首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transformation of embryology to developmental biology has been linked to the introduction of experimental approaches from molecular genetics to the study of development. This paper pursues this theme by analyzing the tools molecular biologists, moving from phage and bacterial genetics to the study of development in higher organisms, brought to their new field of investigations. The paper focuses on Sydney Brenner's move from molecular genetics to developmental biology. His attempt to turn the nematode worm Caenorhabditis elegans into a new tool for the study of development included a vast and ever expanding mapping program. Worm workers themselves did not distinguish sharply between mapping on the cellular, chromosomal or molecular level. Mapping, the paper argues, or more generally 'analytical/comparative' next to 'experimentalist' approaches (Pickstone) were not only part and parcel of Brenner's strategy to 'molecularize' the study of development, but also played a crucial role in 'classical' molecular biology.  相似文献   

2.
Docking methodology aims to predict the experimental binding modes and affinities of small molecules within the binding site of particular receptor targets and is currently used as a standard computational tool in drug design for lead compound optimisation and in virtual screening studies to find novel biologically active molecules. The basic tools of a docking methodology include a search algorithm and an energy scoring function for generating and evaluating ligand poses. In this review, we present the search algorithms and scoring functions most commonly used in current molecular docking methods that focus on protein–ligand applications. We summarise the main topics and recent computational and methodological advances in protein–ligand docking. Protein flexibility, multiple ligand binding modes and the free-energy landscape profile for binding affinity prediction are important and interconnected challenges to be overcome by further methodological developments in the docking field.  相似文献   

3.
Phosphatidylinositol 3-kinase α (PI3Kα) is a promising target for anticancer drug discovery due to its overactivation in tumor cells. To systematically investigate the interactions between PI3Kα and PIK75 which is the most selective PI3Kα inhibitor reported to date, molecular docking, molecular dynamics simulation, and ensuing energetic analysis were utilized. The binding free energy between PI3Kα and PIK75 is −10.04 kcal•mol−1 using MMPBSA method, while −13.88 kcal•mol−1 using MMGBSA method, which is beneficial for the binding. The van der Waals/hydrophobic and electrostatic interactions play critical roles for the binding. The binding mode of PIK75 for PI3Kα is predicted. The conserved hydrophobic adenine region of PI3Kα made up of Ile800, Ile848, Val850, Val851, Met922, Phe930, and Ile932 accommodates the flat 6-bromine imidazo[1,2-a]pyridine ring of PIK75. The 2-methyl-5-nitrophenyl group of PIK75 extends to the P-loop region, and has four hydrogen-bond arms with the backbone and side chain of Ser773 and Ser774. And the distinct conformation of the P-loop induced by PIK75 is speculated to be responsible for the selectivity profile of PIK75. The predicted binding mode of PIK75 for PI3Kα presented in this study may help design high affinity and selective compounds to target PI3Kα.  相似文献   

4.
5.
We consider a method for optimization of NP-problems motivated by natural evolution. The basic entity is a population of individuals searching in state space defined by the problem. A message exchange mechanism between individuals enables the system to proceed fast and to avoid local optima. We introduce the concept of isolated evolution to maintain a certain degree of variance in the population. The global optimum can be approached to an arbitrary degree. The method is applied to the TSP and its behavior is shown in a couple of simulations.On leave from: Institut für Theoretische Physik und Synergetik, Universität Stuttgart, Pfaffenwaldring 57/IV, D-7000 Stuttgart 80, Federal Republic of Germany  相似文献   

6.
7.
Summary In analyzing the silent nucleotide substitutions in some mammalian mitochondrial mRNA coding genes, we had found that the frequency of each of the four nucleotides in rat, mouse, and cow, but not in humans, is the same in the silent third codon position (Lanave C, Preparata G, Saccone C, Serio G (1984) J Mol Evol 20:86-93). Because our findings for these three species were compatible with a stationary Markov process for the evolution of nucleotide sequences, we applied such a model to calculate the effective evolutionary silent substitution rate (vs) and the divergence times among the species. In this paper we have analyzed the first and second codon positions in the same mammalian mitochondrial genes. We found that in the first and second codon positions the human mitochondrial genes satisfy the stationarity conditions. This has allowed us to use the stochastic model mentioned above to calculate the divergence times among mouse, rat, cow, and human. Furthermore, we have analyzed the silent substitution rate in one nuclear gene for these four mammals. We found that in this gene the effective silent substitution rate is about 3 times lower than in mitochondrial genes, and that humans are in this case stationary with respect to the other three mammals in the third codon position as well. Application of our Markov model to this latter gene yields divergence times consistent with our previous determinations.  相似文献   

8.
In analyzing the silent nucleotide substitutions in some mammalian mitochondrial mRNA coding genes, we had found that the frequency of each of the four nucleotides in rat, mouse, and cow, but not in humans, is the same in the silent third codon position (Lanave C, Preparata G, Saccone C, Serio G (1984) J Mol Evol 20:86-93). Because our findings for these three species were compatible with a stationary Markov process for the evolution of nucleotide sequences, we applied such a model to calculate the effective evolutionary silent substitution rate (vs) and the divergence times among the species. In this paper we have analyzed the first and second codon positions in the same mammalian mitochondrial genes. We found that in the first and second codon positions the human mitochondrial genes satisfy the stationarity conditions. This has allowed us to use the stochastic model mentioned above to calculate the divergence times among mouse, rat, cow, and human. Furthermore, we have analyzed the silent substitution rate in one nuclear gene for these four mammals. We found that in this gene the effective silent substitution rate is about 3 times lower than in mitochondrial genes, and that humans are in this case stationary with respect to the other three mammals in the third codon position as well. Application of our Markov model to this latter gene yields divergence times consistent with our previous determinations.  相似文献   

9.
Are prions misfolded molecular chaperones?   总被引:1,自引:0,他引:1  
J P Liautard 《FEBS letters》1991,294(3):155-157
A theory has been developed that could explain prion infection. Prions could be molecular chaperones that are required for their own assembly. The theory has been deduced from an analysis of protein folding and consequences explored by computer simulations. Thermo-kinetic analysis of protein folding shows that a misfolded chaperone gives rise to new misfolded chaperones. Consequently such a protein could behave as a new kind of informative molecule and replicate misfolding according to a process similar to infection. A quantitative model has been derived from this hypothesis that displays the characteristics of prion infections. This hypothesis satisfactorily explains the three manifestations - infection, familial and sporadic - that are the characteristic features of all prion diseases.  相似文献   

10.
Recent research on mouse models has taken us closer to deciphering the molecular clock mechanism that defines an individual's 'body time'. How feasible will it be to create a molecular timetable that allows determination of individual body time from tissue harvested at a single time point?  相似文献   

11.
An original experimental method of direct molecular fishing has been developed for identification of potential partners of protein–protein and protein–peptide interactions. It is based on combination of surface plasmon resonance technology (SPR), size exclusion and affinity chromatography and mass spectrometric identification of proteins (LC-MS/MS). Previously, we demonstrated applicability of this method for protein interactomics using experimental model system, as well as in the pilot study in the frame of the Human Proteome Project (HPP). In the present paper, this method was successfully applied to identify possible molecular partners of 7 target proteins encoded by genes of 18 chromosome (also in the frame of the HPP). Fishing on the affinity sorbents with immobilized target proteins as ligands was carried out using total lysate of human liver tissue as well as pooled sets of fractions (individual for each bait-protein) obtained by means of a combination of size exclusion chromatography and SPR analysis for the presence of potential prey-proteins in each fraction. As a result we obtained lists of possible molecular partners of all 7 proteins and performed a comparative evaluation of direct fishing specificity for these target proteins. Direct molecular fishing was also successfully used for search of potential protein partners interacting with different isoforms of amyloid-beta peptide, playing a key role in the development of Alzheimer’s disease. The synthetic peptides that are analogues of the metal-binding domain isoforms of beta-amyloid were used as molecular baits and the fishing was performed in various fractions of immortalized human neural cells. As a result, 13 potential partner proteins were identified in the cytosol fraction of the cells by fishing on amyloid-beta peptide (1-16).  相似文献   

12.
Because current molecular haplotyping methods are expensive and not amenable to automation, many researchers rely on statistical methods to infer haplotype pairs from multilocus genotypes, and subsequently treat these inferred haplotype pairs as observations. These procedures are prone to haplotype misclassification. We examine the effect of these misclassification errors on the false-positive rate and power for two association tests. These tests include the standard likelihood ratio test (LRTstd) and a likelihood ratio test that employs a double-sampling approach to allow for the misclassification inherent in the haplotype inference procedure (LRTae). We aim to determine the cost-benefit relationship of increasing the proportion of individuals with molecular haplotype measurements in addition to genotypes to raise the power gain of the LRTae over the LRTstd. This analysis should provide a guideline for determining the minimum number of molecular haplotypes required for desired power. Our simulations under the null hypothesis of equal haplotype frequencies in cases and controls indicate that (1) for each statistic, permutation methods maintain the correct type I error; (2) specific multilocus genotypes that are misclassified as the incorrect haplotype pair are consistently misclassified throughout each entire dataset; and (3) our simulations under the alternative hypothesis showed a significant power gain for the LRTae over the LRTstd for a subset of the parameter settings. Permutation methods should be used exclusively to determine significance for each statistic. For fixed cost, the power gain of the LRTae over the LRTstd varied depending on the relative costs of genotyping, molecular haplotyping, and phenotyping. The LRTae showed the greatest benefit over the LRTstd when the cost of phenotyping was very high relative to the cost of genotyping. This situation is likely to occur in a replication study as opposed to a whole-genome association study.  相似文献   

13.
Formation of α-helices is a fundamental process in protein folding and assembly. By studying helix formation in molecular simulations of a series of alanine-based peptides, we obtain the temperature-dependent α-helix propensities of all 20 naturally occurring residues with two recent additive force fields, Amber ff03w and Amber ff99SB1. Encouragingly, we find that the overall helix propensity of many residues is captured well by both energy functions, with Amber ff99SB1 being more accurate. Nonetheless, there are some residues that deviate considerably from experiment, which can be attributed to two aspects of the energy function: i), variations of the charge model used to determine the atomic partial charges, with residues whose backbone charges differ most from alanine tending to have the largest error; ii), side-chain torsion potentials, as illustrated by the effect of modifications to the torsion angles of I, L, D, N. We find that constrained refitting of residue charges for charged residues in Amber ff99SB1 significantly improves their helix propensity. The resulting parameters should more faithfully reproduce helix propensities in simulations of protein folding and disordered proteins.  相似文献   

14.
Angiotensin-I converting enzyme (ACE, EC 3.4.15.1) is a zinc dependent dipeptidyl carboxypeptidase with an essential role in mammalian blood pressure regulation as part of the renin-angiotensin aldosterone system (RAAS). As such, it has long been targeted in the treatment of hypertension through the use of ACE inhibitors. Although ACE has been studied since the 1950s, only recently have the full range of functions of this enzyme begun to truly be appreciated. ACE homologues have been found in a host of other organisms, and are now known to be conserved in insects. Insect ACE homologues typically share over 30 % amino acid sequence identity with human ACE. Given that insects lack a mammalian type circulatory system, they must have crucial roles in other physiological processes. The first ACE crystal structures were reported during the last decade and have enabled these enzymes to be studied from an entirely different perspective. Here we review many of these key developments and the implications that they have had on our understanding of the diverse functions of these enzymes. Specifically, we consider how structural information is being used in the design of a new generation of ACE inhibitors with increased specificity, and how the structures of ACE homologues are related to their functions. The Anopheles gambiae genome is predicted to code for ten ACE homologues, more than any genome studied so far. We have modelled the active sites of some of these as yet uncharacterised enzymes to try and infer more about their potential roles at the molecular level.  相似文献   

15.
Two recently published reports have described findings which will have a profound impact on the understanding of molecular mechanisms of human resistance to malaria infection. In Melanesian ovalocytosis, a genetic polymorphism found in Papua New Guinea and parts of South East Asia, the red cells are highly resistant to invasion by various species of malaria parasite. The molecular nature of the defect in ovalocytic erythrocytes was not known. Recent reports by Liu et al., (Liu, S.-C., Zhai, S., Palek, J., Golan, D., Amato, D., Hassan, K., Nurse, G., Babona, D., Coetzer, T., Jarolim, P. Zaik, M. and Borwein, S. (1990) N. Engl. J. Med. 323, 1530–1538.) and Jones et al. (Jones, G.L., Edmundson, H.M., Wesche, D. and Saul, A. (1991) Biochim. Biophys. Acta 1096, 33–40.) have now identified the abnormality in the band 3 protein of ovalocytic red cell membranes. A major discovery in the Jones et al, study is the presence of an extended peptide at the N-terminus of ovalocyte band 3 protein. This novel 13 amino acid extended sequence is not found in the primary structure of normal band 3 protein and was suggested to be the cause of band 3 defect in ovalocytes. We have analyzed this extended sequence through Genbank using SWISS-PROT database and found that an almost identical sequence exists in a malaria parasite protein called RESA.  相似文献   

16.
Molecular techniques have had a profound impact in biology. Major disciplines, including evolutionary biology, now consistently utilize molecular tools. In contrast, molecular techniques have had a more limited impact in ecology. This discrepancy is surprising. Here, we describe the unexpected paucity of ecological research in the field colloquially referred to as 'molecular ecology.' Publications over the past 15 years from the journals Ecology , Evolution and Molecular Ecology reveal that much of the research published under the molecular ecology banner is in fact evolutionary in nature, and that comparatively little ecological research incorporates molecular tools. This failure to more broadly utilize molecular techniques in ecology is alarming because several promising lines of ecological inquiry could benefit from molecular approaches. Here we summarize the use of molecular tools in ecology and evolution, and suggest several ways to renew the ecological focus in 'molecular ecology'.  相似文献   

17.
The discovery of clinically relevant inhibitors of retinoic acid receptor-related orphan receptor-gamma-t (RORγt) for autoimmune diseases therapy has proven to be a challenging task. In the present work, to find out the structural features required for the inhibitory activity, we show for the first time a three-dimensional quantitative structure–activity relationship (3D-QSAR), molecular docking and molecular dynamics (MD) simulations for a series of novel thiazole/thiophene ketone amides with inhibitory activity at the RORγt receptor. The optimum CoMFA and CoMSIA models, derived from ligand-based superimposition I, exhibit leave-one-out cross-validated correlation coefficient (R2cv) of .859 and .805, respectively. Furthermore, the external predictive abilities of the models were evaluated by a test set, producing the predicted correlation coefficient (R2pred) of .7317 and .7097, respectively. In addition, molecular docking analysis was applied to explore the binding modes between the inhibitors and the receptor. MD simulation and MM/PBSA method were also employed to study the stability and rationality of the derived conformations, and the binding free energies in detail. The QSAR models and the results of molecular docking, MD simulation, binding free energies corroborate well with each other and further provide insights regarding the development of novel RORγt inhibitors with better activity.  相似文献   

18.
19.
20.
The study of the biology of scrapie in sheep is irretrievably associated with the genetics of the PrP gene in sheep. Control of susceptibility and resistance is so closely linked to certain alleles of the sheep PrP gene that no review on scrapie can avoid PrP genetics. Before the importance of PrP protein was discovered and before the influence of the gene itself on disease incidence was understood, it was clear there were some sheep which were more susceptible to natural scrapie than others and that this feature was heritable. These early observations have led to the development and use of PrP genotyping in sheep in what is probably the biggest genetic selection process ever attempted. The accompanying increase in surveillance has also discovered a novel type of scrapie, the subject of much speculation about its origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号