首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethylene and ethane production in response to salinity stress   总被引:1,自引:1,他引:0  
Abstract Ethylene and ethane production in mung bean hypocotyl sections were evaluated as possible indicators of stress due to contact with four salts that are common in natural sites. Ethylene production decreased with increasing concentrations of applied NaCl and KCl. When CaCl2 was applied, the ethylene evolution was greater. However, when MgCl2 was applied, ethylene evolution remained high then decreased and at higher salt concentrations again showed an increase. NaCl (up to 0.1 kmol m?1) and KCl (up to 0.5 kmol m?3) caused a concentration-dependent increase in ethane production. The ethane production with CaCl2 was the lowest among the salts tested and only a minute increase was noticed with the increase of concentration from 0.01 to 1 kmol m?3. Ethane production showed a distinct maximum at 0.2 kmol m?3 MgCl2. The introduction of 0.01 kmol m?3 CaCl2, as well as anaerobic conditions obtained by purging vials with N2, eliminated that high ethane production. Respiratory activity of the mung bean hypocotyl sections in MgCl2 concentrations from 0 to 0.5 kmol m?3 was correlated with ethane but not with ethylene production. The ethane/ethylene ratio showed three patterns for the four salts tested.  相似文献   

2.
1. In relatively low concentrations of NaCl, KCl, and CaCl2 the rate of respiration of Bacillus subtilis remains fairly constant for a period of several hours, while in the higher concentrations, there is a gradual decrease in the rate. 2. NaCl and KCl increase the rate of respiration of Bacillus subtilis somewhat at concentrations of 0.15 M and 0.2 M respectively; in sufficiently high concentrations they decrease the rate. CaCl2 increases the rate of respiration of Bacillus subtilis at a concentration of 0.05 M and decreases the rate at somewhat higher concentrations. 3. The effects of salts upon respiration show a well marked antagonism between NaCl and CaCl2, and between KCl and CaCl2. The antagonism between NaCl and KCl is slight and the antagonism curve shows two maxima.  相似文献   

3.
The activity of human α-thrombin (EC 3.4.21.5) on small peptide substrates was enhanced by NaCl or KCl while tetramethylammonium chloride ((CH3)4NCl) or choline chloride (HO(CH2)2N(CH3)3Cl) which were used as ionic strength controls were without effect. The steady-state kinetic parameters of thrombin amidolysis of several peptidyl p-nitroanilide substrates were measured. Na+ enhanced thrombin activity by decreasing the Km,app (0.2 to 0.7-fold) of all substrates, as well as increasing thombin turnover (3.4 to 4.5-fold) of some substrates. The average KA for Na+for the four substrates examined was 3.5 × 10?2m. A comparison of the effects of Na+ vs K+ on thrombin hydrolysis of a single substrate indicated that both cations similarly decreased the Km,app (0.2 to 04.-fold) and increased thekcat,app (3.1 to 3.4-fold) except that higher K+ concentrations (KA = 2.8 × 10?1M) were required. The rate of inactivation of thrombin by the active site-directed inhibitor N-p-tosyl-lysine chloromethyl ketone under pseudo-first-order conditions was enhanced 3-fold by saturating NaCl. Also, the fibrinogen clotting activity of thrombin was enhanced by NaCl compared to the choline chloride control. Spectral studies demonstrated that thrombin titration by Na+ caused a positive ultraviolet difference spectrum with maxima at 281.5 and 288.5 nm (Δ?288.5 = +1067). The Km for Na+ was 2.3 × 10?2m which agrees with the kinetically determined KA for Na+. The results are consistent with Na+ binding to thrombin causing a conformational change in the active site. It is concluded that human α-thrombin is a monovalent cation-activated enzyme.  相似文献   

4.
It was examined how essential cations, Ca2+ and K+, can mitigate the toxic effects of NaCl on two different almond species (Prunus amygdalus Batsch) rootstocks, Garnem (GN15) and Bitter Almond. The tree growth parameters (water potential (Ψw), gas exchange, nutrient uptake) and leaf chlorophyll (Chl) content were measured in control and NaCl-treated plants with or without KCl or CaCl2 supplements. The addition of CaCl2 and KCl to Bitter Almond trees reduced their dry weight, shoot growth and leaf number although net photosynthetic assimilation rate (A) was not affected. These results indicated that changing of photo-assimilates flux to proline and/or soluble sugars synthesis may help to increase leaf Ψw. The Garnem trees also did not respond to the CaCl2 and KCl addition indicating that the plants are already getting enough of these two cations (Ca2+ and K+). In both rootstocks, NaCl in the medium reduced growth attributes, Ψw, A, stomatal conductance (gs), and leaf Chl content. When CaCl2 and KCl fertilizers were added together with NaCl to Bitter Almond trees, leaf K+ and Ca2+ contents increased while Na+ and Cl decreased leading to higher Ca/Na and K/Na ratios, but shoot growth was not improved and even declined compared to NaCl-treated trees. It appears that the addition of salts further aggravated osmotic stress as indicated by the accumulation of proline and soluble sugars in leaf tissues. The addition of KCl or CaCl2 to NaCl-treated GN15 trees did not increase A, leaf Ψw, and shoot growth but improved ionic balances as indicated by higher Ca/Na and K/Na ratios. The reduction in A was mainly due to non-stomatal limitations in GN15, possibly due to the degradation of Chl a, unlike Bitter Almond, for which the reduction of A was due to stomata closure. The improvement in ionic balances and water status of Bitter Almond trees in response to addition of KCl or CaCl2 was apparently offset by a high sensitivity to Cl; therefore, no-chloride salts should be the preferred forms of fertilizers for this rootstock. Both rootstocks were sensitive to soil salinity and cation supplements were of limited value in mitigating the effect of excessive salt concentrations.  相似文献   

5.
We have previously shown that methionine–heme iron coordination is perturbed in domain-swapped dimeric horse cytochrome c. To gain insight into the effect of methionine dissociation in dimeric cytochrome c, we investigated its interaction with cyanide ion. We found that the Soret and Q bands of oxidized dimeric cytochrome c at 406.5 and 529 nm redshift to 413 and 536 nm, respectively, on addition of 1 mM cyanide ion. The binding constant of dimeric cytochrome c and cyanide ion was obtained as 2.5 × 104 M?1. The Fe–CN and C–N stretching (ν Fe–CN and ν CN) resonance Raman bands of CN?-bound dimeric cytochrome c were observed at 443 and 2,126 cm?1, respectively. The ν Fe–CN frequency of dimeric cytochrome c was relatively low compared with that of other CN?-bound heme proteins, and a relatively strong coupling between the Fe–C–N bending and porphyrin vibrations was observed in the 350–450-cm?1 region. The low ν Fe–CN frequency suggests weaker binding of the cyanide ion to dimeric cytochrome c compared with other heme proteins possessing a distal heme cavity. Although the secondary structure of dimeric cytochrome c did not change on addition of cyanide ion according to circular dichroism measurements, the dimer dissociation rate at 45 °C increased from (8.9 ± 0.7) × 10?6 to (3.8 ± 0.2) × 10?5 s?1, with a decrease of about 2 °C in its dissociation temperature obtained with differential scanning calorimetry. The results show that diatomic ligands may bind to the heme iron of dimeric cytochrome c and affect its stability.  相似文献   

6.
Xanthan gum (XG) is one of the most effective thickener agents used worldwide. In foods products, one of the factors affecting its physical properties is the ionic strength of the medium. Though it is well known that XG rheological properties in aqueous media depend on both type and concentration of electrolytes, correlations between such dispersion properties and molecular aspects of dispersed XG chains are still to be more deeply studied. Thus, in the present study, aqueous XG dispersions [200 mg?(100 mL)?1] added of Na, K, Mg or Ca chlorides (ionic strength 50 mM or 100 mM) were rheologically characterized, and the corresponding results were explained based on different physicochemical analyses. Comparing to the control (unsalted XG dispersion), KCl and CaCl2 tended to produce a more drastic decrease of apparent viscosities of XG dispersions than NaCl and MgCl2. In dynamic-oscillatory assays, the predominance of elastic character over viscous character was more evident for XG dispersions containing KCl and CaCl2, in particular at frequencies > 0.1 Hz. XG dispersions containing KCl or CaCl2 also presented smaller pH and |ζ-potentials| values, as well as greater densities and average hydrodynamic diameters of dispersed XG chains, when compared to respective counterparts containing NaCl or MgCl2. As the decreasing order of the cations radii is K+?>?Ca2+ ≈ Na+?>?Mg2+, our results allowed deducing that not only the net electric charges of the cations, but also their sizes, should be considered when analyzing the effect of chloride salts on rheological properties of XG aqueous dispersions, according to the desired for this hydrocolloid (weak thickener, strong thickener or pro-gelling agent).  相似文献   

7.
1. Twenty-five solutions which contained KCl (0.0, 0.2, 0.4, 0.6, and 0.8 gm. per liter), in combination with CaCl2 (0.0, 0.2, 0.4, 0.6, and 0.8 gm. per liter), 10.0 gm. of NaCl, and 0.2 gm. of NaHCO3 per liter of solution were tested in order to determine satisfactory KCl/CaCl2 ratios in an insect physiological salt mixture for the maintenance of muscular activity by the isolated crop of the American roach. Satisfactory activity products (0.390 to 0.549) were obtained in seven mixtures with KCl/CaCl2 ratios of 0.2/0.2, 0.4/0.4, 0.6/0.6, 0.8/0.8, 0.2/0.4, 0.4/0.6, and 0.6/0.8, expressed as gram per liter. These ratios lie between 0.50 and 1.00. In solutions which contained calcium, but no potassium, approximately 50 per cent of the crops exhibited an initial tone increase and were arrested in rigor. See Fig. 2. In solutions which contained potassium, but no calcium, all crops showed an initial loss of tone and arrest in relaxation. See Fig. 2. 2. Seven KCl/CaCl2 ratios (see paragraph 1 above) were tested with eight NaCl concentrations (1.0, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, and 1.8 per cent) at a pH of 8.0. In these mixtures, the ones with KCl/CaCl2 ratios of less than 1.0 produced higher activity products than those with ratios equal to 1.00. The highest average activity product (0.849) was obtained in the solutions with 0.2 gm. of KCl and 0.4 gm. of CaCl2 per liter. 3. Four KCl/CaCl2 ratios (0.2/0.2, 0.4/0.4, 0.2/0.4, and 0.4/0.6 gm. per liter) were tested with 1.4, 1.5, and 1.6 per cent NaCl at a pH of 7.5. When analyzed with data from comparable solutions at a pH of 8.0, it was found that 1.4 per cent NaCl afforded an optimum environment for isolated crop activity. 4. Effects of hydrogen and hydroxyl ion concentrations were studied at pH values of 6.8, 7.5, 8.0, and 8.9. The highest average activity product, 1.011, was produced at a pH of about 8.0. 5. A satisfactory physiological salt solution for the isolated foregut of the American roach, Periplaneta americana, would contain 14.0 gm. of NaCl, 0.4 gm. of CaCl2, 0.2 gm. of KCl, and 0.2 gm. of NaHCO3 per liter of solution. This mixture should have a pH value between 7.8 and 8.2. 6. Durations of crop activity extending over periods as long as 25 hours were quite common, and several crops maintained contractions for more than 30 hours. The greatest longevity was for crop 814, from a female, which continued activity for slightly more than 47 hours. 7. A significant difference between the activity products of the crops from males and the crops from females was recorded. Although there was not a significant difference in the amount of food ingested by males and females, 12 hours after feeding there was more food in the females'' crops, and the food progressed more rapidly through the males'' crops than through the females''. In addition, crops from the two sexes reacted differently to the effects of day old solutions. This sex difference is apparently related to an inherently increased activity of the crop from the male roach.  相似文献   

8.
Certain soybean [Glycine max (L.) Merr.] cultivars that are grown in saline nutrient cultures are killed when the inorganic phosphate (Pi) concentration in the substrate exceeds 0.10 mM. To determine the role of Na and Cl on this adverse salinity×Pi interaction, four cultivars, Clark, Clark 63, Lee, and Lee 74 were grown in the greenhouse in nutrient solutions salinized with 1) Cl and NO3 salts to produce treatments with variable amounts of Cl or 2) with NaCl or KCl and CaCl2 to obtain treatments with and without Na. At an osmotic potential of ?0.34 MPa, all salts enhanced Pi uptake and accumulation in the tissue of plants grown in ≧0.12 mM substrate Pi. Leaf Cl concentration was linearly related (r2≥0.9) to the mole fraction (mf) of Cl in the substrate, therefore excess substrate NO3 did not greatly influence leaf Cl accumulation. Foliar injury was only observed on plants grown in saline solutions at high Pi (≥0.12 mM) and was not alleviated when KCl replaced NaCl in the substrate. This indicates that Na did not play a direct role in the salinity×Pi interaction. However, as the mf of Cl increased, severity of injury increased. The severity of injury, and its symptoms, were dependent upon leaf P and Cl concentration. Plants died when Cl and P in their leaves exceeded 800 and 600 mmol kg?1 dry wt, respectively (e.g., Clark 63 grown at mf of Cl=1). The necrotic leaves were beige in color. Leaves that contained P in excess of 600 mmol kg?1 dry wt and Cl between 150–200 mmol kg?1 dry wt, were severely injured and reddish-brown in color (e.g., Clark 63 at mf of Cl=1/4 and Lee 74 Pi grown at mf of Cl=1). When leaf Cl was below 150 mmol kg?1 dry wt, development of reddish-brown coloration in the leaves was sporadic. The adverse salinity×Pi interaction observed on these soybean variaties, therefore, was caused by a synergistic interaction between P and Cl in the leaves.  相似文献   

9.
10.
In Nitella the substitution of KCl for NaCl changes the P.D. in a negative direction. In some cases this change is lessened by adding solid CaCl2 to the solution of KCl. This may be due to lessening the partition coefficient of KCl or to decreasing the solubility of an organic substance which sensitizes the cell to the action of KCl. Little or no correlation exists between this effect of calcium and its ordinary antagonistic action in producing a balanced solution which preserves the life of the cell indefinitely. CaCl2 is negative to NaCl but positive to KCl. The effects of mixtures of KCl, NaCl, and CaCl2 are discussed. The concentration effect of a mixture of KCl + CaCl2 shows certain peculiarities due to action currents: these resemble those found with pure KCl. These studies and others on Nitella, Valonia, and Halicystis indicate that mobilities and partition coefficients are variable and can be brought under experimental control.  相似文献   

11.
The study was conducted to determine whether salt tolerance could be induced in maize at germination stage by soaking of seeds for 8 h in distilled water or in 200 meq·L−1 of NaCl, KCl, CaCl2·2H2O. Both primed and un-primed seeds were subjected for 14 days to 0, 100 or 200 mol·m−3 NaCl under controlled conditions. Although all priming agents were effective in alleviating adverse effects of salt stress on maize at germination stage, CaCl2·2H2O proved to be more effective since the seeds primed with this salt had significantly higher final germination, rate of germination and fresh and dry weights of plumules and radicles than those treated with other salts or distilled water. Concentration of Na+, K+ and Ca2+ increased significantly in all parts of germinating seeds of maize seeds primed with NaCl, KCl, or CaCl2·2H2O, respectively. In addition, seeds primed with CaCl2·2H2O were the highest in Cl accumulation in all parts of the germinating seeds, followed by seeds treated with NaCl and KCl. Most of the Ca2+ was retained in seeds and mesocotyl, because of which, transport of this ion to plumules and radicles was low.  相似文献   

12.
Electric birefringence measurements of suspensions of T3 and T7 bacteriophages in 10?2 M phosphate buffer, pH 6.9, show that there is a difference in their rotational diffusion coefficient. The values corrected to 25°C and water viscosity are D25,w = 4630 ± 130 sec?1 and D25,w = 5290 ± 260 sec?1 for T3 and T7, respectively. The value obtained from shell model calculations (according to Filson and Bloomfield) is D25,w = 4500 ± 600 sec?1. The apparent permanent dipole moments are 4.5 × 10?26 C·m and 1.7 × 10?26 C·m for T3 and T7, respectively. For both phage particles the intrinsic optical anisotropy is +7.2 × 10?3. It is shown that this anisotropy is mainly due to the DNA molecule inside the head of the phage. Its positive value means that there exists an excess orientation of the DNA helix perpendicular to the symmetry axis of the particle. For T7 an unexpectedly large increase of Δns and Ksp occurs at a glycerol concentration of about 30% (v/v). This increase is interpreted as being caused by a change of the shape of the particle and/or a change in the secondary structure of the DNA inside the head of the bacteriophage.  相似文献   

13.
Experiments were designed to test for functional differences which might shed light on the differences in actin-activated ATPase activities recently reported for myosin subfragments-1 bearing different light chains. By using the method of A. G. Weeds and R. S. Taylor (1975, Nature (London)257, 54), two types of subfragment-1 (S-1) from myosin of rabbit fast skeletal muscle were prepared: (S-1)·A1 and (S-1)·A2 bearing, respectively, the alkali-1 and alkali-2 light chains. (In agreement with the findings of these investigators, actin enhanced the ATPase activity of (S-1)·A1 more than that of (S-1)·A2 at lower actin concentrations.) Through use of time-resolved fluorescence depolarization techniques, the affinity constants for the binding of the two types of S-1 to F-actin in the absence of ATP were found to be very similar: 3.4 ± 0.3 × 106m?1 (N = 10) for (S-1)·A1 and 3.9 ± 0.2 × 106m?1 (N = 7) for (S-1)·A2 of one preparation, and 6.4 ± 0.2 × 106m?1 (N = 6) for (S-1)·A1 and 7.7 ± 0.5 × 106m?1 (N = 12) for (S-1)·A2 of another preparation (pH 7.0, 25 °C, 0.28 m KCl, 1.5 mm MgCl2, 0.5 mm ethylene glycol bis (β-aminoethyl ether) N,N′-tetracetic acid, 10 mm imidazole, and 0.1 mmN-tris (hydroxymethyl) methyl-2-aminoethane sulfonate). The affinity constants for the two species of S-1 and actin also have a similar dependence on ionic strength and are not affected by addition of 0.6 mm CaCl2 to the above solution. The CaATPase (or the CaITPase) activities of the two species of S-1 show the same pH dependence.  相似文献   

14.
I. The Plasmalemma. 1. On the plasmalemma of amebæ CaCl2 antagonizes the toxic action of LiCl better than it does NaCl, and still better than it does KCl. MgCl2 antagonizes the toxic action of NaCl better than it does LiCl and still better than it does KCl. 2. CaCl2 antagonizes the toxic action of LiCl and of KCl better than does MgCl2: MgCl2 antagonizes NaCl better than does CaCl2. II. The Internal Protoplasm. 3. The antagonizing efficiency of CaCl2 and of MgCl2 are highest against the toxic action of KCl on the internal protoplasm, less against that of NaCl, and least against that of LiCl. 4. CaCl2 antagonizes the toxic action of LiCl better than does MgCl2: MgCl2 antagonizes the toxic action of NaCl and of KCl better than does CaCl2. 5. LiCl antagonizes the toxic action of MgCl2 on the internal protoplasm more effectively than do NaCl or KCl, which have an equal antagonizing effect on the MgCl2 action. III. The Nature of Antagonism. 6. When the concentration of an antagonizing salt is increased to a toxic value, it acts synergistically with a toxic salt. 7. No case was found in which a potentially antagonistic salt abolishes the toxic action of a salt unless it is present at the site (surface or interior) of toxic action. 8. Antagonistic actions of the salts used in these experiments are of differing effectiveness on the internal protoplasm and on the surface membrane.  相似文献   

15.
The permeability of a psychrophilic Acbromobacter strain to the chlorides of Na, K, Mg and Ca was investigated with light-scattering technique. Comparisons, were made with cells of Escherichia coli B. Cells of both strains suspended in “water were plasmolyzed by 0.1 or 0.2 M solutions of MgCl2 or CaCl2 without subsequent deplasmolysis. NaCl or KCl also plasmolyzed the cells, but deplasmolysis followed.” When suspended in growth medium E. coli became completely de-plasmolyzed., whereas the psychrophile still excluded MgCl2 and CaCl2 to a great extent. The plasmolysis and deplasmolysis were reversible. Electron micrographs of the psychrophile exposed to CaCl2 confirmed the presence of plasrnolysis.  相似文献   

16.
Growth, osmotic adjustment, antioxidant enzyme defense and principle medicinal component bacoside A was studied in in vitro raised shoots of Bacopa monnieri under different concentrations of KCl and CaCl2 (0, 50, 100, 150 or 200 mM). Significant reduction was observed in shoot number per culture; shoot length, fresh weight, dry weight and tissue water content (TWC) when shoots were exposed to increasing KCl and CaCl2 concentrations (50–200 mM) as compared to control. Minimum damage to the membrane as assessed by malondialdehyde (MDA) content was noticed in control in contrast to sharp increase in KCl and CaCl2 stressed shoots. Higher amounts of free proline, glycine betaine and total soluble sugars (TSS) accumulated in KCl and CaCl2 exposed shoots compared to the controls. Among different concentrations of KCl and CaCl2, increasing concentration of CaCl2 showed more increase in osmolyte accumulation. Na+ content decreased with increasing concentrations of KCl and CaCl2. Accumulation of K+ increased significantly in KCl (50–100 mM) stressed shoots as compared to control, while it decreased in CaCl2 treated shoots indicating that it prevents the uptake of K+ ions. Ca2+ accumulation significantly increased with increasing concentrations of CaCl2 up to 150 mM but decreased at higher concentrations. Shoots treated with KCl and CaCl2 (0–100 mM) showed higher antioxidant enzyme (SOD, CAT, APX and GPX) activities but KCl suppressed the activities at higher concentrations. Accumulation of bacoside A was enhanced with an increase in KCl and CaCl2 concentration up to 100 mM. It appears from the data that accumulation of osmolytes, and elevated activities of antioxidant enzymes play an important role in osmotic adjustment in shoot cultures of Bacopa and the two salts tested have a positive effect on bacoside accumulation.  相似文献   

17.
In order to assess whether salt tolerance could be Improved In spring wheat (Triticum aestivum L.), the present study was performed by soaking the seeds of two cultlvars, namely MH-97 (salt sensitive) and Inqlab-91 (salt tolerant), for 12 h In distilled water or 100 mol/m^3 CaCl2, KCI, or NaCI. Primed seeds from each treatment group and non-primed seeds were sown In a field In which NaCI salinity of 15 dS/m was developed. Priming of seeds with CaCl2, followed by priming with KCI and NaCI, was found to be effective In alleviating the adverse effects of salt stress on both wheat cultivars In terms of shoot fresh and dry weights and grain yield. Priming with CaCl2 alleviated the adverse effects of salt stress on hormonal balance In plants of both cultlvars. In MH-97 plants, CaCl2 pretreatment considerably reduced leaf absclslc acid (ABA) concentrations and Increased leaf free salicylic acid (SA) concentrations under both saline and non-saline conditions. In contrast, In the Inqlab-91 plant, CaCl2 Increased free Indoleacetic acid (IAA) and indolebutyrlc acid (IBA) content. However, priming of seeds with CaCl2 did not alter free polyamlne levels in either cultlvar, although spermldlne levels were considerably lower In plants raised from seeds treated with CaCl2 for both cultlvars under saline conditions. Priming with KCI Increased growth In Inqlab-91 plants, but not In MH-97 plants, under saline conditions. The salinity Induced reducUon In auxins (IAA and IBA) was alleviated by NaCI priming In both cultlvars under saline conditions. However, NaCI Increased leaf free ABA content and lowered leaf SA and putresclne levels In Inqlab-91 plants under saline conditions. In conclusion, although all three priming agents (I.e. CaCl2, KCI, and NaCI) were effective In alleviating the adverse effects of salt stress on wheat plants, their effects on altering the levels of different plant hormones were different In the two cuItlvars.  相似文献   

18.
The cell sap of the internode ofNitella flexilis was replaced with the isotonic artificial pond water of high Ca2+-concentration (0.1 mM KCl, 0.1 mM NaCl, 10 mM CaCl2 and 275 mM mannitol) and changes in osmotic value and concentrations of K+, Na+ and Cl of the cells were followed. When the operated cells were incubated in the artificial pond water containing 0.1 mM each of KCl, NaCl, CaCl2, they survived for only a short period of time (<10 hr). The cells did not absorb ions from the artificial pond water and showed a conspicuous decrease in the rate of cytoplasmic streaming. In such cell the concentration of K+ in the protoplasm decreased significantly. In order to reverse normal concentration gradients of K+ and Na+ across the protoplasmic layer, the cells of low vacuolar ionic concentrations were incubated in the artificial cell sap (90 mM KCl, 40 mM NaCl, 15 mM CaCl2, 10 mM MgCl2). It was found that the cells rapidly absorbed much K+, Na+ and Cl and survived for a longer period (1–2 days). During this period the rate of cytoplasmic streaming was nearly normal. Furthermore, the cell lost much mannitol, indicating an enormous increase in permeability to it. Since both absorption of ions and leakage of mannitol at 1 C occurred at nearly the same rates as at 22 C, the processes are assumed to be passive.  相似文献   

19.
1. Permeability to water in unfertilized eggs of the sea urchin, Arbacia punctulata, is found to be greater in hypotonic solutions of dextrose, saccharose and glycocoll than in sea water of the same osmotic pressure. 2. The addition to dextrose solution of small amounts of CaCl2 or MgCl2 restores the permeability approximately to the value obtained in sea water. 3. This effect of CaCl2 and MgCl2 is antagonized by the further addition of NaCl or KCl. 4. It is concluded that the NaCl and KCl tend to increase the permeability of the cell to water, CaCl2 and MgCl2 to decrease it. 5. The method here employed can be used for quantitative study of salt antagonism.  相似文献   

20.
By means of micro-dissection and injection Amœba proteus was treated with the chlorides of Na, K, Ca, and Mg alone, in combination, and with variations of pH. I. The Plasmalemma. 1. NaCl weakens and disrupts the surface membrane of the ameba. Tearing the membrane accelerates the disruption which spreads rapidly from the site of the tear. KCl has no disruptive effect on the membrane but renders it adhesive. 2. MgCl2 and CaCl2 have no appreciable effect on the integrity of the surface membrane of the ameba when applied on the outside. No spread of disruption occurs when the membrane is torn in these salts. When these salts are introduced into the ameba they render the pellicle of the involved region rigid. II. The Internal Protoplasm. 3. Injected water either diffuses through the protoplasm or becomes localized in a hyaline blister. Large amounts when rapidly injected produce a "rushing effect". 4. HCl at pH 1.8 solidifies the internal protoplasm and at pH 2.2 causes solidification only after several successive injections. The effect of the subsequent injections may be due to the neutralization of the cell-buffers by the first injection. 5. NaCl and KCl increase the fluidity of the internal protoplasm and induce quiescence. 6. CaCl2 and MgCl2 to a lesser extent solidify the internal protoplasm. With CaCl2 the solidification tends to be localized. With MgCl2 it tends to spread. The injection of CaCl2 accelerates movement in the regions not solidified whereas the injection of MgCl2 induces quiescence. III. Pinching-Off Reaction. 7. A hyaline blister produced by the injection of water may be pinched off. The pinched-off blister is a liquid sphere surrounded by a pellicle. 8. Pinching off always takes place with injections of HCl when the injected region is solidified. 9. The injection of CaCl2 usually results in the pinching off of the portion solidified. The rate of pinching off varies with the concentration of the salt. The injection of MgCl2 does not cause pinching off. IV. Reparability of Torn Surfaces. 10. The repair of a torn surface takes place readily in distilled water. In the different salt solutions, reparability varies specifically with each salt, with the concentration of the salt, and with the extent of the tear. In NaCl and in KCl repair occurs less readily than in water. In MgCl2 repair takes place with great difficulty. In CaCl2 a proper estimate of the process of repair is complicated by the pinching-off phenomenon. However, CaCl2 is the only salt found to increase the mobility of the plasmalemma, and this presumably enhances its reparability. 11. The repair of the surface is probably a function of the internal protoplasm and depends upon an interaction of the protoplasm with the surrounding medium. V. Permeability. 12. NaCl and KCl readily penetrate the ameba from the exterior. CaCl2 and MgCl2 do not. 13. All four salts when injected into an ameba readily diffuse through the internal protoplasm. In the case of CaCl2 the diffusion may be arrested by the pinching-off process. VI. Toxicity. 14. NaCl and KCl are more toxic to the exterior of the cell than to the interior, and the reverse is true for CaCl2 and MgCl2. 15. The relative non-toxicity of injected NaCl to the interior of the ameba is not necessarily due to its diffusion outward from the cell. 16. HCl is much more toxic to the exterior of a cell than to the interior; at pH 5.5 it is toxic to the surface whereas at pH 2.5 it is not toxic to the interior. NaOH to pH 9.8 is not toxic either to the surface or to the interior. VII. Antagonism. 17. The toxic effects of NaCl and of KCl on the exterior of the cell can be antagonized by CaCl2 and this antagonism occurs at the surface. Although the lethal effect of NaCl is thus antagonized, NaCl still penetrates but at a slower rate than if the ameba were immersed in a solution of this salt alone. 18. NaCl and HCl are mutually antagonistic in the interior of the ameba. No antagonism between the salts and HCl was found on the exterior of the ameba. No antagonism between the salts and NaOH was found on the interior or exterior of the ameba. 19. The pinching-off phenomenon can be antagonized by NaCl or by KCl, and the rate of the retardation of the pinching-off process varies with the concentration of the antagonizing salt. 20. The prevention of repair of a torn membrane by toxic solutions of NaCl or KCl can be antagonized by CaCl2. These experiments show directly the marked difference between the interior and the exterior of the cell in their behavior toward the chlorides of Na, K, Ca, and Mg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号