首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Choquer M  Lee MH  Bau HJ  Chung KR 《FEBS letters》2007,581(3):489-494
Many phytopathogenic Cercospora species produce a host-nonselective polyketide toxin, called cercosporin, whose toxicity exclusively relies on the generation of reactive oxygen species. Here, we describe a Cercospora nicotianae CTB4 gene that encodes a putative membrane transporter and provide genetic evidence to support its role in cercosporin accumulation. The predicted CTB4 polypeptide has 12 transmembrane segments with four conserved motifs and has considerable similarity to a wide range of transporters belonging to the major facilitator superfamily (MFS). Disruption of the CTB4 gene resulted in a mutant that displayed a drastic reduction of cercosporin production and accumulation of an unknown brown pigment. Cercosporin was detected largely from fungal hyphae of ctb4 disruptants, but not from the surrounding medium, suggesting that the mutants were defective in both cercosporin biosynthesis and secretion. Cercosporin purified from the ctb4 disruptants exhibited toxicity to tobacco suspension cells, insignificantly different from wild-type, whereas the disruptants formed fewer lesions on tobacco leaves. The ctb4 null mutants retained normal resistance to cercosporin and other singlet oxygen-generating photosensitizers, indistinguishable from the parental strain. Transformation of a functional CTB4 clone into a ctb4 null mutant fully revived cercosporin production. Thus, we propose that the CTB4 gene encodes a putative MFS transporter responsible for secretion and accumulation of cercosporin.  相似文献   

2.
3.
4.
5.
We have successfully adapted plasmid insertion and restriction enzyme-mediated integration (REMI) to produce cercosporin toxin-deficient mutants in the asexual phytopathogenic fungus Cercospora nicotianae. The use of pre-linearized plasmid or restriction enzymes in the transformation procedure significantly decreased the transformation frequency, but promoted a complicated and undefined mode of plasmid integration that leads to mutations in the C. nicotianae genome. Vector DNA generally integrated in multiple copies, and no increase in single-copy insertion was observed when enzymes were added to the transformation mixture. Out of 1873 transformants tested, 39 putative cercosporin toxin biosynthesis ( ctb) mutants were recovered that showed altered levels of cercosporin production. Seven ctb mutants were recovered using pre-linearized plasmids without the addition of enzymes, and these were considered to be non-REMI mutants. The correlation between a specific insertion and a mutant phenotype was confirmed using rescued plasmids as gene disruption vectors in the wild-type strain. Six out of fifteen rescued plasmids tested yielded cercosporin-deficient transformants when re-introduced into the wild-type strain, suggesting a link between the insertion site and the cercosporin-deficient phenotype. Sequence analysis of a fragment flanking the insert site recovered from one insertion mutant showed it to be disrupted in sequences with high homology to the acyl transferase domain of polyketide synthases from other fungi. Disruption of this polyketide synthase gene ( CTB1) using a rescued plasmid resulted in mutants that were defective in cercosporin production. Thus, we provide the first molecular evidence that cercosporin is synthesized via a polyketide pathway as previously hypothesized.Communicated by E. Cerdá-Olmedo  相似文献   

6.
7.
Cercosporin is a non-host-selective, perylenequinone toxin produced by many phytopathogenic Cercospora species. The involvement of Ca(2+)/calmodulin (CaM) signaling in cercosporin biosynthesis was investigated by using pharmacological inhibitors. The results suggest that maintaining endogenous Ca(2+) homeostasis is required for cercosporin biosynthesis in Cercospora nicotianae. The addition of excess Ca(2+) to the medium slightly increased fungal growth but resulted in a reduction in cercosporin production. The addition of Ca(2+) chelators [EGTA and 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid] also reduced cercosporin production. Ca(2+) channel blockers exhibited a strong inhibition of cercosporin production only at higher concentrations (>2 mM). Cercosporin production was reduced greatly by Ca(2+) ionophores (A23187 and ionomycin) and internal Ca(2+) blocker [3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester]. Phospholipase C inhibitors (lithium, U73122, and neomycin) led to a concentration-dependent inhibition of cercosporin biosynthesis. Furthermore, the addition of CaM inhibitors (compound 48/80, trifluoperazine, W-7, and chlorpromazine) also markedly reduced cercosporin production. In contrast to W-7, W-5, with less specificity for CaM, led to only minor inhibition of cercosporin production. The inhibitory effects of Ca(2+)/CaM inhibitors were partially or completely reversed by the addition of external Ca(2+). As assessed with Fluo-3/AM (a fluorescent Ca(2+) indicator), the Ca(2+) content in the cytoplasm decreased significantly when fungal cultures were grown in a medium containing Ca(2+)/CaM antagonists, confirming the specificity of those Ca(2+)/CaM antagonists in C. nicotianae. Taken together, the results suggest that Ca(2+)/CaM signal transduction may play a pivotal role in cercosporin biosynthesis in C. nicotianae.  相似文献   

8.
9.
10.
Photoactivated perylenequinone toxins in fungal pathogenesis of plants   总被引:8,自引:0,他引:8  
Several genera of plant pathogenic fungi produce photoactivated perylenequinone toxins involved in pathogenesis of their hosts. These toxins are photosensitizers, absorbing light energy and generating reactive oxygen species that damage the membranes of the host cells. Studies with toxin-deficient mutants and on the involvement of light in symptom development have documented the importance of these toxins in successful pathogenesis of plants. This review focuses on the well studied perylenequinone toxin, cercosporin, produced by species in the genus Cercospora. Significant progress has been made recently on the biosynthetic pathway of cercosporin, with the characterization of genes encoding a polyketide synthase and a major facilitator superfamily transporter, representing the first and last steps of the biosynthetic pathway, as well as important regulatory genes. In addition, the resistance of Cercospora fungi to cercosporin and to the singlet oxygen that it generates has led to the use of these fungi as models for understanding cellular resistance to photosensitizers and singlet oxygen. These studies have shown that resistance is complex, and have documented a role for transporters, transient reductive detoxification, and quenchers in cercosporin resistance.  相似文献   

11.
We have obtained spontaneous and UV-induced stable mutants, altered in the synthesis of cercosporin, of the fungal soybean pathogen Cercospora kikuchii. The mutants were isolated on the basis of colony color on minimal medium. The UV-induced mutants accumulated, at most, 2% of wild-type cercosporin levels on all media tested. In contrast, cercosporin accumulation by the spontaneous mutants was strongly medium regulated, occurring only on potato dextrose medium but at concentrations comparable to those produced by the wild-type strain. UV-induced mutants unable to synthesize cercosporin on any medium were unable to incite lesions when inoculated onto the soybean host. Cercosporin was reproducibly isolated from all inoculated leaves showing lesions. Although cercosporin involvement in disease has been indirectly suggested by many previous studies, this is the first report in which mutants blocked in cercosporin synthesis have been used to demonstrate that cercosporin is a crucial pathogenicity factor for this fungal genus.  相似文献   

12.
13.
The photoactivated toxin cercosporin as a tool in fungal photobiology   总被引:3,自引:0,他引:3  
Cercospora species are a highly successful group of fungi which pathogenize diverse species of economically important plants. Many Cercospora species produce a unique photoactivated and photoinduced polyketide toxin, cercosporin, which has been implicated as a pathogenicity factor. Illuminated cercosporin interacts with molecular oxygen to produce highly toxic singlet oxygen. Although nearly all organisms tested, including plants, mice and most fungi, are susceptible to cercosporin-mediated cell damage, Cercospora species are resistant. In general, little is known about how organisms protect themselves against singlet oxygen. Studies on how Cercospora species avoid autotoxicity are proving to be a valuable model in understanding this process in other systems. Furthermore, advances are being made in the understanding of how light regulates gene expression and cercosporin synthesis in Cercospora species. These studies are helping to elucidate mechanisms of gene regulation and light signal transduction for an environmental signal important in numerous fungal developmental processes, including secondary metabolite production.  相似文献   

14.
15.
具有广泛生物活性的真菌聚酮化合物因具有复杂的化学结构,其生物合成途径一般包含多样且新颖的酶催化反应。文中主要综述了2013-2016年来源于还原性聚酮合成酶(HR-PKSs)、非还原性聚酮合成酶(NR-PKSs)、聚酮-非核糖体多肽合成酶(PKS-NRPSs)和还原性-非还原性聚酮合成酶(HR-NR PKSs)杂合型等四大类型的真菌聚酮类化合物的生物合成研究进展。众多真菌聚酮类化合物生物机理的阐明,为未来新型真菌聚酮类天然产物生物合成基因簇的挖掘、新结构化合物的发现及其类似物的研究提供了方向和理论基础。  相似文献   

16.
To determine if DNA configuration, gene locus, and flanking sequences will affect homologous recombination in the phytopathogenic fungus Cercospora nicotianae, we evaluated and compared disruption efficiency targeting four cercosporin toxin biosynthetic genes encoding a polyketide synthase (CTB1), a monooxygenase/O-methyltransferase (CTB3), a NADPH-dependent oxidoreductase (CTB5), and a FAD/FMN-dependent oxidoreductase (CTB7). Transformation of C. nicotianae using a circular plasmid resulted in low disruption frequency. The use of endonucleases or a selectable marker DNA fragment flanked by homologous sequence either at one end or at both ends in the transformation procedures, increased disruption efficiency in some but not all CTB genes. A split-marker approach, using two DNA fragments overlapping within the selectable marker, increased the frequency of targeted gene disruption and homologous integration as high as 50%, depending on the target gene and on the length of homologous DNA sequence flanking the selectable marker. The results indicate that the split-marker approach favorably decreased ectopic integration and thus, greatly facilitated targeted gene disruption in this important fungal pathogen. The GenBank/EMBL/DDBJ accession numbers for the sequence data reported in this article are: CTB1, AY649543, CTB3, DQ355149, CTB5, DQ991507, and CTB7, DQ991509.  相似文献   

17.
Many phytopathogenic species of the fungus Cercospora produce cercosporin, a photoactivated perylenequinone toxin that belongs to a family of photosensitizers, which absorb light energy and produce extremely cytotoxic, reactive oxygen species. The cpd1 (cercosporin photosensitizer detoxification) gene of yeast (Saccharomyces cerevisiae), which encodes for a novel protein with significant similarity to the FAD-dependent pyridine nucleotide reductases, confers resistance to cercosporin when over-expressed in yeast. The aim of this work was to investigate the potential ability of cpd1 gene to confer resistance to cercosporin when expressed in tobacco plants (Nicotiana tabacum). Transgenic tobacco plants were produced using Agrobacterium tumefaciens, with cpd1 integrated as the gene of interest. We report here that expression of cpd1 gene in tobacco can mediate resistance to cercosporin. The involvement of cpd1 gene in the detoxification of the cercosporin reinforces previous observations, which suggested that resistance to cercosporin is mediated by a mechanism involving toxin reduction.  相似文献   

18.
19.
20.
Tobacco plants over-expressing L-phenylalanine ammonia-lyase (PAL(+)) produce high levels of chlorogenic acid (CGA) and exhibit markedly reduced susceptibility to infection with the fungal pathogen Cercospora nicotianae, although their resistance to tobacco mosaic virus (TMV) is unchanged. Levels of the signal molecule salicylic acid (SA) were similar in uninfected PAL(+) and control plants and also following TMV infection. In crosses of PAL(+) tobacco with tobacco harboring the bacterial NahG salicylate hydroxylase gene, progeny harboring both transgenes lost resistance to TMV, indicating that SA is critical for resistance to TMV and that increased production of phenylpropanoid compounds such as CGA cannot substitute for the reduction in SA levels. In contrast, PAL(+)/NahG plants showed strongly reduced susceptibility to Cercospora nicotianae compared to the NahG parent line. These results are consistent with a recent report questioning the role of PAL in SA biosynthesis in Arabidopsis, and highlight the importance of phenylpropanoid compounds such as CGA in plant disease resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号