首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
DNA hairpins consist of two distinct structural domains: a double stranded stem and a single-stranded loop that connect the two strands of the stem. Previous studies of short DNA hairpins have revealed that loop and stem sequences can significantly affect the thermodynamic stability of short DNA hairpins. In this work we present the effect of hydrostatic pressure on the helix-coil transition temperature (TM) for 11 16-base, hairpin-forming DNA oligonucleotides. All of the samples form a hairpin with a 6-base pair stem and a four-base loop. In addition, the four base pairs at the end of the stem distal from the loop are the same for every molecule. We have varied loop sequence and identity of the two duplex base pairs adjacent to the loop. Using the change in UV absorption to monitor the conformational state of the oligonucleotide the hairpin-coil transition temperature of these molecules was studied as a function of sodium ion concentration and pressure. From these data we calculated the volume change accompanying the transition. Model-dependent (van't Hoff) transition parameters such as ΔHvH and transition volume (ΔV) were estimated from the analysis of conformational transitions. Experiments revealed that the ΔV for denaturation of these molecules range from − 2.35 to + 6.74 cm3 mol−1. The expansibility (ΔΔV/ΔT) and the pressure dependence of cation release are also presented. The difference in the volume change for this transition is related to the differences in the hydration of these molecules.  相似文献   

2.
The metabolism of DNA in cells relies on the balance between hybridized double-stranded DNA (dsDNA) and local de-hybridized regions of ssDNA that provide access to binding proteins. Traditional melting experiments, in which short pieces of dsDNA are heated up until the point of melting into ssDNA, have determined that AT-rich sequences have a lower binding energy than GC-rich sequences. In cells, however, the double-stranded backbone of DNA is destabilized by negative supercoiling, and not by temperature. To investigate what the effect of GC content is on DNA melting induced by negative supercoiling, we studied DNA molecules with a GC content ranging from 38% to 77%, using single-molecule magnetic tweezer measurements in which the length of a single DNA molecule is measured as a function of applied stretching force and supercoiling density. At low force (<0.5pN), supercoiling results into twisting of the dsDNA backbone and loop formation (plectonemes), without inducing any DNA melting. This process was not influenced by the DNA sequence. When negative supercoiling is introduced at increasing force, local melting of DNA is introduced. We measured for the different DNA molecules a characteristic force F char, at which negative supercoiling induces local melting of the dsDNA. Surprisingly, GC-rich sequences melt at lower forces than AT-rich sequences: F char = 0.56pN for 77% GC but 0.73pN for 38% GC. An explanation for this counterintuitive effect is provided by the realization that supercoiling densities of a few percent only induce melting of a few percent of the base pairs. As a consequence, denaturation bubbles occur in local AT-rich regions and the sequence-dependent effect arises from an increased DNA bending/torsional energy associated with the plectonemes. This new insight indicates that an increased GC-content adjacent to AT-rich DNA regions will enhance local opening of the double-stranded DNA helix.  相似文献   

3.
DNA containing the reiterated genes for tRNA1met has been partially purified from Xenopus laevis by centrifugation in actinomycin C1-CsCl and Ag+-Cs2SO4 gradients. These gradients separate the tRNA1met genes from those coding for tRNA2met and tRNAval, thus confirming our earlier suggestion that these genes are not intermingled with each other (Clarkson, Birnstiel, and Purdom, 1973). The gradients also demonstrate the existence of a minor 5S DNA fraction which appears to differ from that previously isolated by Brown, Wensink, and Jordan (1971).When the enriched tDNA1met is digested to completion with either of the restriction endonucleases EcoRI or Hpa I, the tRNA1met genes are predominantly found within DNA fragments that are about 3100 base pairs long. A partial digestion with EcoRI shows that these fragments arise from the regular spacing of the enzyme restriction sites. The 3100 base pair EcoRI fragments are cleaved by Hpa I into fragments of two size classes, one of which is about 2200 base pairs long and contains the tRNA1met genes. The shorter fragments are about 700 base pairs long, and they appear to contain genes coding for at least one other kind of tRNA species. X. laevis tDNA1met thus comprises tandemly repeated DNA whose component parts show little if any length heterogeneity.  相似文献   

4.
《Plant science》1988,55(1):43-52
Reassociation of high molecular weight rice DNA has revealed the occurrence of long stretches of repeated DNA which are not interrupted by single copy DNA even at a fragment length as high as 20 kilo base pairs (kbp). Majority of these repeated sequences are unusually G + C rich and show significant variations in their thermal stability. Homology studies indicate that short repeats may have evolved from long repeats in total repetitive DNA while they may be of different origin in highly repetitive DNA fraction. Restriction enzyme analysis shows the occurrence of Ava I and EcoR V repeat families.  相似文献   

5.
The anthracenone ligands (112) with a keto-phenol and a hydroxamic acid unit were synthesized and evaluated by a restriction enzyme inhibition assay. DNA substrates composed of multiple CGCG or CGG sites are fully hydrolyzed by a restriction enzyme that is selective for each sequence. Under such conditions, the full-length DNA substrate remains only when the ligand binds to all binding sites and protects it from hydrolysis by the restriction enzymes. In the assay using AccII and the 50-mer DNA substrates containing a different number of CGCG sites at different non-binding AT base pair intervals, the more the CGCG sites, the more the full-length DNA increased. Namely, simultaneous binding of the ligand (5) to the CGCG sites increased in the order of (CGCG)5>(CGCG)2>(CGCG)1. Furthermore, the length of the spacer of the hydroxamic acid to the anthracenone skeleton played an important role in the preference for the number of the d(A/T) base pairs between the CGCG sites. The long spacer-ligand (5) showed a preference to the CGCG sites with five AT pairs, and the short spacer-ligand (10) to that with two AT pairs. The ligand (12) with the shortest spacer showed a preference in simultaneous binding to the 54-mer DNA composed of 16 continuous CGG sites in the assay using the restriction enzyme Fnu4HI that hydrolyzes the d(GCGGC)/d(CGCCG) site. Application of these ligands to biological systems including the repeat DNA sequence should be of significant interest.  相似文献   

6.
Hyperchromicity, S1 nuclease digestion, and reassociation studies of Syrian hamster repetitive DNA have led to novel conclusions about repetitive sequence organization. Re-evaluation of the hyperchromicity techniques commonly used to determine the average length of genomic repetitive DNA regions indicates that both the extent of reassociation, and the possibility of non-random elution of hyperpolymers from hydroxyapatite can radically affect the observed hyperchromicity. An alternative interpretation of hyperchromicity experiments, presented here, suggests that the average length of repetitive regions in Syrian hamster DNA must be greater than 4000 nucleotides.S1 nuclease digestion of reassociated 3200 nucleotide Syrian hamster repetitive DNA, on the other hand, yields both long (>2000 nucleotides) and short (300 nucleotides) resistant DNA duplexes. Calculations indicate that the observed mass of short nuclease-resistant duplexes (>60%) is too large to have arisen only from independent short repetitive DNA sequences alternating with non-repetitive regions. Reassociation experiments using long and short S1 nuclease-resistant duplexes as driver DNA indicate that all repetitive sequences are present in both fractions at approximately the same concentration. Isolated long S1 nuclease-resistant duplexes, after denaturation, renaturation, and a second S1 nuclease digestion, again produce both long and short DNA duplexes. Reassociation experiments indicate that all repetitive DNA sequences are still present in the “recycled” long S1 nuclease-resistant duplexes. These experiments imply that many of the short S1 nuclease-resistant repetitive DNA duplex regions present in reassociated Syrian hamster DNA were initially present in the genome as part of longer repetitive sequence blocks. This conclusion suggests that the majority of “short” repetitive regions in Syrian hamster DNA are organized into scrambled tandem clusters rather than being individually interspersed with non-repetitive regions.  相似文献   

7.
The base composition of peanut (var. NC-17) DNA determined from thermal denaturation profiles showed an average guanine plus cystosine content of 34% which was in close approximation to 36% guanine plus cytosine calculated from the buoyant density. Buoyant density also indicated the absence of satellite DNA. The genome size, 2.0 × 109 base pairs, as determined by reassociation kinetics of the single copy DNA was close to the genome size determined by cytophotometry, 2.1 × 109 base pairs. Peanut DNA averaging 450 to 600 base pairs long, reassociated in phosphate buffer and fractionated by hydroxylapatite, indicated a DNA genome composition of 36% nonrepetitive or single copy DNA; reassociation in formamide and followed by optical methods indicated the repetitive DNA possesses highly repeated, intermediately repeated and rarely repeated components of DNA with DNA sequences repeated on the average about 38,000, 6,700, and 200 times each. Different criteria of reassociation in formamide revealed further subdivisions of these four separate components of DNA. The DNA of above mentioned NC-17 variety compared to Florigiant variety showed no differences in thermal denaturation profiles, buoyant density, or in genome size.  相似文献   

8.
The most rapidly renaturing sequences in the main-band DNA of Mus musculus, isolated on hydroxyapatite, are found to consist of two discrete families: a presumed “foldback” DNA fraction and a fraction renaturing bimolecularly. The latter family, which we call “main-band hydroxyapatite-isolated rapidly renaturing DNA”, has a kinetic complexity about an order of magnitude greater than that of mouse satellite DNA. It shows about twice as much mismatching as renatured mouse satellite, as judged by its thermal denaturation curve. In situ hybridization localizes the sequences to all chromosomes in the mouse karyotype, and to at least several regions of each chromosome. The in situ result and solution hybridization studies eliminate the possibility that the main-band rapidly renaturing DNA is composed of mouse satellite sequences attached to sequences of higher buoyant density. Nuelease S1 digestion experiments disclose that even at low molecular weight there are unrenatured “tails” attached to the rapidly renaturing sequences. When the main-band DNA fragment size is increased the amount of rapidly renaturing sequences remains constant, but the amount of attached tails of unrenatured DNA increases as judged by S1 nuclease digestibility, hyperchromicity and buoyant density. It is concluded that at least 5% of the mouse genome is composed of segments of the rapidly renaturing sequences averaging about 1500 base pairs, alternating with segments of more complex DNA averaging about 2200 base pairs. This interspersion of sequences is compared to that found in several other organisms. The properties of the foldback DNA are similarly investigated as a function of DNA fragment size.  相似文献   

9.
The organization of the DNA sequences in five specics of Citellus (C. pygmaeus, C. fulvus, C. major, C. parryi and C. undulatus) was determined from the reassociation kineties of DNA fragments of various lengths and the size distribution of SI-nuclease-resistant duplexes of repetitive DNA. Only 15% of the genome of all the species studied consists of short unique and repeated sequences interspersed with a period less than 2 3 kb, whereas the major part of the genome is occupied by much more extensive sequences of two types, moderately long (3–15 kb) and very long (much more than 15 kb). On the basis of the number of moderately long single-copy sequences the species under study are divided into two groups, coinciding with their division into short-tailed and long-tailed ground squirrels: the short-tailed (C. pygmaeus, C. major and C. fulvus) possess far more such sequences (17–24%) than do the long-tailed ones (C. parryi and C. undulatus) (1–7%). The same division is observed in the amount of very long single-copy sequences. The repeated DNA sequences of Citellus vary widely in size, i.e. from 70 up to some thousands of nucleotide pairs, sequences of more than 1200 nucleotide pairs being most common. In addition, part of the repetitions contain between 70 and 150 base pairs. About one-third of C. parryi repeats (10% of the genome) are characterized by such very short sequences whereas their amont is much less in the other Citellus species (1–4% of the genome).  相似文献   

10.
H J Li  B Brand  A Rotter  C Chang  M Weiskopf 《Biopolymers》1974,13(8):1681-1697
Thermal denaturation of direct-mixed and reconstituted polylysine–DNA complexes in 2.5 × 10?4 M EDTA, pH 8.0 and various concentrations of NaCl has been studied. For both complexes, increasing ionic strength of the solution raises Tm, the melting temperature of free base pairs. The linear dependence of Tm on log Na+ indicates that the concept of electrostatic shielding on phosphate lattice of an infinitely long pure DNA by Na+ can be applied to short free DNA segments in a nucleoprotein. For a direct-mixed polylysine–DNA complex, the melting temperature of bound base pairs Tm′ remains constant at various ionic strengths. On the other hand, the Tm′ in a reconstituted polylysine–DNA complex is shifted to lower temperature at higher ionic strength. This phenomenon occurs for reconstituted complex with long polylysine of one thousand residues or short polylysine of one hundred residues. It is shown that such a decrease of Tm′ is not due to a reduction of coupling melting between free and bound regions in a complex when the ionic strength is raised. It is also not due to intermolecular or intramolecular change from a reconstituted to a direct-mixed complex. It is suggested that this phenomenon is due to structural change on polylysine-bound regions by ionic strength. It is suggested further that Na+ may replace water molecules and bind polylysine-bound regions in a reconstituted complex. Such a dehydration effect destabilizes these regions and lowers Tm′. This explanation is supported by circular dichroism (CD) results.  相似文献   

11.
In the Tyr-(Gly)1-4-Tyr series maximal thermal stabilization of calf thymus DNA (δTm=10°) occurred with the Tyr-(Gly)2-Tyr peptide, where three base pairs could separate the two tyrosyl residues. Tyr-Gly-Tyr-Gly-Tyr stabilized the DNA by 6°. The alternating Trp-Gly-Trp-Gly-Trp and His-Gly-His-Gly-His peptides were equally as effective as the Tyr-Gly-Tyr-Gly-Tyr peptide in stabilizing calf thymus DNA against thermal denaturation. But the alternating Phe-Gly-Phe-Gly-Phe peptide afforded little stabilization, suggesting that a sidechain possessing both a conjugated π-electron system and an electron donor atom is necessary for DNA stabilization. Introduction of electron withdrawing iodo or nitro group into the tyrosyl sidechains almost completely abolished the stabilizing effect. Although the tyrosyl peptides seem to be specific for GC-base pairs, no correlation was found in natural DNA between% GC and% thermal stabilization. Eukaryotic DNAs showed twice the stabilization of prokaryotic DNAs with the same GC content.  相似文献   

12.
Interaction between polylysine and DNA's of varied G + C contents was studied using thermal denaturation and circular dichroism (CD). For each complex there is one melting band at a lower temperature tm, corresponding to the helix–coil transition of free base pairs, and another band at a higher temperature tm, corresponding to the transition of polylysine-bound base pairs. For free base pairs, with natural DNA's and poly(dA-dT) a linear relation is observed between the tm and the G + C content of the particular DNA used. This is not true with poly(dG)·poly(dC), which has a tm about 20°C lower than the extrapolated value for DNA of 100% G + C. For polylysine-bound base pairs, a linear relation is also observed between the tm and the G + C content of natural DNA's but neither poly(dA-dT) nor poly(dG)·poly(dC) complexes follow this relationship. The dependence of melting temperature on composition, expressed as dtm/dXG·C, where XG·C is the fraction of G·C pairs, is 60°C for free base pairs and only 21°C for polylysine-bound base pairs. This reduction in compositional dependence of Tm is similar to that observed for pure DNA in high ionic strength. Although the tm of polylysine-poly(dA-dT) is 9°C lower than the extrapolated value for 0% G + C in EDTA buffer, it is independent of ionic strength in the medium and is equal to the tm0 extrapolated from the linear plot of tm against log Na+. There is also a noticeable similarity in the CD spectra of polylysine· and polyarginine·DNA complexes, except for complexes with poly(dA-dT). The calculated CD spectrum of polylysine-bound poly(dA-dT) is substantially different from that of polyarginine-bound poly(dA-dT).  相似文献   

13.
The compositional heterogeneity of DNAs of A (normal) and B (supernumerary) chromosomes of Aegilops speltoides, Ae. mutica and Triticum aestivum has been compared in order to elucidate the mechanism of B-chromosome disruption of meiotic pairing in interspecific hybrids. Comparisons of % heterologous association after DNA/DNA hybridation at C0t 10?2 (highly repetitious DNA) and C0t 100 (moderately repetitious DNA), and comparisons of nucleotide base divergence (ΔTms) and thermal elution profiles of homologous and heterologous duplexes, show that genotypes of Aegilops spp., having large numbers of Bs, do not carry additional families of repetitious DNA exclusive to B-chromosomes. Neither the presence of Bs nor the direction of DNA/DNA hybridisation affect the above parameters. No cryptic DNA satellites were revealed in A- and B-chromosome DNA after sedimentation in actinomycin D-CsCl gradients; and there were no significant differences in buoyant densities of main-band DNA. Mean melting temperatures (Tm); transition temperatures (ΔT) and numbers and positions of peaks of dissociating DNA fractions in profiles of differentiated melting curves of native DNAs were similar in strictly comparable denaturation conditions. One small AT-rich (< 5%) DNA fraction correlated with speltoides Bs was revealed; however, no corresponding fraction is associated with mutica Bs. The overall similarity in numbers and base composition of families of DNA (repetitious and unique) of As and Bs is discussed in relation to the origin of Bs and the origin of the meiotic diploidising system in haploid T. aestivum.  相似文献   

14.
Helicases utilize the energy of ATP hydrolysis to unwind double-stranded DNA while translocating on the DNA. Mechanisms for melting the duplex have been characterized as active or passive, depending on whether the enzyme actively separates the base pairs or simply sequesters single-stranded DNA (ssDNA) that forms due to thermal fraying. Here, we show that Dda translocates unidirectionally on ssDNA at the same rate at which it unwinds double-stranded DNA in both ensemble and single-molecule experiments. Further, the unwinding rate is largely insensitive to the duplex stability and to the applied force. Thus, Dda transduces all of its translocase activity into DNA unwinding activity so that the rate of unwinding is limited by the rate of translocation and that the enzyme actively separates the duplex. Active and passive helicases have been characterized by dividing the velocity of DNA unwinding in base pairs per second (Vun) by the velocity of translocation on ssDNA in nucleotides per second (Vtrans). If the resulting fraction is 0.25, then a helicase is considered to be at the lower end of the “active” range. In the case of Dda, the average DNA unwinding velocity was 257 ± 42 bp/s, and the average translocation velocity was 267 ± 15 nt/s. The Vun/Vtrans value of 0.96 places Dda in a unique category of being an essentially “perfectly” active helicase.  相似文献   

15.
Single-stranded DNA or double-stranded DNA has the potential to adopt a wide variety of unusual duplex and hairpin motifs in the presence (trans) or absence (cis) of ligands. Several principles for the formation of those unusual structures have been established through the observation of a number of recurring structural motifs associated with different sequences. These include: (i) internal loops of consecutive mismatches can occur in a B-DNA duplex when sheared base pairs are adjacent to each other to confer extensive cross- and intra-strand base stacking; (ii) interdigitated (zipper-like) duplex structures form instead when sheared G·A base pairs are separated by one or two pairs of purine·purine mismatches; (iii) stacking is not restricted to base, deoxyribose also exhibits the potential to do so; (iv) canonical G·C or A·T base pairs are flexible enough to exhibit considerable changes from the regular H-bonded conformation. The paired bases become stacked when bracketed by sheared G·A base pairs, or become extruded out and perpendicular to their neighboring bases in the presence of interacting drugs; (v) the purine-rich and pyrimidine-rich loop structures are notably different in nature. The purine-rich loops form compact triloop structures closed by a sheared G·A, A·A, A·C or sheared-like Ganti·Csyn base pair that is stacked by a single residue. On the other hand, the pyrimidine-rich loops with a thymidine in the first position exhibit no base pairing but are characterized by the folding of the thymidine residue into the minor groove to form a compact loop structure. Identification of such diverse duplex or hairpin motifs greatly enlarges the repertoire for unusual DNA structural formation.  相似文献   

16.
Mitochondrial DNA (MtDNA) with a neutral buoyant density of 1.681 g/cm3 has been isolated from unfertilized eggs of Drosophila melanogaster. This DNA is a circular molecule with an average length of 5.3 µm; it reassociates with a low C0t1/2 after denaturation, and in alkaline isopycnic centrifugation it separates into strands differing in density by 0.005 g/cm3. MtDNA isolated from purified mitochondria of unfertilized eggs or from total larval DNA melts with three distinct thermal transitions. The three melting temperature values suggest that the molecule may have three regions differing in average base composition. DNA isolated from unfertilized eggs of D. melanogaster contains approximately equal amounts of MtDNA and another DNA with a buoyant density of 1.697 g/cm3, slightly less dense than main peak DNA. The possibility that the heavier DNA fraction consists of amplified ribosomal DNA was excluded by hybridization experiments, but otherwise nothing is known of its origin or function.  相似文献   

17.
Short fragments of DNA (5 S) isolated by denaturation from polyoma replicative intermediates pulse-labeled in vitro were shown to have RNA covalently attached by three criteria: (1) such fragments were slightly denser than bulk viral DNA. (2) They could be labeled directly with α-32P-labeled ribotriphosphates. (3) Alkaline hydrolysis of fragments labeled with α-32P-labeled deoxynucleoside triphosphates showed 32P transfer to 3′ ribonucleoside monophosphates. Except for a preference of transfer from dC, the link showed little sequence specificity. The data are compatible with the notion that all short fragments in replicating viral DNA are initiated by an RNA primer. This RNA is maximally 30 bases long and is rather short-lived.  相似文献   

18.
Interaction of spermine and DNA   总被引:8,自引:0,他引:8  
The effect of spermine upon the denaturation temperature (Tm) of DNA's of various base compositions has been found to depend upon both the base composition of the DNA and the pH of the solution. Measurement of the hydrogen ion titration curve of spermine as a function of temperature reveals that the net charge of the spermine molecule is undergoing a rapid change with temperature in the range of temperatures at which DNA denatures. Since the value of Tm depends upon base composition, the correlation of the effect of spermine upon Tm with the base composition of the DNA used may be explainable in terms of the changing degree of ionization of spermine. The binding of spermine to native DNA has also been studied by dialysis equilibrium. There is no significant variation either in the number of strongly binding sites or strength of binding with base composition. It is concluded that there is no evidence of correlation between the binding of spermine and the base composition of DNA.  相似文献   

19.
Partial denaturation of Saccharomyces cerevisiae chromosomal DNA was found to occur spontaneously during meiosis. Short regions of strand separation (300 base pairs long) were seen in DNA molecules prepared for electron microscopy by the aqueous spreading technique. These regions were clustered along the DNA. The time course of their appearance indicated that the denatured regions were present during the periods of premeiotic DNA replication and recombination. A similar pattern of denaturation was also detected in the DNA from vegetatively grown cells of a conditional cdc8 mutant, which is defective in DNA replication.  相似文献   

20.
An examination of Autographa californica nuclear polyhedrosis virus DNA revealed the presence of five interspersed regions, rich in EcoRI restriction sites, which shared homologous sequences. These homologous regions (hr), designated hr1 to hr5, occur at or near the following EcoRI fragment junctions: hr1EcoRI-B—EcoRI-I (0.0 map units); hr2, EcoRI-A—EcoRI-J (19.8 map units); hr3, EcoRI-C—EcoRI-G (52.9 map units); hr4, EcoRI-Q—EcoRI-L (69.8 map units); and hr5, EcoRI-S—EcoRI-X (88.0 map units). Four of these regions were identified, by cross-blot hybridization of HindIII-restricted A. californica nuclear polyhedrosis virus DNA, to be within the HindIII-A/B, -F, -L, and -Q fragments. The location of these regions and the identification of a fifth homologous region were confirmed, and their characterization was facilitated, by using two plasmids with HindIII-L or -Q fragment insertions, which contained the homologous regions hr2 and hr5, respectively. The sizes of the homologous regions were about 800 base pairs for hr2, 500 base pairs for hr5, and less than 500 base pairs for hr1, hr3, and hr4. A set of small EcoRI fragments (EcoRI minifragments) which ranged in size from 225 to 73 base pairs were detected in A. californica nuclear polyhedrosis virus DNA and HindIII-L and -Q fragments by polyacrylamide gel analysis. Some of the minifragments in viral DNA were present in extramolar amounts and corresponded in size to some of the minifragments present in HindIII-L and -Q. Clones of some of the EcoRI minifragments were used as probes in hybridizations to digests of viral DNA and of HindIII-L and -Q. The hybridization data, obtained under various levels of stringency, suggested that there was a degree of mismatching between the sequences which were responsible for the homology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号