首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although platinum‐based drugs are widely used chemotherapeutics for cancer treatment, the determinants of tumor cell responsiveness remain poorly understood. We show that the loss of subunits LRRC8A and LRRC8D of the heteromeric LRRC8 volume‐regulated anion channels (VRACs) increased resistance to clinically relevant cisplatin/carboplatin concentrations. Under isotonic conditions, about 50% of cisplatin uptake depended on LRRC8A and LRRC8D, but neither on LRRC8C nor on LRRC8E. Cell swelling strongly enhanced LRRC8‐dependent cisplatin uptake, bolstering the notion that cisplatin enters cells through VRAC. LRRC8A disruption also suppressed drug‐induced apoptosis independently from drug uptake, possibly by impairing VRAC‐dependent apoptotic cell volume decrease. Hence, by mediating cisplatin uptake and facilitating apoptosis, VRAC plays a dual role in the cellular drug response. Incorporation of the LRRC8D subunit into VRAC substantially increased its permeability for cisplatin and the cellular osmolyte taurine, indicating that LRRC8 proteins form the channel pore. Our work suggests that LRRC8D‐containing VRACs are crucial for cell volume regulation by an important organic osmolyte and may influence cisplatin/carboplatin responsiveness of tumors.  相似文献   

2.
BackgroundUrothelial carcinoma (UC) is one of the most common cancers worldwide. The biological heterogeneity of UCs causes considerable difficulties in predicting treatment outcomes and usually leads to clinical mismanagement. The identification of more sensitive and efficient predictive biomarkers is important in the diagnosis and classification of UCs. Herein, we report leucine-rich repeat-containing protein 59 (LRRC59) located in the endoplasmic reticulum as a novel predictive factor and potential therapeutic target for UCs.MethodsUsing whole-slide image analysis in our cohort of 107 UC samples, we performed immunohistochemistry to evaluate the prognostic value of LRRC59 expression in UCs. In vitro experiments using RNAi were conducted to explore the role of LRRC59 in promoting UC cell proliferation and migration.ResultsA significant correlation between LRRC59 and unfavorable prognosis of UCs in our cohort was demonstrated. Subsequent clinical analysis also revealed that elevated expression levels of LRRC59 were significantly associated with higher pathological grades and advanced stages of UC. Subsequently, knockdown of LRRC59 in UM-UC-3 and T24 cells using small interfering RNA significantly inhibited cell proliferation and migration, resulting in cell cycle arrest at the G1 phase. Conversely, the overexpression of LRRC59 in UC cells enhanced cell proliferation and migration. An integrated bioinformatics analysis revealed a significant functional network of LRRC59 involving protein misfolding, ER stress, and ubiquitination. Finally, in vitro experiments demonstrated that LRRC59 modulates ER stress signaling.ConclusionsLRRC59 expression was significantly correlated with UC prognosis. LRRC59 might not only serve as a novel prognostic biomarker for risk stratification of patients with UC but also exhibit as a potential therapeutic target in UC that warrants further investigation.  相似文献   

3.
Oh ES  Seo YK  Yoon HH  Cho H  Yoon MY  Park JK 《Life sciences》2011,88(3-4):169-177
AimsAlthough low and high intensity sub-sonic vibrations (SSV) have been shown to facilitate wound healing, very few studies have investigated the effects of SSV on 3T3-L1 preadipocytes. Therefore, the present study was undertaken to investigate the influence of SSV on the proliferation and maturation of 3T3-L1 preadipocytes.Main methodsTo evaluate the effect of SSV on 3T3-L1 cell proliferation, the cells were maintained in an apparatus that administered SSV (0.5 V) for 3 days at a frequency of 10, 20, 30, or 40 Hz. In addition, to study the effect of SSV on 3T3-L1 cell maturation, the cells were stimulated with SSV for 6 days at a frequency of 10, 20, 30, or 45 Hz.Key findingsSub-sonic vibrations inhibited the proliferation of 3T3-L1 preadipocytes at frequencies of 20 and 30 Hz. Triglyceride levels in cells subjected to SSV at frequencies ranging from 10 to 30 Hz increased compared with those measured in control cells. The expression of adipogenic genes, such as PPAR-γ and C/EBP-α, markedly increased in response to SSV at 20 Hz and 30 Hz during maturation.SignificanceThese results suggest that SSV affected adipogenic gene expression at 20 and 30 Hz.  相似文献   

4.
BackgroundAquaporin-8 (AQP8), a member of the aquaporin water channel family, is expressed in various tissue and cells, including liver, testis, and pancreas. AQP8 appears to have functions on the plasma membrane and/or on the mitochondrial inner membrane. Mitochondrial AQP8 with permeability for water, H2O2 and NH3 has been expected to have important role in various cells, but its information is limited to a few tissues and cells including liver and kidney. In the present study, we found that AQP8 was expressed in the mitochondria in mouse adipose tissues and 3T3-L1 preadipocytes, and investigated its role by suppressing its gene expression.MethodsAQP8-knocked down (shAQP8) cells were established using a vector expressing short hairpin RNA. Cellular localization of AQP8 was examined by western blotting and immunocytochemistry. Mitochondrial function was assessed by measuring mitochondrial membrane potential, oxygen consumption and ATP level measurements.ResultsIn 3T3-L1 cells, AQP8 was expressed in the mitochondria. In shAQP8 cells, mRNA and protein levels of AQP8 were decreased by about 75%. The shAQP8 showed reduced activities of complex IV and ATP synthase; it is probable that the impaired mitochondrial water handling in shAQP8 caused suppression of the electron transport and ADP phosphorylation through inhibition of the two steps which yield water. The reduced activities of the last two steps of oxidative phosphorylation in shAQP8 cause low routine and maximum capacity of respiration and mitochondrial hyperpolarization.ConclusionMitochondrial AQP8 contributes to mitochondrial respiratory function probably through maintenance of water homeostasis.General significanceThe AQP8-knocked down cells we established provides a model system for the studies on the relationships between water homeostasis and mitochondrial function.  相似文献   

5.
NYGGF4 is a novel gene that is abundantly expressed in the adipose tissue of obese subjects and is involved in insulin resistance. In the present study, the mRNA expression of NYGGF4 homologous genes was examined in the 3T3-L1 cell line. The NYGGF4 mRNAs were expressed at low levels in the 3T3-L1 preadipocytes. During the conversion of 3T3-L1 preadipocytes to adipocytes, the expression of NYGGF4 mRNA was upregulated. On the 8th day after induction of differentiation, the NYGGF4 mRNA levels peaked and remained high. Free fatty acids (FFA) and tumor necrosis factor-α (TNFα) could upregulate NYGGF4 mRNA expression in 3T3-L1 adipocytes, while interleukin-6 (IL-6), leptin, and resistin exerted an inhibitory effect. The results suggest that the expression of NYGGF4 mRNA is affected by a variety of factors that are related to insulin sensitivity. It is likely that NYGGF4 may be an important mediator in the development of obesity-related insulin resistance.  相似文献   

6.
Adipogenesis involves a highly orchestrated series of complex events in which microRNAs (miRNAs) may play an essential role. In this study, we found that the miR-185 expression increased gradually during 3T3-L1 cells differentiation. To explore the role of miR-185 in adipogenesis, miRNA agomirs and antagomirs were used to perform miR-185 overexpression and knockdown, respectively. Overexpression of miR-185 dramatically reduced the mRNA expression of the adipogenic markers, PPARγ, FABP4, FAS, and LPL, and the protein level of PPARγ and FAS. MiR-185 overexpression also led to a notable reduction in lipid accumulation. In contrast, miR-185 inhibition promoted differentiation of 3T3-L1 cells. By target gene prediction and luciferase reporter assay, we demonstrated that sterol regulatory element binding protein 1 (SREBP-1) may be the target of miR-185. These results indicate that miR-185 negatively regulates the differentiation of 3T3-L1 cells by targeting SREBP-1, further highlighting the importance of miRNAs in adipogenesis.  相似文献   

7.
Objectives: Reports investigating the effects of antioxidants on obesity have provided contradictory results. We have previously demonstrated that treatment with the antioxidant N-acetylcysteine (NAC) inhibits cellular triglyceride (Tg) accumulation as well as total cellular monoamine oxidase A (MAOA) expression in 3T3-L1 mature adipocytes (Calzadilla et al., Redox Rep. 2013;210–218). Here we analyzed the role of NAC on adipogenic differentiation pathway.

Methods: Assays were conducted using 3T3-L1 preadipocytes (undifferentiated cells: CC), which are capable of differentiating into mature adipocytes (differentiated cells: DC). We studied the effects of different doses of NAC (0.01 or 1?mM) on DC, to evaluate cellular expression of phospho-JNK½ (pJNK½), phospho-ERK½ (pERK½) and, mitochondrial expression of citrate synthase, fumarate hydratase and MAOA.

Results: Following the differentiation of preadipocytes, an increase in the expression levels of pJNK½ and pERK½ was observed, together with mitotic clonal expansion (MCE). We found that both doses of NAC decreased the expression of pJNK½ and pERK½. Consistent with these results, NAC significantly inhibited MCE and modified the expression of different mitochondrial proteins.

Discussion: Our results suggested that NAC could inhibit Tg and mitochondrial protein expression by preventing both MCE and kinase phosphorylation.  相似文献   

8.
Volume- and acid-sensitive outwardly rectifying anion channels (VSOR and ASOR) activated by swelling and acidification exhibit voltage-dependent inactivation and activation time courses, respectively. Recently, LRRC8A and some paralogs were shown to be essentially involved in the activity and inactivation kinetics of VSOR currents in human colonic HCT116 cells. In human cervix HeLa cells, here, inactivation of VSOR currents was found to become accelerated by RNA silencing only of LRRC8A but never decelerated by that of any LRRC8 isoform. These data suggest that LRRC8A is associated with the deceleration mechanism of VSOR inactivation, while none of LRRC8 members is related to the acceleration mechanism. Activation kinetics of ASOR currents was unaffected by knockdown of any LRRC8 family member. Double, triple and quadruple gene-silencing studies indicated that combinatory expression of LRRC8A with LRRC8D and LRRC8C is essential for VSOR activity, whereas none of LRRC8 family members is involved in ASOR activity.  相似文献   

9.
10.
Platelets are produced from megakaryocytes (MKs), although the pathway leading from stem cells to MK lineages are not yet fully understood. Recently, we reported to obtain abundant MKs and platelets from human subcutaneous adipose tissues. Adipose tissues contain various cell types, most of which are lineage cells from mesenchymal or adipocyte-derived stem cells, distinct from hematopoietic cells. To identify the cells responsible for the differentiation MK lineages in adipose tissues, this study examined whether the preadipocyte cell line 3T3-L1 and fibroblast cell line 3T3 differentiated into MK lineages in vitro. Cells were cultured in megakaryocyte lineage induction medium. By day 4, most of 3T3 cell-derived cells leaded to cell death. In contrast, 3T3-L1-derived cells on days 8 showed to have typical characterizations of MK lineages in analyses for specific marker, DNA ploidy, transmission electro micrograph. 3T3-L1-derived platelet-sized cells on day 12 could be stimulated by ADP and PAR4-activating peptide. This study clearly shows in vitro differentiation from 3T3-L1 cells, not from 3T3 cells, into MK lineages.  相似文献   

11.
ObjectivesRecent studies revealed LRRC8A to be an essential component of volume‐regulated anion channel (VRAC), which regulates cellular volume homeostasis. However, evidence for the contribution of LRRC8A‐dependent VRAC activity in vascular smooth muscle cells (VSMCs) is still lacking, and the relevant functional role of LRRC8A in VSMCs remains unknown. The primary goal of this study was to elucidate the role of LRRC8A in VRAC activity in VSMCs and the functional role of LRRC8A in cerebrovascular remodeling during hypertension.Materials and MethodssiRNA‐mediated knockdown and adenovirus‐mediated overexpression of LRRC8A were used to elucidate the electrophysiological properties of LRRC8A in basilar smooth muscle cells (BASMCs). A smooth muscle–specific overexpressing transgenic mouse model was used to investigate the functional role of LRRC8A in cerebrovascular remodeling.ResultsLRRC8A is essential for volume‐regulated chloride current (I Cl, Vol) in BASMCs. Overexpression of LRRC8A induced a voltage‐dependent Cl current independently of hypotonic stimulation. LRRC8A regulated BASMCs proliferation through activation of WNK1/PI3K‐p85/AKT axis. Smooth muscle‐specific upregulation of LRRC8A aggravated Angiotensin II‐induced cerebrovascular remodeling in mice.ConclusionsLRRC8A is an essential component of VRAC and is required for cell volume homeostasis during osmotic challenge in BASMCs. Smooth muscle specific overexpression of LRRC8A increases BASMCs proliferation and substantially aggravates basilar artery remodeling, revealing a potential therapeutic target for vascular remodeling in hypertension.

The schematic diagram for LRRC8A role in cerebrovascular remodeling. LRRC8A is an essential component of VRAC in BASMCs. During the challenge of hypertension, the activated LRRC8A channel‐mediated‐Cl efflux increases WNK1 phosphorylation, which in turn triggers AKT phosphorylation and promotes BASMCs proliferation, eventually exacerbates hypertension‐induced cerebrovascular vascular remodeling.  相似文献   

12.
T cell expression of NKRs can trigger or inhibit cell‐mediated cytotoxicity. However, few studies on T lymphocyte NKR expression in HIV infection exist. Here, we examined the expression patterns of NKG2D, NKG2A, and KIR3DL1 on CD8+ and CD3+CD8? cells by multicolor flow cytometry in groups of patients with HIV, AIDS or HAART‐treated AIDS, as well as HIV‐negative normal controls. Individual analysis of KIR3DL1 on CD3+CD8+ or CD3+CD8? cells revealed no significant differences among any of the groups (P > 0.05). In contrast, the percentage of NKG2A+NKG2D?CD8+ T cells was higher in the AIDS group than in the HIV‐negative normal control group (P < 0.01). Meanwhile, the prevalence of NKG2D+NKG2A?CD8+T cells was lower in the AIDS group than in HIV‐negative normal controls (P < 0.001). Similar results were also observed for the percentage of NKG2A+NKG2D? on CD3+CD8?cells. However, in contrast to CD8+ T cells, the frequencies of NKG2D+NKG2A? on CD3+CD8? cells were higher in AIDS and HIV patients than in HIV‐negative normal controls (P < 0.01, P < 0.05, respectively). The percentage of NKG2A+NKG2D?CD8+ T cells was negatively correlated with CD4+ T cell counts (r=?0.499, P < 0.01), while the percentage of NKG2D+NKG2A?CD8+ T cells was positively correlated with CD4+ T cell counts (r= 0.494, P < 0.01). The percentage of NKG2D+NKG2A?CD3+CD8? T cells was also positively correlated with viral load (r= 0.527, P < 0.01) and negatively correlated with CD4+ T cell counts (r=?0.397, P < 0.05). Finally, HAART treatment reversed the changes in NKR expression caused by HIV infection. These results indicate that the expression of NKRs on T cells may be correlated with HIV disease progression.  相似文献   

13.
Repression of excessive increase and enlargement of adipocytes that is closely associated with obesity is effective in the prevention and treatment of metabolic syndrome. Generally, apoptosis is induced in cells via a wide variety of intracellular or extracellular substances, and recently, it has been suggested that the FoxO subfamily is involved in the induction of apoptosis. We aimed to elucidate the mechanism of FoxO-mediated apoptosis-induction in the adipocytes under the reactive oxygen species (ROS) stimulus. The treatment of differentiated and undifferentiated 3T3-L1 cells with glucose oxidase (GOD), an enzyme that generates H2O2, induced apoptosis and led to the accumulation of 8-OHdG. Apoptosis analysis revealed that GOD treatment induced apoptosis in differentiated 3T3-L1 cells less efficiently than in undifferentiated preadipocytes. GOD remarkably increased the levels of Bad, Bax, and Bim—the genes that are actively involved in cell apoptosis. GOD treatment also increased the expression of FoxO3a mRNA and protein. The introduction of FoxO3a-siRNA into 3T3-L1 cells suppressed the oxidative stress-induced expression of Bim mRNA, as well as the GOD-induced apoptosis. Furthermore, the expression of MnSOD, Cu/ZnSOD, and catalase, as well as of FoxO, increased significantly along with the progression of adipocyte differentiation. These results indicated that ROS-induced apoptosis in undifferentiated 3T3-L1 cells via the expression of FoxO3a, whereas FoxO expression suppressed the ROS-induced apoptosis in differentiated 3T3-L1 cells via the expression of ROS-scavenging enzymes.  相似文献   

14.
Kudoh A  Satoh H  Hirai H  Watanabe T 《Life sciences》2011,88(23-24):1055-1062
AimsPioglitazone, a full peroxisome proliferator-activated receptor (PPAR)-γ agonist, improves insulin sensitivity by increasing circulating adiponectin levels. However, the molecular mechanisms by which pioglitazone induces insulin sensitization are not fully understood. In this study, we investigated whether pioglitazone improves insulin resistance via upregulation of either 2 distinct receptors for adiponectin (AdipoR1 or AdipoR2) expression in 3T3-L1 adipocytes.Main methodsGlucose uptake was evaluated by 2-[3H] deoxy-glucose uptake assay in 3T3-L1 adipocytes with pioglitazone treatment. AdipoR1 and AdipoR2 mRNA expressions were analyzed by qRT–PCR.Key findingsWe first confirmed that pioglitazone significantly increased insulin-induced 2-deoxyglucose (2-DOG) uptake in 3T3-L1 adipocytes. Next, we investigated the mRNA expression and regulation of AdipoR1 and AdipoR2 after treatment with pioglitazone. Interestingly, pioglitazone significantly induced AdipoR2 expression but it did not affect AdipoR1 expression. In addition, adenovirus-mediated PPARγ expression significantly enhanced the effects of pioglitazone on insulin-stimulated 2-DOG uptake and AdipoR2 expression in 3T3-L1 adipocytes. These data suggest that pioglitazone enhances adiponectin's autocrine and paracrine actions in 3T3-L1 adipocytes via upregulation of PPARγ-mediated AdipoR2 expression. Furthermore, we found that pioglitazone significantly increased AMP-activated protein kinase (AMPK) phosphorylation in insulin-stimulated 3T3-L1 adipocytes, but it did not lead to the phosphorylation of IRS-1, Akt, or protein kinase Cλ/ζ.SignificanceOur results suggest that pioglitazone increases insulin sensitivity, at least partly, by PPARγ-AdipoR2-mediated AMPK phosphorylation in 3T3-L1 adipocytes. In conclusion, the upregulation of AdipoR2 expression may be one of the mechanisms by which pioglitazone improves insulin resistance in 3T3-L1 adipocytes.  相似文献   

15.
Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors (LPA1–LPA6) mediates a variety of biological functions, including cell migration. Recently, we have reported that LPA1 inhibited the cell motile activities of mouse fibroblast 3T3 cells. In the present study, to evaluate a role of LPA5 in cellular responses, Lpar5 knockdown (3T3-L5) cells were generated from 3T3 cells. In cell proliferation assays, LPA markedly stimulated the cell proliferation activities of 3T3-L5 cells, compared with control cells. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3-L5 cells were significantly higher than those of control cells. The activity levels of matrix metalloproteinases (MMPs) were measured by gelatin zymography. 3T3-L5 cells stimulated the activation of Mmp-2, correlating with the expression levels of Mmp-2 gene. Moreover, to assess the co-effects of LPA1 and LPA5 on cell motile activities, Lpar5 knockdown (3T3a1-L5) cells were also established from Lpar1 over-expressing (3T3a1) cells. 3T3a1-L5 cells increased the cell motile activities of 3T3a1 cells, while the cell motile activities of 3T3a1 cells were significantly lower than those of control cells. These results suggest that LPA5 may act as a negative regulator of cellular responses in mouse fibroblast 3T3 cells, similar to the case for LPA1.  相似文献   

16.
The differentiation of 3T3-L1 preadipocytes is induced by the coordinate activation of trans-acting factors in response to inducers. Depending on the time of treatment, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was effective in inhibiting 3T3-L1 preadipocyte differentiation and the expression of differentiation-dependent trans-acting factors. Based on glycerol-3-phosphate dehydrogenase activity, the differentiation of 3T3-L1 cells was decreased by 70% in cells treated with TCDD before the induction of differentiation, 25% during induction, and not at all after induction. This time-dependent inhibition of cell differentiation by TCDD was correlated with the levels of aryl hydrocarbon receptor (AhR). TCDD treatment decreased the mRNA levels of C/EBPα and PPAR-γ2 but did not affect the mRNA levels of RXRα and RARα. Furthermore, TCDD did not change the mRNA or protein levels of C/EBPβ, which is thought to play a role in inducing C/EBPα and PPARγ2 expression. These results suggest that TCDD inhibited 3T3-L1 preadipocyte differentiation through the AhR pathway, and the change of C/EBPβ mRNA and protein was not involved in reducing mRNA expression of C/EBPα and PPARγ2.  相似文献   

17.
The broadly expressed volume-sensitive outwardly rectifying anion channel (VSOR, also called VRAC) plays essential roles in cell survival and death. Recent findings have suggested that LRRC8A is a core component of VSOR in human cells. In the present study, VSOR currents were found to be largely reduced by siRNA against LRRC8A in mouse C127 cells as well. In contrast, LRRC8A knockdown never affected activities of 4 other types of anion channel activated by acid, Ca2+, patch excision or cAMP. While cisplatin-resistant KCP-4 cells poorly expressed endogenous VSOR activity, molecular expression levels of LRRC8A, LRRC8D and LRRC8E were indistinguishable between VSOR-deficient KCP-4 cells and the parental VSOR-rich KB cells. Furthermore, overexpression of LRRC8A alone or together with LRRC8D or LRRC8E in KCP-4 cells failed to restore VSOR activity. These results show that deficiency of VSOR currents in KCP-4 cells is not due to insufficient expression of the LRRC8A/D/E gene, suggesting an essential involvement of some other factor(s), and indicate that further study is required to better understand the complexities of the molecular determinants of VSOR, including the precise role of LRRC8 proteins.  相似文献   

18.
Hepcidin plays a key role in regulating iron metabolism by blocking iron efflux from macrophages and enterocytes. Hepcidin is synthesized primarily in the liver, and its expression is increased by iron overload and inflammation. Obesity is associated with chronic inflammation as well as poor iron status. Central obesity causes adipocyte hypoxia resulting in chronic inflammation. Therefore, the objective of the present study was to determine if adipocyte hypoxia and associated inflammation signal hepatocyte hepcidin expression. The effect of adipocyte hypoxia on hepcidin expression was modeled using a 3T3-L1 adipocyte/Huh7 hepatocyte co-culture model. Adipocytes were cultured at either standard conditions (19% O2) or hypoxic conditions (1% O2). Compared to standard conditions, hypoxic 3T3-L1 cells had significantly higher IL-6 and leptin expression. Treatment of Huh7 cells with media from hypoxic or LPS-treated 3T3-L1 adipocytes significantly increased hepcidin promoter activity and mRNA compared to cells treated with normoxic 3T3-L1 media or control media. When the hepcidin STAT3 binding site was mutated, promoter activation by hypoxic media was abrogated. These data suggest that adipocyte hypoxia (a feature of central obesity) may increase hepcidin expression and plays a role in the association between obesity and poor iron status.  相似文献   

19.
20.
Lipoprotein lipase (LPL) is important in the process of triglyceride storage in adipose tissue. Depression of LPL activity in adipose tissue is associated with 2,3,7,8-tetrachlorodibenzo-p -dioxin (TCDD)-induced wasting syndrome and may have a role in the associated serum hyperlipidemia produced by TCDD. The 3T3-L1 cell line was used as an in vitro model, independent of hormonal, nutritional, or other interfering factors associated with in vivo studies, in order to systematically examine the mechanism of action of TCDD. TCDD produced a statistically significant (P < 0.05) time- and dose-dependent decrease in LPL activity. Results of experiments with Ah-receptor blockers and structure activity studies with different polychlorinated biphenyl (PCB) and dioxin congeners were consistent with reduction of LPL activity being mediated by the Ah receptor. Culturing of 3T3-L1 cells without glucose or with cytochalasin B, a blocker of facilitative glucose transporters (GLUT), was effective in reducing LPL activity (P < 0.05). TCDD did not further reduce LPL activity in cytochalasin B pretreated 3T3-L1 cells or in 3T3-L1 cells cultured in glucose-free media. Dexamethasone pretreatment, which is known to increase GLUT expression in 3T3-L1 cells, prevented the reduction of LPL activity by TCDD. Protein tyrosine kinase activities, assayed using γ-32P-ATP and RR-SRC, a src specific peptide substrate, were significantly increased (P < 0.05) over control levels by both TCDD and glucose deprivation. Furthermore, results of experiments treating 3T3-L1 cells with either insulin, EGF, 8-Br-cAMP, TPA, or genistein, alone or in combination with TCDD, were generally consistent with the hypothesis that lowered intracellular glucose and altered cellular kinase activities may be involved in reduction of LPL activities by TCDD. Further work is needed to confirm and better understand the role protein phosphorylation plays in TCDD-mediated alteration of glucose disposition and LPL activity. In summary, TCDD reduced LPL activity in 3T3-L1 cells as seen in vivo. Manipulation of glucose transport through a number of experimental approaches produced changes in 3T3-L1 LPL activity consistent with results of previous investigators showing glucose to be a positive regulator of LPL activity and consistent with our hypothesis that TCDD-mediated reduction of glucose transport is an important factor in the down regulation of LPL activity by TCDD. © 1997 John Wiley & Sons, Inc. J Biochem Toxicol 12: 29–39, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号