首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a new mutation in m.12146 A > G in the mt-tRNAHis in a family with a remarkable clinical history having different degrees of lactic acidosis and stroke-like episodes. Biochemical measurements of a muscle biopsy established an isolated complex IV deficiency, while similar analysis of fibroblasts showed a combined complex I,III and IV deficiency. Transmitochondrial cybrid analysis proved that this tRNAHis mutation causes the enzymatic deficiency. This family illustrates the complexity of the clinical, biochemical and genetic characteristics of a novel mtDNA encoded disorder, as well as the challenge to prove its pathogenicity.  相似文献   

2.
The total sequences of mitochondrial DNA were determined in two patients with juvenile-onset mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) due to Complex I deficiency. Patients 1 and 2 had three and two unique point mutations, respectively, causing replacement of phylogenically conserved amino acids. A transition from G to A was found at nucleotide position 5601 in the alanine tRNA gene of Patient 2, and a transition from A to G was found at 3243 in the leucine (UUR) tRNA gene of both patients. The latter mutation located at the phylogenically conserved 5' end of the dihydrouridine loop of the tRNA molecule, and was present in two patients with adult-onset MELAS and absent in controls. These results indicate that a mass of mtDNA mutations including the A-to-G transition in the tRNA(Leu) gene is a genetic cause of MELAS.  相似文献   

3.
In 3 of 40 MELAS patients, a new common mutation, a T-to-C transition at nucleotide position 3271 in the mitochondrial tRNA(Leu(UUR] gene was recognized and was very near to the most common mutation site at 3243. With a simple detection method using polymerase chain reaction with a mismatch primer, none of 46 patients with other mitochondrial diseases and 50 controls had this mutation.  相似文献   

4.
An m.1630A>G mutation in the mitochondrial tRNA(Val) (MTTV) was identified in a patient with hearing impairment, short stature and new onset of stroke. This mutation has previously been identified in a patient with the mitochondrial neurogastrointestinal encephalopathy syndrome (MNGIE). The mother of the proband also had high levels of the m.1630A>G allele present in blood and other tissues, without symptoms. To confirm the pathogenicity of this mutation, we created cybrid cell lines with various mutation loads. The m.1630A>G mutation impairs oxygen consumption, affects the stability of the MTTV and reduces the levels of subunits of the electron transport chain.  相似文献   

5.
Mitochondrial myopathy, encephalopathy, lactic acidosis and strokelike episode (MELAS) is a major group of heterogeneous mitochondrial disorders. To identify the defective gene, mitochondrial DNA from a patient with MELAS was sequenced by using amplified DNA fragments as sequencing templates. In 14.1 kbp determined out of 16.6 kbp of the whole mitochondrial gene, at least 21 nucleotides were different from those of a control human mitochondrial DNA. One of the substitutions was a transition of A to G in the tRNA(Leu) (UUR) gene at Cambridge nucleotide number 3,243. This nucleotide is conserved not only in many mitochondrial tRNAs but in most cytosolic tRNA molecules. An Apa I restriction site was gained by the substitution of this nucleotide. The Apa I digestion of the amplified DNA fragment revealed that all independent 6 patients had G at nucleotide number 3,243 in their mitochondrial DNAs, but none of 11 control individuals had G at this position. This result strongly suggests that the mutation in the mitochondrial tRNALeu gene causes MELAS.  相似文献   

6.
7.
The mitochondrial tRNA(Leu)(UUR) (R = A or G) gene possesses several hot spots for pathogenic mutations. A point mutation at nucleotide position 3243 or 3271 is associated with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes and maternally inherited diabetes with deafness. Detailed studies on two tRNAs(Leu)(UUR) with the 3243 or 3271 mutation revealed some common characteristics in cybrid cells: (i) a decreased life span, resulting in a 70% decrease in the amounts of the tRNAs in the steady state, (ii) a slight decrease in the ratios of aminoacyl-tRNAs(Leu)(UUR) versus uncharged tRNAs(Leu)(UUR), and (iii) accurate aminoacylation with leucine without any misacylation. As a marked result, both of the mutant tRNA molecules were deficient in a modification of uridine that occurs in the normal tRNA(Leu)(UUR) at the first position of the anticodon. The lack of this modification may lead to the mistranslation of leucine into non-cognate phenylalanine codons by mutant tRNAs(Leu)(UUR), according to the mitochondrial wobble rule, and/or a decrease in the rate of mitochondrial protein synthesis. This finding could explain why two different mutations (3243 and 3271) manifest indistinguishable clinical features.  相似文献   

8.
MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes) is a major subgroup of heterogeneous mitochondrial diseases. For identifying a mutation in the mitochondrial gene, we isolated, from the same muscle tissue from a patient with MELAS, cell lines with distinctly different phenotypes: one was respiration-deficient, and the other was apparently normal. Compared with the normal cells, only one A-to-G nucleotide transition at nucleotide 3243 in the tRNA-Leu (UUR) gene was found in whole mtDNA of the respiration-deficient cells. This mutation was also found in eight patients, from unrelated families, who had MELAS in a heteroplasmic manner but was not found in control individuals. Therefore, the single point mutation causes the functional abnormality in the respiratory chain of mitochondria.  相似文献   

9.
The molecular lesions in two patients exhibiting classical clinical manifestations of MELAS (mitochondrial encephalopathy, lactic acidosis, and strokelike episodes) syndrome have been investigated. A recently reported disease-related A----G base substitution at nt 3243 of the mtDNA, in the DHU loop of tRNA(Leu), was detected by restriction-enzyme analysis of the relevant PCR-amplified segment of the mtDNA of one patient but was not observed, by either restriction-enzyme analysis or nucleotide sequencing, in the other. To define the molecular lesion in the patient who does not have the A----G base substitution at nt 3243, the total mitochondrial genome of the patient has been sequenced. An A----G base substitution at nt 11084, leading to a Thr-to-Ala amino acid replacement in the ND4 subunit of the respiratory complex I, is suggested to be a disease-related mutation.  相似文献   

10.
The A to G transition mutation at position 3260 of the mitochondrial genome is usually associated with cardiomyopathy and myopathy. One Japanese kindred reported the phenotype of mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS syndrome) in association with the A3260G mtDNA mutation. We describe the first Caucasian cases of MELAS syndrome associated with the A3260G mutation. Furthermore, this mutation was associated with exercise-induced rhabdomyolysis, hearing loss, seizures, cardiomyopathy, and autism in the large kindred. We conclude that the A3260G mtDNA mutation is associated with wide phenotypic heterogeneity with MELAS and other “classical” mitochondrial phenotypes being manifestations.  相似文献   

11.
12.
13.
Using RNase protection analysis, we found a novel C to G mutation at nucleotide position 3093 of mitochondrial DNA (mtDNA) in a previously reported 35-year-old woman exhibiting clinical features of mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome together with diabetes mellitus, hyperthyroidism and cardiomyopathy. The patient also had an A3243G mutation in the tRNA(Leu(UUR)) gene and a 260-base pair duplication in the D-loop of mtDNA. The fibroblasts of the patient were cultured and used for the construction of cybrids using cytoplasmic transfer of the patient's mtDNA to the mtDNA-less rho(0) cells. RNA isolated from the cybrids was subjected to RNase protection analysis, and a C3093G transversion at the 16S rRNA gene and a MELAS-associated A3243G mutation of mtDNA were detected. The novel C3093G mutation together with the A3243G transition were found in muscle biopsies, hair follicles and blood cells of this patient and also in her skin fibroblasts and cybrids. The proportion of the C3093G mutant mtDNA in muscle biopsies of the patient was 51%. In contrast, the mutation was not detected in three sons of the proband. To characterize the impact of the mtDNA mutation-associated defects on mitochondrial function, we determined the respiratory enzyme activities of the primary culture of fibroblasts established from the proband, her mother and her three sons. The proportions of mtDNA with the C3093G transversion and the A3243G transition in the fibroblasts of the proband were 45 and 58%, respectively. However, the fibroblasts of the proband's mother and children harbored lower levels of mtDNA with the A3243G mutation but did not contain the C3093G mutation. The complex I activity in the proband's fibroblasts was decreased to 47% of the control but those of the fibroblasts of the mother and three sons of the proband were not significantly changed. These findings suggest that the C3093G transversion together with the A3243G transition of mtDNA impaired the respiratory function of mitochondria and caused the atypical MELAS syndrome associated with diabetes mellitus, hyperthyroidism and cardiomyopathy in this patient.  相似文献   

14.
15.
Abstract: Lactic acid has been an intermediate-volume specialty chemical (world production ∼ 40,000 tons/yr) used in a wide range of food processing and industrial applications. Lactic acid has the potential of becoming a very large volume, commodity-chemical intermediate produced from renewable carbohydrates for use as feedstocks for biodegradable polymers, oxygenated chemicals, plant growth regulators, environmentally friendly 'green' solvents, and specialty chemical intermediates. The recent announcements of new development-scale plants for producing lactic acid and polymer intermediates by major U.S. companies, such as Cargill, Ecochem (DuPont/ConAgra), and Archer Daniels Midland, attest to this potential.
In the past, efficient and economical technologies for the recovery and purification of lactic acid from crude fermentation broths and the conversion of lactic acid to the chemical or polymer intermediates had been the key technology impediments and main process cost centers. The development and deployment of novel separations technologies, such as electrodialysis (ED) with bipolar membranes, extractive distillations integrated with fermentation, and chemical conversion, can enable low-cost production with continuous processes in large-scale operations. The use of bipolar ED can virtually eliminate the salt or gypsum waste produced in the current lactic acid processes. Thus, the emerging technologies can use environmentally sound processes to produce environmentally useful products from lactic acid. The process economics of some of these processes and products can also be quite attractive. In this paper, the recent technical advances in lactic and polyactic acid processes are discussed. The economic potential and manufacturing cost estimates of several products and process options are presented. The technical accomplishments at Argonne National Laboratory (ANL) and the future directions of this program at ANL are discussed.  相似文献   

16.

Background

Mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) is the most common type of mitochondrial disease and is characterized by stroke-like episodes (SEs), myopathy, lactic acidosis, diabetes mellitus, hearing-loss and cardiomyopathy. The causal hypotheses for SEs in MELAS presented to date are angiopathy, cytopathy and neuronal hyperexcitability. L-arginine (Arg) has been applied for the therapy in MELAS patients.

Scope of review

We will introduce novel in vivo functional brain imaging techniques such as MRI and PET, and discuss the pathogenesis of SEs in MELAS patients. We will further describe here our clinical experience with L-arg therapy and discuss the dual pharmaceutical effects of this drug on MELAS.

Major conclusions

Administration of L-arg to MELAS patients has been successful in reducing neurological symptoms due to acute strokes and preventing recurrences of SEs in the chronic phase. L-Arg has dual pharmaceutical effects on both angiopathy and cytopathy in MELAS.

General significance

In vivo functional brain imaging promotes a better understanding of the pathogenesis and potential therapies for MELAS patients. This article is part of a Special Issue entitled Biochemistry of Mitochondria, Life and Intervention 2010.  相似文献   

17.
Poly(d,l-lactic acid) nanoparticles were freeze-dried in this study. With respect to drying, effect of protective excipients and purification from excess surfactant were evaluated. The nanoparticles were prepared by the nanoprecipitation method with or without a surfactant, poloxamer 188. The particles with the surfactant were used as such or purified by tangential flow filtration. The protective excipients tested were trehalose, sucrose, lactose, glucose, poloxamer 188, and some of their combinations. The best freeze-drying results in terms of nanoparticle survival were achieved with trehalose or sucrose at concentrations 5% and 2% and, on the other hand, with a combination of lactose and glucose. Purification of the nanoparticle dispersion from the excess surfactant prior to the freeze-drying by tangential flow filtration ensured better drying outcome and enabled reduction of the amount of the protective excipients used in the process. The excess surfactant, if not removed, was assumed to interact with the protective excipients decreasing their protective mechanism towards the nanoparticles.  相似文献   

18.
Mitochondrial diseases are characterized by considerable clinical variability and are most often caused by mutations in mtDNA. Because of the phenotypic variability, epidemiological studies of the frequency of these disorders have been difficult to perform. We studied the prevalence of the mtDNA mutation at nucleotide 3243 in an adult population of 245,201 individuals. This mutation is the most common molecular etiology of MELAS syndrome (mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes), one of the clinical entities among the mitochondrial disorders. Patients with diabetes mellitus, sensorineural hearing impairment, epilepsy, occipital brain infarct, ophthalmoplegia, cerebral white-matter disease, basal-ganglia calcifications, hypertrophic cardiomyopathy, or ataxia were ascertained on the basis of defined clinical criteria and family-history data. A total of 615 patients were identified, and 480 samples were examined for the mutation. The mutation was found in 11 pedigrees, and its frequency was calculated to be >=16. 3/100,000 in the adult population (95% confidence interval 11.3-21. 4/100,000). The mutation had arisen in the population at least nine times, as determined by mtDNA haplotyping. Clinical evaluation of the probands revealed a syndrome that most frequently consisted of hearing impairment, cognitive decline, and short stature. The high prevalence of the common MELAS mutation in the adult population suggests that mitochondrial disorders constitute one of the largest diagnostic categories of neurogenetic diseases.  相似文献   

19.
The first comprehensive analysis was made of restriction fragment length polymorphism (RFLP) of the mitochondrial (mt) DNA of two related genera, Triticum (wheat) and Aegilops. This led to clarification of the nature of mtDNA variability and the inference of the phylogeny of the mitochondrial genomes (=chondriome). Forty-six alloplasmic lines and one euplasmic line of common wheat (2n = 42, genomes AABBDD) carrying plasmons (cytoplasmic genomes) of 47 accessions belonging to 33 species were used. This consisted of nearly all the Triticum and Aegilops species. RFLP analysis, carried out with seven mitochondrial gene probes (7.0 kb in total) in combination with three restriction endonucleases, found marked variation: Of the 168 bands detected, 165 were variable (98.2%), indicative that there is extremely high mtDNA variability in these genera. This high variability is attributed to the variation present in the intergenic regions. Most of the variation was between chondriomes of different plasmon types; only 8 bands (4.8%) between those of the same plasmon types were variable, evidence of clear chondriome divergence between different plasmon types. The first comprehensive phylogenetic trees of the chondriome were constructed on the basis of genetic distances. All but 1 of the polyploids had chondriomes closely related to those of 1 putative parent, indicative of uniparental chondriome transmission at the time of polyploid formation. The chondriome showed parallel evolutionary divergence to the plastome (chloroplast genome). Use of a minimum set of 3 mtDNA probe-enzyme combinations is proposed for tentative plasmon type identification and the screening of new plasmon types in those genera. Received: 20 March 1999 / Accepted: 22 June 1999  相似文献   

20.
聚乳酸材料在不同土壤环境中生物降解的菌群结构分析   总被引:1,自引:0,他引:1  
【目的】评价聚乳酸(Polylactic acid,PLA)材料在不同土壤环境中自然降解的效果,通过对3种不同土壤菌群结构的分析,找到能够对聚乳酸材料有降解作用的优势菌群。【方法】通过扫描电镜、断裂拉伸强度和CO2释放量测定来评价3种土壤对PLA材料的降解效果,并运用高通量测序技术,对3种土壤细菌群落进行基因组测序分析,检测3个样本细菌群落的差异性。【结果】PLA材料在沼泽地、芒果林地和稻田中的生物降解率分别为13.7%、10.6%和4.5%。3种土壤的样品分别获得11 110、11 236和8 848个OTU,共涉及细菌域的9个主要门和16个主要科。其中沼泽地土壤的微生物群落丰富度和多样性最高,稻田土壤最低。【结论】结合土壤的降解效果,土壤中生物群落丰富度和多样性越高,对PLA材料的降解作用越好。同时变形菌门(Proteobacteria)和拟杆菌门(Bacteroidetes)是降解聚乳酸材料的优势菌群。在科水平上,黄杆菌科(Flavobacteriaceae)、丛毛单胞菌科(Comamonadaceae)和噬纤维菌科(Cytophagaceae)的微生物对聚乳酸材料的降解最有潜力。这一研究成果为能有效降解聚乳酸材料的微生物资源的开发提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号