首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(acrylic acid) hydroxyethyl cellulose [poly(AA)-HEC] graft copolymer was prepared by polymerizing acrylic acid (AA) with hydroxyethyl cellulose (HEC) using potassium bromate/thiourea dioxide (KBrO(3)/TUD) as redox initiation system. The polymerization reaction was carried out under a variety of conditions including concentrations of AA, KBrO(3) and TUD, material to liquor ratio and polymerization temperature. The polymerization reaction was monitored by withdrawing samples from the reaction medium and measuring the total conversion. The rheological properties of the poly(AA)-HEC graft copolymer were investigated. The total conversion and rheological properties of the graft copolymer depended on the ratio of KBrO(3) to TUD and on acrylic acid concentration as well as temperature and material to liquor ratio. Optimum conditions of the graft copolymer preparation were 30mmol KBrO(3) and 30mmol TUD/100g HEC, 100% AA (based on weight of HEC), duration 2h at temperature 50°C using a material to liquor ratio of 1:10.  相似文献   

2.
A new composite membrane was designed and studied for permselectivity of various molecular weight proteins. The membrane is composed of a porous substrate membrane [Durapore; poly(vinylidene fluoride)] coated with a thin dense layer of regenerated cellulose. This composite membrane was fabricated by spin coating a cellulose acetate solution onto the membrane, followed by alkaline hydrolysis of the cellulose acetate coating to regenerate cellulose. The coated layer was physically characterized by scanning electron microscopy (SEM) and infrared (IR) spectroscopy. In addition, the water uptake into and permeation properties of macromolecules across the coated and uncoated membranes were studied. A typical composite membrane coating was 0.8 +/- 0.2 mum thick, resulting in a molecular weight cutoff of approximately 40,000 daltons. This composite membrane also demonstrated negligible diffusional lag time for permeants, due to the diffusional barrier. (c) 1994 John Wiley & Sons, Inc.  相似文献   

3.
Purified flax waste was obtained from flax processing wastes via subjecting the latter to alkali treatment followed by peracetic acid bleaching. The so obtained purified flax wastes were chemically modified via reacting with propylene oxide in alkaline medium. The resultant hydroxypropyl cellulose (HPC) was incorporated in a polymerization medium containing acrylic acid and potassium bromate/thiourea mixture as initiation system. The polymerization reaction was monitored by determining the total conversion percent and the rheological properties of the resultant polyacrylic acid–hydroxypropyl cellulose composite [poly(AA)–HPC]. Results obtained indicate that the optimum conditions of polymerization process were: 12 mmole KBrO3, 4 mmole thiourea and 100 g acrylic acid/100 g HPC at 50 °C for 2 h using a material to liquor ratio of 1:5.  相似文献   

4.
A recombinant Trichoderma reesei cellulase was used for the ultrasound‐mediated hydrolysis of soluble carboxymethyl cellulose (CMC) and insoluble cellulose of various particle sizes. The hydrolysis was carried out at low intensity sonication (2.4–11.8 W cm?2 sonication power at the tip of the sonotrode) using 10, 20, and 40% duty cycles. [A duty cycle of 10%, for example, was obtained by sonicating for 1 s followed by a rest period (no sonication) of 9 s.] The reaction pH and temperature were always 4.8 and 50°C, respectively. In all cases, sonication enhanced the rate of hydrolysis relative to nonsonicated controls. The hydrolysis of CMC was characterized by Michaelis‐Menten kinetics. The Michaelis‐Menten parameter of the maximum reaction rate Vmax was enhanced by sonication relative to controls, but the value of the saturation constant Km was reduced. The optimal sonication conditions were found to be a 10% duty cycle and a power intensity of 11.8 W cm?2. Under these conditions, the maximum rate of hydrolysis of soluble CMC was nearly double relative to control. In the hydrolysis of cellulose, an increasing particle size reduced the rate of hydrolysis. At any fixed particle size, sonication at a 10% duty cycle and 11.8 W cm?2 power intensity improved the rate of hydrolysis relative to control. Under the above mentioned optimal sonication conditions, the enzyme lost about 20% of its initial activity in 20 min. Sonication was useful in accelerating the enzyme catalyzed saccharification of cellulose. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1448–1457, 2013  相似文献   

5.
Chemical modification of cellulose with triazine derivative, 2,4,6-tri-[(2-hydroxy-3-trimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-HTAC), was investigated. Micro-FT-IR and nitrogen element analysis were applied to characterize molecular structure of the modified cellulose. The printing properties of the modified cellulose fabric with Tri-HTAC were discussed. Tri-HTAC was able to form covalent bonds with cellulose fibers. The apparent color strength of printed samples with three reactive dyes on the modified cellulose was higher than the corresponding color yields on the unmodified cellulose fabric. Compared with unmodified cellulose, the increases of the color yield were about 6–13%. The fixation rate was accelerated by the modification with Tri-HTAC. The wet rubbing and washing fastnesses of the printed cellulose fabrics modified with Tri-HTAC were better than those of the printed unmodified cellulose fabric. The modified cellulose with Tri-HTAC imparted good printing properties.  相似文献   

6.
Cellulose accessibilities of a set of hornified lignocellulosic substrates derived by drying the never dried pretreated sample and a set of differently pretreated lodgepople pine substrates, were evaluated using solute exclusion and protein adsorption methods. Direct measurements of cellulase adsorption onto cellulose surface of the set of pretreated substrates were also carried out using an in situ UV-Vis spectrophotometric technique. The cellulose accessibilities measured by the solute exclusion and a cellulose-binding module (CBM)-containing green fluorescent protein (TGC) adsorption methods correlate well for both sets of samples. The substrate enzymatic digestibilities (SEDs) of the hornified substrates are proportional to the measured cellulose accessibilities. Approximately over 90% of the SED was contributed by the accessible pore surfaces of the hornified substrates, suggesting that the substrate external surface plays a minor role contributing to cellulose accessibility and SED. The cellulose accessibilities of the pretreated substrates correlated well with the amounts of cellulase adsorbed. The SEDs of these substrates directly correlated with the amounts of adsorbed cellulase.  相似文献   

7.
Bio-composite scaffolds were prepared by freeze-drying using poly(3-hydroxubutyrate-co-4-hydroxubutyrate) (P(3HB-co-4HB)) and bacterial cellulose (BC) as raw materials and trifluoroacetic acid (TFA) as co-solvent. The characteristics of the composite scaffold were investigated by field emission scanning electron microscopy (FESEM), Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), water contact angle measurement and tensile testing. Preliminary biodegradation test was performed for P(3HB-co-4HB) and P(3HB-co-4HB)/BC composite scaffold in buffer solution and enzyme solution. The biocompatibility of the composite scaffold was preliminarily evaluated by cell adhesion studies using Chinese Hamster Lung (CHL) fibroblast cells. The cells incubated with composite scaffold for 48 h were capable of forming cell adhesion and proliferation, which showed better biocompatibility than pure P(3HB-co-4HB) scaffold. Thus, the prepared P(3HB-co-4HB)/BC composite scaffold was bioactive and may be suitable for cell adhesion/attachment suggesting that these scaffolds can be used for wound dressing or tissue-engineering scaffolds.  相似文献   

8.
The periodate oxidation reaction of carboxymethyl cellulose involve the primary and secondary hydroxyl groups of the pyranose ring. The reaction is accompanied by the opening of the pyranose ring and resulting product is dialdehyde carboxymethyl cellulose along with some hydrated forms. In this process the glucosidic bond becomes weaker; the formation of carboxyl groups induces a depolymerization, thus reducing the polymerization degree and the physical and mechanical strength of the material. The reaction has been has been carried out at pH 3.5, temperature 45 °C for 0.5-4 h.  相似文献   

9.
Composite particles of rice starch (RS) and microcrystalline cellulose were fabricated by spray-drying technique to be used as a directly compressible excipient. Two size fractions of microcry stalline cellulose, sieved (MCS) and jet milled (MCJ), having volumetric mean diameter (D50) of 13.61 and 40.51 μm, respectively, were used to form composite particles with RS in various mixing ratios. The composite particles produced were evaluated for their powder and compression properties. Although an increase in the microcrystalline cellulose proportion imparted greater compressibility of the composite particles, the shape of the particles was typically less spherical with rougher surface resulting in a decrease in the degree of flowability. Compressibility of composite particles made from different size fractions of microcrystalline cellulose was not different; however, using MCJ, which had a particle size range close to the size of RS (D50=13.57 μm), provided more spherical particles than using MCS. Spherical composite particles between RS and MCJ in the ratio of 7∶3 (RS-MCJ-73) were then evaluated for powder properties and compressibility in comparison with some marketed directly compressible diluents. Compressibility of RS-MCJ-73 was greater than commercial spray-dried RS (Eratab), coprocessed lactose and microcrystalline cellulose (Cellactose), and agglomerated lactose (Tablettose), but, as expected, lower than microcrystalline cellulose (Vivapur 101). Flowability index of RS-MCJ-73 appeared to be slightly lower than Eratab but higher than Vivapur 101, Cellactose, and Tablettose. Tablets of RS-MCJ-73 exhibited low friability and good self-disintegrating property. It was concluded that these developed composite particles could be introduced as a new coprocessed direct compression excipient.  相似文献   

10.
Considerable scientific and industrial interest is currently being focused on a class of materials known as electrorheological (ER) fluids, which display remarkable rheological behaviour, being able to convert rapidly and repeatedly from a liquid to solid when an electric field (E) is applied or removed. In this study, biodegradable cellulose was modified and converted to their carboxyl salts. Modified cellulose is characterised by Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, energy dispersive spectroscopy (EDS), thermogravimetric analysis (TGA) and conductivity measurements. Suspensions of cellulose (C) and modified cellulose (MC) were prepared in insulated corn oil (CO). The effects of electric field strength, shear rate, shear stress, temperature, etc. of these suspensions onto ER activity were determined. Rheological measurements were carried out via a rotational rheometer with a high-voltage generator to investigate the effects of electric field strength and particle concentration on ER performance.The results show that the ER properties are enhanced by increasing the particle concentration and electric field strength. Also the cellulose-based ER fluids exhibit viscoelastic behaviour under an applied electric field due to the chain formation induced by electric polarization between particles.  相似文献   

11.
Acetobacter xylinum NQ-5 (ATCC 53582) and AY-201 (ATCC 23769) cultivated in the Hestrin–Schramm medium containing d-glucose with a natural 13C-abundance of 1.1% were investigated regarding their cell division rates and the bacterial movements. Comparative studies were carried out in the presence of d-glucose-U-13C6 with a uniform 13C-labeling of 99% as the sole carbon source. The bacterial growth rates in numbers were found to increase in the 13C-enriched media by about 13% for NQ-5 and 26% for AY-201, respectively. The movements of single cells caused by the inverse force of the secretion and deposition of cellulose nanofibers on nematic ordered cellulose (NOC) templates were investigated by real-time video analyzes using light microscopy. As a result, d-glucose-U-13C6 reduced the speed of motion for both strains, which was an opposite trend to the above growth rates in the cell division. The deposited cellulose fibers were proved to be in a cellulose crystalline form by CP/MAS 13C NMR and NIR FT Raman spectroscopic measurements, although the biosynthesized and thereafter-deposited cellulose has a strong interaction with the surface of NOC.  相似文献   

12.
Three sets of cellulose synthase genes were cloned from a cellulose-producing bacterium Acetobacter xylinum JCM 7664. One set of genes (bcsAI/bcsBI/bcsCI/bcsDI) were highly conserved with the well-established type I genes in other strains of A. xylinum, while the other two (bcsABII-A, bcsABII-B) were homologous to the known type II (acsAII). Unexpectedly, they were immediately followed by a gene cluster of bcsX/bcsY/bcsCII/ORF569, likely forming an operon. Western blotting demonstrated that the BcsY protein accumulated in cells. Since BcsY showed striking similarities to a number of membrane-bound transacylases, it was hypothesized that the type II cellulose synthase produces acylated cellulose, which might be anchored on the cytoplasmic membrane. An insertion sequence of IS1380-type was found just upstream of the one type II gene (bcsABII-B), suggestive of nonfunctioning.  相似文献   

13.
The affinity chromatography on uracil-coupled cellulose was carried out for the separation of nucleosides, nucleotides and oligonucleotides. Adenine derivatives exhibited a high affinity to uracil-cellulose, and sequencial isomers of oligonucleotides containing adenine residue were resolved. Poly(A) was strongly bound to uracil-cellulose and recovered by the elution with 7M urea. This procedure was extended to the isolation of mRNA containing poly(A) sequences.  相似文献   

14.
The conformational behavior of different molecular weight fractions of a synthetic C6-oxidized derivative of cellulose were investigated by means of capillary viscometry, CD, and microcalorimetric measurements. Experiments were carried out in the presence of either monovalent or divalent counterions. The experimental data indicated that C6-oxidized cellulose can assume an ordered extended conformation at low ionic strength, induced by the intrachain repulsions of negative charges. This conformation was suggested to be very similar to the fully extended structure of cellulose. In addition to this, upon increasing the ionic strength, a conformational transition of the order-to-disorder type occurred. In fact, the screening of the electrostatic repulsions introduced a number of conformational kinks into the cellulosic backbone, which enabled the polymer to assume a more coiled conformation hence producing less viscous aqueous solutions. © 1998 John Wiley & Sons, Inc. Biopoly 45: 157–163, 1998  相似文献   

15.
The synthesis of novel 3-O-(2-methoxyethyl)cellulose via 2,6-di-O-thexyldimethylsilyl ethers was successfully carried out. Treatments of 3-O-(2-methoxyethyl)-2,6-di-O-thexyldimethylsilylcellulose with tetrabutylammonium fluoride trihydrate led to a complete removal of the protecting groups. Structure characterization carried out by means of 1D and 2D NMR spectroscopy proves a high regioselectivity. The novel cellulose ether is soluble in dimethyl sulfoxide, N,N-dimethylacetamide, N-methylpyrrolidone, and water. Size-exclusion chromatography revealed a distinct aggregation behavior in water.  相似文献   

16.
Xyloglucan-acting enzymes are believed to have effects on type I primary plant cell wall mechanical properties. In order to get a better understanding of these effects, a range of enzymes with different in vitro modes of action were tested against cell wall analogues (bio-composite materials based on Acetobacter xylinus cellulose and xyloglucan). Tomato pericarp xyloglucan endo transglycosylase (tXET) and nasturtium seed xyloglucanase (nXGase) were produced heterologously in Pichia pastoris. Their action against the cell wall analogues was compared with that of a commercial preparation of Trichoderma endo-glucanase (EndoGase). Both 'hydrolytic' enzymes (nXGase and EndoGase) were able to depolymerise not only the cross-link xyloglucan fraction but also the surface-bound fraction. Consequent major changes in cellulose fibril architecture were observed. In mechanical terms, removal of xyloglucan cross-links from composites resulted in increased stiffness (at high strain) and decreased visco-elasticity with similar extensibility. On the other hand, true transglycosylase activity (tXET) did not affect the cellulose/xyloglucan ratio. No change in composite stiffness or extensibility resulted, but a significant increase in creep behaviour was observed in the presence of active tXET. These results provide direct in vitro evidence for the involvement of cell wall xyloglucan-specific enzymes in mechanical changes underlying plant cell wall re-modelling and growth processes. Mechanical consequences of tXET action are shown to be complimentary to those of cucumber expansin.  相似文献   

17.
Two different homogenous reactions on bacterial cellulose (BC), kenaf fiber (KF) and microcrystalline cellulose (MC) were performed to monitor their chemical reactivity. The first reaction was selective oxidation of the primary hydroxyl group with sodium chlorite in the presence of catalytic amount of sodium chloride. While, the second was the formation of triester hypoiodous cellulose using potassium iodate and potassium iodide. The chemical structures of these derivatives were investigated using FT-IR and solid state 13C NMR spectroscopies. The BC fibrils required the shortest time among these cellulose samples for both reactions, whereas the viscosity values of BC after iodination and oxidation have the best values compared to KF and MC. FT-IR results show the absence of the hydroxy group of BC and a weak absorption band in both KF and MC. On the other hand, the crystallinity index (CI) of BC is higher than those of both KF and MC. FT-IR spectra of the oxidized different cellulose samples, confirmed the presence of a strong absorption band at around 1590 cm−1 that attributed to vibration band of carbonyl group of carboxylic moiety. Moreover, in the 13C NMR spectrum of oxidized cellulose, the lack of signal at 62 ppm and the appearance of signal at 171 ppm indicated that the primary alcohol group is completely oxidized to carboxylic acid. These results showed that BC had a higher reactivity than other samples due to its great purity and low degree of polymerization.  相似文献   

18.
A combination of reversible addition-fragmentation chain transfer (RAFT) polymerization and hetero Diels-Alder (HDA) cycloaddition was used to effect, under mild (T ≈ 20 °C), fast, and modular conditions, the grafting of poly(isobornyl acrylate) (M(n) = 9800 g mol(-1), PDI = 1.19) onto a solid cellulose substrate. The active hydroxyl groups expressed on the cellulose fibers were converted to tosylate leaving groups, which were subsequently substituted by a highly reactive cyclopentadienyl functionality (Cp). By employing the reactive Cp-functionality as a diene, thiocarbonyl thio-capped poly(isobornyl acrylate) synthesized via RAFT polymerization (mediated by benzyl pyridine-2-yldithioformiate (BPDF)) was attached to the surface under ambient conditions by an HDA cycloaddition (reaction time: 15 h). The surface-modified cellulose samples were analyzed in-depth by X-ray photoelectron spectroscopy, scanning electron microscopy, elemental analysis, Fourier transform infrared (FT-IR) spectroscopy as well as Fourier transform infrared microscopy employing a focal plane array detector for imaging purposes. The analytical results provide strong evidence that the reaction of suitable dienophiles with Cp-functional cellulose proceeds under mild reaction conditions (T ≈ 20 °C) in an efficient fashion. In particular, the visualization of individual modified cellulose fibers via high-resolution FT-IR microscopy corroborates the homogeneous distribution of the polymer film on the cellulose fibers.  相似文献   

19.
Bacterial cellulose has multiple applications in various industries such as food, biomedical, textile due to its uniqueness of being a better bio-compatible coating agent, binding material, etc. In this study, optimization of the culture medium for producing BC from Leifsonia soli was carried out by selecting different parameters. Five significant factors such as maltose, pH, incubation days, soy whey and calcium chloride were estimated through ANOVA based response surface methodology. Maximum cellulose production (5.97 g/L) was obtained where maltose 1 % (w/v) supplemented with 0.8 % (v/v) soy whey and calcium chloride 0.8 % (w/v) at pH 6.5 for 7 days of incubation. In addition, assurance of cellulose production from bacteria was done by using High-performance liquid chromatography analysis. Further, the structure and purity of obtained cellulose were examined by SEM and elemental analysis where it was observed that the sample holds the value of carbon 44.1 ± 0.20 % and hydrogen 6.2 ± 0.3 %, respectively. This study concludes that the addition of maltose and soy whey could be used as carbon, nitrogen sources and calcium chloride was used as an additive for the bacterial cellulose production compared to the Hestrin Schramm medium. In addition, the calculated water holding capacity of the sample was found to be 73 %.  相似文献   

20.
The feasibility of integration of cellulosic ethanol production with the manufacture of cellulose nanofibers (CNF) and cellulose nanocrystals (CNC) was evaluated using eucalyptus cellulose pulp as feedstock and employing the biochemical route alone. For the enzymatic hydrolysis step, experimental central composite design (CCD) methodology was used as a tool to evaluate the effects of solids loading (SL) and enzymatic loading (EL) on glucose release and cellulose conversion. Glucose concentrations from 45 to 125 g/L were obtained after 24 h, with cellulose conversions from 35 to 96%. Validation of the statistical model was performed at SL of 20% and EL of 10 mg protein/g, which was defined by the desirability function as the optimum condition. The sugars released were used for the production of ethanol by Saccharomyces cerevisiae, resulting in 62.1 g/L ethanol after 8 h (yield of 95.5%). For all the CCD experimental conditions, the residual solids presented CNF characteristics. Moreover, the use of a new strategy with temperature reduction from 50 to 35°C after 24 h of enzymatic hydrolysis enabled CNC to be obtained after 144 h. The CNC showed a crystallinity index of 83%, length of 260 nm, diameter of 15 nm, and aspect ratio (L/D) of 15. These characteristics are suitable for many applications, such as reinforcement in polymeric materials and other lower volume higher value bio‐based products. The findings indicate the viability of obtaining ethanol and CNC using the biochemical route exclusively, potentially contributing to the future implementation of forest biorefineries. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1085–1095, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号