatic nerve from adult and 20-day-old Trember mice. In the nerves of adult mice, the concentration of MAG was increased from 1.1 ng/micrograms of total protein in the controls to 1.4 ng/micrograms protein in the Tremblers. By contrast, the concentrations of P0 glycoprotein and myelin basic proteins were reduced to 27% and 20% of control levels, respectively. Immunoblots demonstrated that P2 was also greatly reduced in the Trembler nerves. The specific activity of 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) was 65% of the control level. Immunoblot analysis showed that MAG had a higher than normal apparent Mr in the sciatic nerves of the Trembler mice, but its apparent Mr was normal in the brains of these mutants. In 20-day-old Tremblers, the P0 and myelin basic protein were reduced slightly less to about 40% of the level in the nerves of age-matched controls. CNP and MAG levels were not significantly different from those in controls, and MAG exhibited a shift toward higher apparent Mr similar to that in the adults. The maintenance of high MAG levels despite the severe deficit of myelin, as reflected by the decrease of the major myelin proteins, is consistent with the immunocytochemical localization of MAG in periaxonal Schwann cell membranes, Schmidt-Lantermann incisures, lateral loops, and the outer mesaxon and its absence from compact myelin. The abnormal form of MAG in the peripheral nervous system (PNS) of the Trembler mice may contribute to the pathology in this mutant.  相似文献   

5.
This report investigated mechanisms responsible for failed Schwann cell myelination in mice that overexpress P(0) (P(0)(tg)), the major structural protein of PNS myelin. Quantitative ultrastructural immunocytochemistry established that P(0) protein was mistargeted to abaxonal, periaxonal, and mesaxon membranes in P(0)(tg) Schwann cells with arrested myelination. The extracellular leaflets of P(0)-containing mesaxon membranes were closely apposed with periodicities of compact myelin. The myelin-associated glycoprotein was appropriately sorted in the Golgi apparatus and targeted to periaxonal membranes. In adult mice, occasional Schwann cells myelinated axons possibly with the aid of endocytic removal of mistargeted P(0). These results indicate that P(0) gene multiplication causes P(0) mistargeting to mesaxon membranes, and through obligate P(0) homophilic adhesion, renders these dynamic membranes inert and halts myelination.  相似文献   

6.
The myelin-associated glycoprotein (MAG) is an integral membrane glycoprotein that is located in the periaxonal membrane of myelin-forming Schwann cells. On the basis of this localization, it has been hypothesized that MAG plays a structural role in (a) forming and maintaining contact between myelinating Schwann cells and the axon (the 12-14-nm periaxonal space) and (b) maintaining the Schwann cell periaxonal cytoplasmic collar of myelinated fibers. To test this hypothesis, we have determined the immunocytochemical localization of MAG in the L4 ventral roots from 11-mo-old quaking mice. These roots display various stages in the association of remyelinating Schwann cells with axons, and abnormalities including loss of the Schwann cell periaxonal cytoplasmic collar and dilation of the periaxonal space of myelinated fibers. Therefore, this mutant provides distinct opportunities to observe the relationships between MAG and (a) the formation of the periaxonal space during remyelination and (b) the maintenance of the periaxonal space and Schwann cell periaxonal cytoplasmic collar in myelinated fibers. During association of remyelinating Schwann cells and axons, MAG was detected in Schwann cell adaxonal membranes that apposed the axolemma by 12-14 nm. Schwann cell plasma membranes separated from the axolemma by distances greater than 12-14 nm did not react with MAG antiserum. MAG was present in adaxonal Schwann cell membranes that apposed the axolemma by 12-14 nm but only partially surrounded the axon and, therefore, may be actively involved in the ensheathment of axons by remyelinating Schwann cells. To test the dual role of MAG in maintaining the periaxonal space and Schwann cell periaxonal cytoplasmic collar of myelinated fibers, we determined the immunocytochemical localization of MAG in myelinated quaking fibers that displayed pathological alterations of these structures. Where Schwann cell periaxonal membranes were not stained by MAG antiserum, the cytoplasmic side of the periaxonal membrane was "fused" with the cytoplasmic side of the inner compact myelin lamella and formed a major dense line. This loss of MAG and the Schwann cell periaxonal cytoplasmic collar usually resulted in enlargement of the 12-14-nm periaxonal space and ruffling of the apposing axolemma. In myelinated fibers, there was a strict correlation between the presence of MAG in the Schwann cell periaxonal membrane and (a) maintenance of the 12-14-nm periaxonal space, and (b) presence of the Schwann cell periaxonal cytoplasmic collar.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The 2',3'-cyclic nucleotide 3'-phosphodiesterases (CNPs) are closely related oligodendrocyte proteins whose in vivo function is unknown. To identify subcellular sites of CNP function, the distribution of CNP and CNP mRNA was determined in tissue sections from rats of various developmental ages. Our results indicate that CNP gene products were expressed exclusively by oligodendrocytes in the CNS. CNP mRNA was concentrated around oligodendrocyte perinuclear regions during all stages of myelination. Developmentally, initial detection of CNP mRNA closely paralleled initial detection of its translation products. In electron micrographs of immunostained ultrathin cryosections, CNP was associated with oligodendrocyte membranes during the earliest phase of axonal ensheathment. In more mature fibers, immunocytochemistry established that the CNPs are not major components of compact myelin but are concentrated within specific regions of the oligodendrocyte and myelin internode. These include (a) the plasma membrane of oligodendrocytes and their processes, (b) the periaxonal membrane and inner mesaxon, (c) the outer tongue process, (d) the paranodal myelin loops, and (e) the "incisure-like" membranes found in many larger CNS myelin sheaths. A cytoplasmic pool of CNP was also detected in oligodendrocyte perikarya and larger oligodendrocyte processes. CNP was also enriched in similar locations in myelinated fibers of the PNS.  相似文献   

8.
On the molecular architecture of myelinated fibers   总被引:11,自引:0,他引:11  
Schwann cells and oligodendrocytes make the myelin sheaths of the PNS and CNS, respectively. Their myelin sheaths are structurally similar, consisting of multiple layers of specialized cell membrane that spiral around axons, but there are several differences. (1) CNS myelin has a ”radial component” composed of a tight junction protein, claudin-11/oligodendrocyte-specific protein. (2) Schwann cells have a basal lamina and microvilli. (3) Although both CNS and PNS myelin sheaths have incisures, those in the CNS lack the structural as well as the molecular components of ”reflexive” adherens junctions and gap junctions. In spite of their structural differences, the axonal membranes of the PNS and CNS are similarly organized. The nodal axolemma contains high concentrations of voltage-dependent sodium channels that are linked to the axonal cytoskeleton by ankyrinG. The paranodal membrane contains Caspr/paranodin, which may participate in the formation of axoglial junctions. The juxtaparanodal axonal membrane contains the potassium channels Kv1.1 and Kv1.2, their associated β2 subunit, as well as Caspr2, which is closely related to Caspr. The myelin sheath probably organizes these axonal membrane-related proteins via trans interactions. Accepted: 25 November 1999  相似文献   

9.
10.
Abstract: The myelin specific protein, P2, was localized immunocytochemically in electron micrographs of 4-day-old rat peripheral nerve by a preembedding technique. P2 staining was restricted to Schwann cells that had established a one-to-one relationship with an axon. P2 antiserum produced a diffuse staining throughout the entire cytosol of myelinating Schwann cells. In addition, the cytoplasmic side of Schwann cell plasma membranes and the membranes of cytoplasmic organelles that were exposed to cytosol were stained by P2 antiserum. This cytoplasmic localization of P2 protein is similar to that described for soluble or peripheral membrane proteins that are synthesized on free ribosomes. P2 antiserum stained the cytoplasmic side of Schwann cell membranes that formed single or multiple loose myelin spirals around an axon. In the region of the outer mesaxon, P2 antiserum stained the major dense line of compact myelin. These results demonstrate that P2 protein is located on the cytoplasmic side of compact myelin membranes and are consistent with biochemical studies demonstrating P2 to be a peripheral membrane protein.  相似文献   

11.
Ultrastructural studies have shown that during early stages of Schwann cell myelination mesaxon membranes are converted to compact myelin lamellae. The distinct changes that occur in the spacing of these Schwann cell membranes are likely to be mediated by the redistribution of (a) the myelin-associated glycoprotein, a major structural protein of mesaxon membranes; and (b) P0 protein, the major structural protein of compact myelin. To test this hypothesis, the immunocytochemical distribution of these two proteins was determined in serial 1-micron-thick Epon sections of ventral roots from quaking mice and compared to the ultrastructure of identical areas in an adjacent thin section. Ventral roots of this hypomyelinating mouse mutant were studied because many fibers have a deficit in converting mesaxon membranes to compact myelin. The results indicated that conversion of mesaxon membranes to compact myelin involves the insertion of P0 protein into and the removal of the myelin-associated glycoprotein from mesaxon membranes. The failure of some quaking mouse Schwann cells to form compact myelin appears to result from an inability to remove the myelin-associated glycoprotein from their mesaxon membranes.  相似文献   

12.
Tight junctions (TJs) form physical barriers in various tissues and regulate paracellular transport of ions, water, and molecules. Myelinating Schwann cells form highly organized structures, including compact myelin, nodes of Ranvier, paranodal regions, Schmidt-Lanterman incisures, periaxonal cytoplasmic collars, and mesaxons. Autotypic TJs are formed in non-compacted myelin compartments between adjacent membrane lamellae of the same Schwann cell. Using indirect immunofluorescence and RT-PCR, we analyzed the expression of adherens junction (E-cadherin) and TJ [claudins, zonula occludens (ZO)-1, occludin] components in human peripheral nerve endoneurium, showing clear differences with published rodent profiles. Adult nerve paranodal regions contained E-cadherin, claudin-1, claudin-2, and ZO-1. Schmidt-Lanterman incisures contained E-cadherin, claudin-1, claudin-2, claudin-3, claudin-5, ZO-1, and occludin. Mesaxons contained E-cadherin, claudin-1, claudin-2, claudin-3, ZO-1, and occludin. None of the proteins studied were associated with nodal inter-Schwann cell junctions. Fetal nerve expression of claudin-1, claudin-3, ZO-1, and occludin was predominantly punctate, with a mesaxonal labeling pattern, but paranodal (ZO-1, claudin-3) and Schmidt-Lanterman incisure (claudins-1 and -3) expression profiles typical of compact myelin were visible by gestational week 37. The clear differences observed between human and published rodent nerve profiles emphasize the importance of human studies when translating the results of animal models to human diseases. (J Histochem Cytochem 57:523–529, 2009)  相似文献   

13.
Previous studies (Blank, W. F., M. B. Bunge, and R. P. Bunge. 1974. Brain Res. 67:503-518) showed that Schwann cell paranodal membranes were disrupted in calcium free medium suggesting that cadherin mediated mechanisms may operate to maintain the integrity of the paranodal membrane complex. Using antibodies against the fifth extracellular domain of E-cadherin, we now show by confocal laser and electron immunomicroscopy that E-cadherin is a major adhesive glycoprotein in peripheral nervous system Schwann cells. E-Cadherin is not found, however, in compact myelin bilayers. Rather, it is concentrated at the paranodes, in Schmidt-Lanterman incisures, and at the inner and outer loops. At these loci, E-cadherin is associated with subplasmalemmal electron densities that coordinate in register across several cytoplasmic turns of a single Schwann cell. F-Actin and beta-catenin, two proteins implicated in cellular signaling, also co-localize to E- cadherin positive sites. These complexes are autotypic adherens-type junctions that are confined to the plasma membrane synthesized by a single Schwann cell; E-cadherin was never observed between two Schwann cells, nor between Schwann cells and the axon. Our findings demonstrate that E-cadherin and its associated proteins are essential components in the architecture of the Schwann cell cytoplasmic channel network, and suggest that this network has specialized functions in addition to those required for myelinogenesis.  相似文献   

14.
Recent immunocytochemical studies indicated that the myelin-associated glycoprotein (MAG) is localized in the periaxonal region of central nervous system (CNS) and peripheral nervous system (PNS) myelin sheaths but previous biochemical studies had not demonstrated the presence of MAG in peripheral nerve. The glycoproteins in rat sciatic nerves were heavily labeled by injection of [3H]fucose in order to re-examine whether MAG could be detected chemically in peripheral nerve. Myelin and a myelin-related fraction, W1, were isolated from the nerves. Labeled glycoproteins in the PNS fractions were extracted by the lithium diiodosalicylate (LIS)-phenol procedure, and the extracts were treated with antiserum prepared to CNS MAG in a double antibody precipitation. This resulted in the immune precipitation of a single [3H]fucose-labeled glycoprotein with electrophoretic mobility very similar to that of [14C]fucose-labeled MAG from rat brain. A sensitive peptide mapping procedure involving iodination with Bolton-Hunter reagent and autoradiography was used to compare the peptide maps generated by limited proteolysis from this PNS component and CNS MAG. The peptide maps produced by three distinct proteases were virtually identical for the two glycoproteins, showing that the PNS glycoprotein is MAG. The MAG in the PNS myelin and W1 fractions was also demonstrated by Coomassie blue and periodic acid-Schiff staining of gels on which the whole LIS-phenol extracts were electrophoresed, and densitometric scanning of the gels indicated that both fractions contained substantially less MAG than purified rat brain myelin. The presence of MAG in the periaxonal region of both peripheral and central myelin sheaths is consistent with a similar involvement of this glycoprotein in axon-sheath cell interactions in the PNS and CNS.  相似文献   

15.
Gangliosides are characteristic glycolipid components of plasma cell membranes, especially enriched in the CNS and PNS. In some diseases involving the PNS, in particular motor neuropathies associated with conduction block, IgM autoantibodies against ganglioside GM1 have been implicated as a pathogenic factor. In order to study the GM1 distribution in peripheral nerves we have investigated its in situ localization using a new anti-GM1 monoclonal antibody, GM1:1. Immunization and production of the monoclonal antibody was made by common protocols and binding specificity was investigated by using structurally related glycolipids and modified GM1-molecules. The result showed that an α2–3 bound sialic acid together with a terminal galactose moiety were essential for GM1:1 binding. In situ localization of GM1 in rat dorsal and ventral spinal roots was investigated by conventional immunomicroscopy. GM1 immunoreactivity was the same in both roots and appeared like a finely granular, in places confluent, material confined to Schmidt-Lanterman’s incisures, to myelin sheath paranodal end segments and to some extent to the abaxonal Schwann cell cytoplasm; all of these structures are likely to be the target for GM1 antibodies in peripheral neuropathies. Nodal gaps and fibre contours showed a weak non-specific fluorescence. The localization of GM1 to the incisures of Schmidt-Lanterman and the paranodal end segments of the myelin sheaths might indicate a role of gangliosides as adhesion molecules.  相似文献   

16.
ATPase activity was studied in the structures of axon-myelin-Schwann cell complex of sciatic nerves of rabbits of pre-and postnatal development. Positive reaction was observed on the plasma membrane, mitochondria and endoplasmic reticulum of Schwann cells, on the intraperiod lines of the compact myelin, in the split myelin lamellae in the paranodal regions and Schmidt-Lanterman clefts, in segment of outermost lamellae split off from the interparanodal myelin, in the mesaxons, in the loose myelin lamellae in the earlier stages of myelinization, on the axolemma (periaxonal space) and axoplasm. The ATPase activity on the Schwannian plasmalemma, axolemma and myelin sheath surface was found to be heterogeneously distributed. An accumulated of reaction deposits at the origin of the outer mesaxon, at the axoglial contacts as well as at the terminal part of the myelin sheath was respectively observed. Alterations of the enzyme activity distribution in axon-myelin-Schwann cell complex during rabbit's development were found to be associated with the growing myelin sheath and its node-paranode. Using controls with ouabain an attempt was made the possibilities of Wachstein and Meisel's method to be shown and the place of alpha+ form of Na+, K+-ATPase in the axon-myelin-Schwann cell Complex to be establish.  相似文献   

17.
The myelin-associated glycoprotein (MAG) is selectively localized in periaxonal Schwann cell and oligodendroglial membranes of myelin sheaths suggesting that it functions in glia–axon interactions in the PNS and CNS, and this is supported by much experimental evidence. In addition, MAG is now well known as one of several white matter inhibitors of neurite outgrowth in vitro and axonal regeneration in vivo, and this latter area of research has provided a substantial amount of information about neuronal receptors or receptor complexes for MAG. This article makes the hypothesis that the capacity of MAG to inhibit outgrowth of immature developing or regenerating neurites is an aberration of its normal physiological function to promote the maturation, maintenance, and survival of myelinated axons. The overview summarizes the literature on the function of MAG in PNS and CNS myelin sheaths and its role as an inhibitor of neurite outgrowth to put this hypothesis into perspective. Additional research is needed to determine if receptors and signaling systems similar to those responsible for MAG inhibition of neurite outgrowth also promote the maturation, maintenance, and survival of myelinated axons as hypothesized here, or if substantially different MAG-mediated signaling mechanisms are operative at the glia–axon junction. Special issue article in honor of Dr. George DeVries.  相似文献   

18.
In sections of KMnO(4)-fixed, developing mouse sciatic nerves, the central gap of mesaxons in myelinating fibers is normally closed with close apposition of the outside approximately 20 A dense strata of the two approximately 75 A Schwann cell membranes. The two combined outside strata make the intraperiod line bisecting each myelin lamella. The approximately 150 A mesaxon is elaborated spirally around the axon in either a right hand or left hand spiral, and its inside (cytoplasmic) approximately 20 A strata in apposition form the major dense lines of myelin. In hypotonic solutions the lamellae of adult frog sciatic myelinated fibers split apart along the outside membrane strata apposed at the intraperiod line throughout the spiral. Under similar conditions the inside (cytoplasmic) strata of the membranes, in apposition at the major dense lines, do not separate. The approximately 150 A membranous structure resulting from this is called an "internal compound membrane." The double membranes of normal and control frog sciatic unmyelinated fibers have a central gap approximately 100 to 150 A wide. After soaking in 4 to 10 times normal strength Ringer solution or 10 N sucrose-Ringer solution, this gap closes and a membranous structure approximately 150 A wide resembling developing mouse mesaxons results. This is designated by the term "external compound membrane." The latter membranes resemble internal compound membranes, but their central dense zones, each consisting of two apposed outside membrane strata, are less dense.  相似文献   

19.
Abstract: Recent immunocytochemical studies indicated that the myelin-associated glycoprotein (MAG) is localized in the periaxonal region of central nervous system (CNS) and peripheral nervous system (PNS) myelin sheaths but previous biochemical studies had not demonstrated the presence of MAG in peripheral nerve. The glycoproteins in rat sciatic nerves were heavily labeled by injection of [3H]fucose in order to re-examine whether MAG could be detected chemically in peripheral nerve. Myelin and a myelin-related fraction, WI, were isolated from the nerves. Labeled glycoproteins in the PNS fractions were extracted by the lithium diiodosalicylate (LIS)-phenol procedure, and the extracts were treated with antiserum prepared to CNS MAG in a double antibody precipitation. This resulted in the immune precipitation of a single [3H]fucose-labeled glycoprotein with electrophoretic mobility very similar to that of [14C]fucose-labeled MAG from rat brain. A sensitive peptide mapping procedure involving iodination with Bolton-Hunter reagent and autoradiography was used to compare the peptide maps generated by limited proteolysis from this PNS component and CNS MAG. The peptide maps produced by three distinct proteases were virtually identical for the two glycoproteins, showing that the PNS glycoprotein is MAG. The MAG in the PNS myelin and Wl fractions was also demonstrated by Coomassie blue and periodic acid-Schiff staining of gels on which the whole US-phenol extracts were electrophoresed, and densitometric scanning of the gels indicated that both fractions contained substantially less MAG than purified rat brain myelin. The presence of MAG in the periaxonal region of both peripheral and central myelin sheaths is consistent with a similar involvement of this glycoprotein in axon-sheath cell interactions in the PNS and CNS.  相似文献   

20.
《The Journal of cell biology》1993,123(5):1223-1236
Ensheathment and myelination of axons by Schwann cells in the peripheral nervous system requires contact with a basal lamina. The molecular mechanism(s) by which the basal lamina promotes myelination is not known but is likely to reflect the activity of integrins expressed by Schwann cells. To initiate studies on the role of integrins during myelination, we characterized the expression of two integrin subunits, beta 1 and beta 4, in an in vitro myelination system and compared their expression to that of the glial adhesion molecule, the myelin-associated glycoprotein (MAG). In the absence of neurons, Schwann cells express significant levels of beta 1 but virtually no beta 4 or MAG. When Schwann cells are cocultured with dorsal root ganglia neurons under conditions promoting myelination, expression of beta 4 and MAG increased dramatically in myelinating cells, whereas beta 1 levels remained essentially unchanged. (In general agreement with these findings, during peripheral nerve development in vivo, beta 4 levels also increase during the period of myelination in sharp contrast to beta 1 levels which show a striking decrease.) In cocultures of neurons and Schwann cells, beta 4 and MAG appear to colocalize in nascent myelin sheaths but have distinct distributions in mature sheaths, with beta 4 concentrated in the outer plasma membrane of the Schwann cell and MAG localized to the inner (periaxonal) membrane. Surprisingly, beta 4 is also present at high levels with MAG in Schmidt-Lanterman incisures. Immunoprecipitation studies demonstrated that primary Schwann cells express beta 1 in association with the alpha 1 and alpha 6 subunits, while myelinating Schwann cells express alpha 6 beta 4 and possibly alpha 1 beta 1. beta 4 is also downregulated during Wallerian degeneration in vitro, indicating that its expression requires continuous Schwann cell contact with the axon. These results indicate that axonal contact induces the expression of beta 4 during Schwann cell myelination and suggest that alpha 6 beta 4 is an important mediator of the interactions of myelinating Schwann cells with the basal lamina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号