首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various levels of organisation in the central nervous system can be distinguished, ranging from the molecular, the cellular, the multicellular and the neuronal system level. The relationship between receptor function and behaviour is focussed to the dopamine D2 type receptor of the striatal complex in relation to extrapyramidal and limbic systems. In the striatal complex a striosomal and a matrix compartment can be distinguished. The matrix compartment can be considered as a part of the extrapyramidal system and is innervated by the motor cortex and by the dopaminergic neurons of the ventral tegmental, the dorsal substantia nigra and the retrorubral area. This compartment has a relatively high density of D2 receptors. The striosomes are innervated by e.g. the prelimbic cortex and dopamine neurones of the ventral part of the substantia nigra; here the density of D2 receptors are lower. Under normal conditions most of the D2 receptors are occupied by endogenous dopamine, and postsynaptic (e.g. cholinergic) function is therefore sensitive to antagonists; e.g. antipsychotics. Exposure to drugs such as amphetamine produces a substantial overflow of dopamine from nerve terminals leading to the activation of remote dopamine receptors, that may belong to the system that normally is not influenced by these nerve terminals (defined here as extra synaptic receptor activation). A loss of the normal spatial-temporal relationships may also occur during L-DOPA therapy in Parkinson's disease. In this illness, due to degeneration of dopaminergic innervation, several dopamine receptors have become non-synaptic. In these states of intoxication the normal spatial/temporal organization is lost and such a loss may contribute to behavioural impairments.  相似文献   

2.
There is experimental evidence from radioligand binding experiments for the existence of strong antagonistic interactions between different subtypes of adenosine and dopamine receptors in the striatum, mainly between adenosine A1 and dopamine D1 and between adenosine A2A and dopamine D2 receptors. These interactions seem to be more powerful in the ventral compared to the dorsal striatum, which might have some implications for the treatment of schizophrenia. The binding characteristics of different dopamine and adenosine receptor subtypes were analysed in the different striatal compartments (dorsolateral striatum and shell and core of the nucleus accumbens), by performing saturation experiments with the dopamine D1 receptor antagonist [125I]SCH-23982, the dopamine D2-3 receptor antagonist [3H]raclopride, the adenosine A1 receptor antagonist [3H]DPCPX and the adenosine A2A receptor antagonist [3H]SCH 58261. The experiments were also performed in rats with a neonatal bilateral lesion of the ventral hippocampus (VH), a possible animal model of schizophrenia. Both dopamine D2-3 and adenosine A2A receptors follow a similar pattern, with a lower density of receptors (40%) in the shell of the nucleus accumbens compared with the dorsolateral caudate-putamen. A lower density of adenosine A1 receptors (20%) was also found in the shell of the nucleus accumbens compared with the caudate-putamen. On the other hand, dopamine D1 receptors showed a similar density in the different striatal compartments. Therefore, differences in receptor densities cannot explain the stronger interactions between adenosine and dopamine receptors found in the ventral, compared to the dorsal striatum. No statistical differences in the binding characteristics of any of the different adenosine and dopamine receptor antagonists used were found between sham-operated and VH-lesioned rats.  相似文献   

3.
The distribution and function of neurons coexpressing the dopamine D1 and D2 receptors in the basal ganglia and mesolimbic system are unknown. We found a subset of medium spiny neurons coexpressing D1 and D2 receptors in varying densities throughout the basal ganglia, with the highest incidence in nucleus accumbens and globus pallidus and the lowest incidence in caudate putamen. These receptors formed D1-D2 receptor heteromers that were localized to cell bodies and presynaptic terminals. In rats, selective activation of D1-D2 heteromers increased grooming behavior and attenuated AMPA receptor GluR1 phosphorylation by calcium/calmodulin kinase IIα in nucleus accumbens, implying a role in reward pathways. D1-D2 heteromer sensitivity and functional activity was up-regulated in rat striatum by chronic amphetamine treatment and in globus pallidus from schizophrenia patients, indicating that the dopamine D1-D2 heteromer may contribute to psychopathologies of drug abuse, schizophrenia, or other disorders involving elevated dopamine transmission.  相似文献   

4.
Despite extensive investigations of Cbl‐interacting protein of 85 kDa (CIN85) in receptor trafficking and cytoskeletal dynamics, little is known about its functions in vivo. Here, we report the study of a mouse deficient of the two CIN85 isoforms expressed in the central nervous system, exposing a function of CIN85 in dopamine receptor endocytosis. Mice lacking CIN85 exon 2 (CIN85Δex2) show hyperactivity phenotypes, characterized by increased physical activity and exploratory behaviour. Interestingly, CIN85Δex2 animals display abnormally high levels of dopamine and D2 dopamine receptors (D2DRs) in the striatum, an important centre for the coordination of animal behaviour. Importantly, CIN85 localizes to the post‐synaptic compartment of striatal neurons in which it co‐clusters with D2DRs. Moreover, it interacts with endocytic regulators such as dynamin and endophilins in the striatum. Absence of striatal CIN85 causes insufficient complex formation of endophilins with D2DRs in the striatum and ultimately decreased D2DR endocytosis in striatal neurons in response to dopamine stimulation. These findings indicate an important function of CIN85 in the regulation of dopamine receptor functions and provide a molecular explanation for the hyperactive behaviour of CIN85Δex2 mice.  相似文献   

5.
6.
Cannabinoid receptors are widely distributed in the nuclei of the extrapyramidal motor and mesolimbic reward systems; their exact functions are, however, not known. The aim of the present study was to characterize the effects of cannabinoids on the electrically evoked release of endogenous dopamine in the corpus striatum and the nucleus accumbens. In rat brain slices dopamine release elicited by single electrical pulses was determined by fast cyclic voltammetry. Dopamine release was markedly inhibited by the OP2 opioid receptor agonist U-50488 and the D2/D3 dopamine receptor agonist quinpirole, indicating that our method is suitable for studying presynaptic modulation of dopamine release. In contrast, the CB1/CB2 cannabinoid receptor agonists WIN55212-2 (10(-6) M) and CP55940 (10(-6)-10(-5) M) and the CB1 cannabinoid receptor antagonist SR141716A (10(-6) M) had no effect on the electrically evoked dopamine release in the corpus striatum and the nucleus accumbens. The lack of a presynaptic effect on terminals of nigrostriatal and mesolimbic dopaminergic neurons is in accord with the anatomical distribution of cannabinoid receptors: The perikarya of these neurons in the substantia nigra and the ventral tegmental area do not synthesize mRNA, and hence protein, for CB1 and CB2 cannabinoid receptors. It is therefore unlikely that presynaptic modulation of dopamine release in the corpus striatum and the nucleus accumbens plays a role in the extrapyramidal motor and rewarding effects of cannabinoids.  相似文献   

7.
We have directly observed the effects of activating presynaptic D1-like and D2-like dopamine receptors on Ca2+ levels in isolated nerve terminals (synaptosomes) from rat striatum. R-(+)-SKF81297, a selective D1-like receptor agonist, and (-)-quinpirole, a selective D2-like receptor agonist, induced increases in Ca2+ levels in different subsets of individual striatal synaptosomes. The SKF81297- and quinpirole-induced effects were blocked by R-(+)-SCH23390, a D1-like receptor antagonist, and (-)-sulpiride, a D2-like receptor antagonist, respectively. SKF81297- or quinpirole-induced Ca2+ increases were inhibited following blockade of voltage-gated calcium channels or sodium channels. In a larger subset of synaptosomes, quinpirole decreased baseline Ca2+. Quinpirole also inhibited veratridine-induced increases in intrasynaptosomal Ca2+ level. Immunostaining confirmed the presynaptic expression of D1, D5, D2 and D3 receptors, but not D4 receptors. The array of neurotransmitter phenotypes of the striatal nerve endings expressing D1, D5, D2 or D3 varied for each receptor subtype. These results suggest that presynaptic D1-like and D2-like receptors induce increases in Ca2+ levels in different subsets of nerve terminals via Na+ channel-mediated membrane depolarization, which, in turn, induces the opening of voltage-gated calcium channels. D2-like receptors also reduce nerve terminal Ca2+ in a different but larger subset of synaptosomes, consistent with the predominant presynaptic action of dopamine in the striatum being inhibitory.  相似文献   

8.
The effects of short-term treatment (6 h) with selective D1 or D2 agonists and antagonists on the mRNA for proenkephalin in the medial and anterior aspects of the caudate-putamen and the nucleus accumbens were assessed by in situ hybridization histochemistry. Proenkephalin mRNA abundance was significantly changed in the striatum and accumbens in response to D2 receptor manipulation. D2 blockade with haloperidol or raclopride increased, whereas D2 stimulation with LY-171555 (D2 agonist) decreased, striatal and accumbens proenkephalin mRNA abundance. Antagonism of D1 receptor activity with SCH-23390 significantly decreased proenkephalin mRNA abundance in all brain regions. Concurrent administration of the D1 agonist SKF-38393 prevented the SCH-23390 effect in all brain areas. The data demonstrate that acute treatment with dopaminergic D2 agonists and antagonists affects proenkephalin mRNA abundance in the striatum and accumbens via a D2 receptor mechanism, consistent with the concept that D2 receptor function inhibits the synthesis of the mRNA encoding the enkephalin peptides. Moreover, D1 receptor activity, directly or indirectly, exerts modulatory effects on proenkephalin mRNA abundance in the striatum and nucleus accumbens.  相似文献   

9.
Davis MI  Puhl HL 《PloS one》2011,6(1):e16619
Transgenic mice expressing eGFP under population specific promoters are widely used in neuroscience to identify specific subsets of neurons in situ and as sensors of neuronal activity in vivo. Mice expressing eGFP from a bacterial artificial chromosome under the Nr4a1 promoter have high expression within the basal ganglia, particularly within the striosome compartments and striatal-like regions of the extended amygdala (bed nucleus of the stria terminalis, striatal fundus, central amygdaloid nucleus and intercalated cells). Grossly, eGFP expression is inverse to the matrix marker calbindin 28K and overlaps with mu-opioid receptor immunoreactivity in the striatum. This pattern of expression is similar to Drd1, but not Drd2, dopamine receptor driven eGFP expression in structures targeted by medium spiny neuron afferents. Striosomal expression is strong developmentally where Nr4a1-eGFP expression overlaps with Drd1, TrkB, tyrosine hydroxylase and phospho-ERK, but not phospho-CREB, immunoreactivity in "dopamine islands". Exposure of adolescent mice to methylphenidate resulted in an increase in eGFP in both compartments in the dorsolateral striatum but eGFP expression remained brighter in the striosomes. To address the role of activity in Nr4a1-eGFP expression, primary striatal cultures were prepared from neonatal mice and treated with forskolin, BDNF, SKF-83822 or high extracellular potassium and eGFP was measured fluorometrically in lysates. eGFP was induced in both neurons and contaminating glia in response to forskolin but SKF-83822, brain derived neurotrophic factor and depolarization increased eGFP in neuronal-like cells selectively. High levels of eGFP were primarily associated with Drd1+ neurons in vitro detected by immunofluorescence; however ~15% of the brightly expressing cells contained punctate met-enkephalin immunoreactivity. The Nr4a1-GFP mouse strain will be a useful model for examining the connectivity, physiology, activity and development of the striosome system.  相似文献   

10.
In vivo voltammetry with carbon fiber electrodes was used to assess extracellular 3,4-dihydroxyphenylacetic acid (DOPAC) levels in striatum, nucleus accumbens, and anteromedial prefrontal cortex of freely moving rats subjected to altered motor activity or anxiogenic stimuli. Forced locomotion on a rotarod for 40 min caused an increase in extracellular DOPAC levels in the striatum and to a lesser extent in the nucleus accumbens but not in the prefrontal cortex. Subcutaneous injection of the anxiogenic agent methyl-beta-carboline carboxylate (10 mg/kg) increased extracellular DOPAC levels to a similar extent in prefrontal cortex and nucleus accumbens. Immobilization for 4 min augmented dopamine (DA) metabolism preferentially in the nucleus accumbens and to a lesser extent in the prefrontal cortex. Tail-pinch caused a selective activation of DA metabolism in the nucleus accumbens. None of these stimuli altered extracellular striatal DOPAC levels. These results confirm the involvement of dopaminergic systems projecting to the striatum and nucleus accumbens in motor function and suggest that mesolimbic and mesocortical dopaminergic systems can be specifically activated by certain kinds of anxiogenic stimuli; the relative activation of either of these latter systems could depend primarily on the nature (sensory modality, intensity) of the acute stressor.  相似文献   

11.
12.
Dopamine D4 receptors mediate inhibition of vasopressin-dependent sodium reabsorption by dopamine in collecting tubules. At present, the distribution of D4 receptors in other renal districts remains an open issue. The renal distribution of D4 receptor was assessed in normally innervated and denervated male Sprague-Dawley rats by quantitative immunohistochemistry using an anti-dopamine D4 receptor rabbit polyclonal antibody. D4 receptor protein immunoreactivity was observed perivascularly in the adventitia and the adventitia-media border. The density of perivascular dopamine D4 receptor was higher in afferent and efferent arterioles than in other segments of the renal vascular tree. Renal denervation abolished perivascular dopamine D4 receptor protein immunoreactivity. In renal tubules, the epithelium of collecting tubules showed the highest dopamine D4 receptor protein immunoreactivity, followed by the epithelium of proximal and distal tubules. No dopamine D4 receptor protein immunoreactivity was observed in the epithelium of the loop of Henle. Denervation did not change dopamine D4 receptor protein immunoreactivity in renal tubules. These results indicate that rat kidney expresses dopamine D4 receptors located both prejunctionally and nonprejunctionally in collecting, proximal, and distal tubules. This suggests that the dopamine D4 receptor may be involved in the control of neurotransmitter release and in renal hemodynamic and tubule function.  相似文献   

13.
14.
Abstract: The suggestion that somatostatin is involved in the pathophysiology of obsessive-compulsive disorder and the evidence that selective serotonin reuptake inhibitors show significant antiobsessional effect prompted us to examine the effect of citalopram, a selective and potent serotonin reuptake inhibitor, on the somatostatinergic system in different brain regions of the rat. A single intraperitoneal injection of 10 mg/kg citalopram significantly reduced somatostatin levels in the striatum and nucleus accumbens after 4 but not 1, 8, or 24 h. No changes were found in hippocampus. In addition, we found that the K+-evoked overflow of somatostatin-like immunoreactivity from striatal slices was significantly increased 1 h after a single injection of citalopram and was still higher, although not significantly, 4 h after the drug injection. Levels of preprosomatostatin mRNA were unchanged in striatum and accumbens 1 and 4 h after a single drug administration. In rats treated with citalopram (10 mg/kg i.p.) twice daily for 14 days, the levels of somatostatin and its mRNA were significantly decreased in the striatum but not in other brain regions 24 h after the last dose. No change was found in the basal or K+-evoked overflow of somatostatin-like immunoreactivity at 1, 4, and 24 h after the last drug injection. These results suggest that acute and chronic treatment with citalopram reduces somatostatin levels in striatum by different mechanisms. Whereas a single dose of the drug reduces somatostatin levels by increasing the release of the peptide, repeated drug treatment reduces the biosynthesis of somatostatin.  相似文献   

15.
Using polyclonal antibody against dopamine D4 receptor we investigated cortical distribution of D4 receptors, with the special emphasis on regions of the prefrontal cortex. Prefrontal cortex is regarded as a target for neuroleptic drugs, and engaged in the regulation of the psychotic effects of various substances used in the experimental modeling of schizophrenia. Western blot analysis performed on samples from the rat cingulate, parietal, piriform cortices and also striatum revealed that antibody recognized one main band of approximately 40 kD, which corresponds to the predicted molecular weight of D4 receptor protein. In immunocytochemical studies we found D4 receptor-positive neurons in all regions of prefrontal cortex (cingulate, agranular/insular and orbital cortices) and all cortical regions adjacent to prefrontal cortex, such as frontal, parietal and piriform cortex. Substantial number of D4 receptor-positive neurons has also been observed within the striatum and nucleus accumbens. In general, a clear stratification of the D4 receptor-positive neurons was observed in the cortex with the highest density seen in layers II/III and V/VI. D4 immunopositive material was also found in the dendritic processes, particularly clearly visible in the layer II/III. At the cellular level D4 receptor immunoreactivity was seen predominantly on the periphery of the cell body, but a certain population of neurons with clear cytoplasmatic localization was also identified. In addition to cortical distribution of D4 receptor-positive neurons we tried also to define types of neurons expressing D4 receptor protein. In double-labeling experiments, D4 receptor protein was found in nonphosphorylated neurofilament H-positive, calbindin-D28k-positive, as well as parvalbumin-positive cells. Since, used proteins are markers of certain populations of pyramidal neurons and GABA-ergic interneurons, respectively, our data indicate that D4 receptors are located on cortical pyramidal output neurons and their dendritic processes as well as on interneurons. Above localization indicates that D4 receptors are not only directly influencing excitability of cortical inter- and output neurons but also might be engaged in dendritic spatial and temporal integration, required for the generation of axonal messages. Additionally, our data show that D4 receptors are widely distributed throughout the cortex of rat brain, and that their cortical localization exceeds the localization of dopaminergic terminals.  相似文献   

16.
Nociceptin/orphanin FQ (N/OFQ) has been reported to inhibit dopamine (DA) release in basal ganglia mainly by acting on NOP receptors in substantia nigra and ventral tegmental area. We investigated whether N/OFQ could affect DA transmission by acting at either DA nerve endings or DA-targeted post-synaptic neurons. In synaptosomes of rat nucleus accumbens and striatum N/OFQ inhibited DA synthesis and tyrosine hydroxylase (TH) phosphorylation at Ser40 via NOP receptors coupled to inhibition of the cAMP/protein kinase A pathway. Immunofluorescence studies showed that N/OFQ preferentially inhibited phospho-Ser40-TH in nucleus accumbens shell and that in this subregion NOP receptors partly colocalized with either TH or DA D(1) receptor positive structures. In accumbens and striatum N/OFQ inhibited DA D(1) receptor-stimulated cAMP formation, but failed to affect either adenosine A(2A) or DA D(2) receptor regulation of cAMP. In accumbens slices, N/OFQ inhibited DA D(1)-induced phosphorylation of NMDA and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate glutamate receptors, whereas in primary cultures of accumbal cells, which were found to coexpress NOP and DA D(1) receptors, N/OFQ curtailed DA D(1) receptor-induced cAMP-response element-binding protein phosphorylation. Thus, in accumbens and striatum N/OFQ exerts an inhibitory constraint on DA transmission by acting on either pre-synaptic NOP receptors inhibiting TH phosphorylation and DA synthesis or post-synaptic NOP receptors selectively down-regulating DA D(1) receptor signaling.  相似文献   

17.
Context: G protein-coupled receptors (GPCRs) have been classically thought to work as monomeric entities. The current view of their organization, however, assumes that they are part of highly organized molecular complexes, where different receptors and interacting proteins are clustered. These heteromers have peculiar pharmacological, signaling, and trafficking properties. GPCR heteromerization, raising different combinatorial possibilities, thus underlies an unexpected level of diversity within this receptor family.

Methods: In this paper, we summarize recent data, reported by different research groups, suggesting that the dopamine (DA) D1 receptor forms heteromers with receptors of the same family and with structurally and functionally divergent receptors.

Results and discussion: DA D1 and D3 receptors and glutamate NMDA receptors regulate rewarding mechanisms and motivated behavior, modulate emotional and cognitive processes and regulate locomotor activity by extensive cross-talk mechanisms. Co-localization of D1 and D3 receptors and D1 and NMDA receptors in specific neuronal populations in the striatum and nucleus accumbens, moreover, suggested that their cross-talk may involve direct interactions. By using different experimental approaches various groups have, in fact, demonstrated the existence of D1-NMDA and D1-D3 heteromers, in both transfected cell systems and in the straitum, with peculiar pharmacological, signaling, and functional properties. The putative role of the D1-D3 and D1-NMDA heteromers in the physiological regulation of striatal function and in the development of motor dysfunctions will be discussed.  相似文献   

18.
J Leysen  P Laduron 《Life sciences》1977,20(2):281-288
In rat brain, the regional distribution of the neuroleptic receptor and of dopamine-sensitive adenylate cyclase was found to be very similar, but it differed markedly from the distribution of the opiate receptor. Neuroleptic receptor sites were detectable in the cortex and the hypophysis. After differential centrifugation of rat striatum homogenate, opiate and neuroleptic receptors were enriched in the microsomal fraction while dopamine-sensitive adenylate cyclase revealed a mitochondrial distribution pattern. This different subcellular localization of the neuroleptic receptor and the dopamine-sensitive adenylate cyclase suggests a different function for both receptors.  相似文献   

19.
The effect of chronic neuroleptic treatment on the relationship between the blockade of dopamine (DA) receptors by the neuroleptic drug spiperone and the decline in acetylcholine (ACh) levels was determined in the rat striatum in vivo. In rats, a unilateral lesion of the nigrostriatal pathway was produced with 6-hydroxydopamine. The rats were treated for 6 weeks with haloperidol (twice a day at 1 mg kg-1). Partial and complete receptor occupation was determined with radioactive spiperone (a D2 antagonist), given in various doses of different specific activity 2 h before death. ACh, choline, and radioactivity contents were measured in the same striatum. Following long-term haloperidol treatment, an increase in the maximal number of binding sites for spiperone was found. Virtually identical negative (linear) correlations between striatal ACh content and the number of receptors occupied by spiperone were found in saline- or subchronic haloperidol-treated rats when DA innervation was intact. The slope of the line describing the decrease in ACh content per occupied receptor, however, was much lower in haloperidol-treated rats than in saline-treated animals. After lesioning of the dopaminergic pathway, there was no longer a correlation between the receptor occupation and ACh levels in the striatum. These results show that receptor occupation by a neuroleptic correlates highly with function only when dopaminergic innervation is intact. Also, it appears that there is no fixed number of striatal ACh molecules per DA receptor, and, finally, that in vivo receptor detection methods distinguish differences in receptor density (as do in vitro techniques).  相似文献   

20.
Glutamate and aspartate are the primary neurotransmitters of projections from motor and premotor cortices to the striatum. Release of glutamate may be modulated by dopamine receptors located on corticostriatal terminals. The present study used microdialysis to investigate the dopaminergic modulation of in vivo striatal glutamate and aspartate release in the striatum of awake-behaving rats. Local perfusion with a depolarizing concentration of K+ through a dialysis probe into the rat striatum produced a significant increase in the release of glutamate, aspartate, and taurine. The D2 agonist LY171555 blocked the K(+)-induced release of glutamate and aspartate, but not taurine, in a concentration-dependent manner. The D1 agonist SKF 38393 did not alter K(+)-induced release of glutamate and taurine, but did significantly decrease aspartate release. Neither agonist had any effect on basal amino acid release. The D2 antagonist (-)-sulpiride reversed the inhibitory effects of LY 171555 on K(+)-induced glutamate release. These results provide in vivo evidence for a functional interaction between dopamine, the D2 receptor, and striatal glutamate release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号