首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Protoplasts isolated from suspension cultures of rice cells were treated with bacterial plasmid DNA carrying a chimaeric gene consisting of the nopaline synthase promoter, the aminoglycoside phosphotransferase II (APH(3)II) structural gene from bacterial transposon Tn5 and the terminator region from cauliflower mosaic virus DNA. Colonies capable of proliferating in medium containing kanamycin (100 g/ml) were selected. A transformation frequency of approximately 2% to 3% was recorded in several experiments. The enzyme (APH(3)II) was also detected in kanamycin-resistant callus, which had survived after repeated selection. There was some variation in the APH(3)II activity in the transformants which paralleled the copy number of the inserted genes.  相似文献   

2.
Summary One of the transformed tobacco plants obtained by direct DNA transformation possessed two marker genes, a chimeric aminoglycoside phosphotransferase and nopaline synthase genes. Selfed progenies of this plant (T3-d) showed stable inheritance of these two genes. The minimum size of foreign DNA integrated into tobacco genome was estimated to be 5.4 kbp. A deleted nopaline synthase gene co-existed with an intact gene. The linkage analysis indicated that two transformants, T1-b and T3-c, possessed foreign DNA inserted in different chromosomes or in different sites of the same chromosome that recombine freely.  相似文献   

3.
A genetic test was performed on seeds from 283 transgenic tobacco plants obtained by T-DNA transformation. Seeds from self-fertilized transgenic plants were germinated on kanamycin-containing medium, and the percentage of seeds which germinated, as well as the ratio of kanamycin-resistant to kanamycin-sensitive seedlings were scored. Nine categories of transformants could be distinguished according to the number of loci into which T-DNA had inserted, and according to the effects of T-DNA integration on seed or seedling development. In most of the plants, T-DNA was inserted into a single site; others contained multiple independent copies of T-DNA. The number of T-DNA integration sites was found to be independent of whether a binary vector system or a cointegrate Ti plasmid had been used to obtain the transgenic plant. Loss of marker genes or marker gene expression from generation to generation appeared to be a quite frequent event. Plants which appeared to be insertional recessive embryo-lethal mutants did not exhibit this trait in the next generation.Abbreviations KanR kanamycin resistant - KanS kanamycin sensitive - NOP nopaline - NOS nopaline synthase - NPT II neomycin phosphotransferase II  相似文献   

4.
Tobacco mesophyll protoplasts were treated with plasmids, pCT2 (17.1 kbp) or pCT2T3 (18.3 kbp), which contained a chimeric aminoglycoside phosphotransferase II (APH(3′)II) gene and an intact nopaline synthase gene. Expression of two marker enzymes, APH(3′)II and nopaline synthase, were analyzed in transformed plants. Four out of 16 transformants obtained by pCT2T3 possessed both enzymes. Upon self-pollination, the progeny of one of transformants (T2) segregated to 153∶4 in terms of resistant and susceptible character to kanamycin, suggesting insertion of foreign genes into three independent chromosomes. The kanamycin resistant character in the rest of transformants showed 3∶1 segregation. DNA blot analysis of the T2 transformant and progenies indicated the presence of two marker genes.  相似文献   

5.
Chimeric genes as dominant selectable markers in plant cells   总被引:41,自引:15,他引:26       下载免费PDF全文
Opine synthases are enzymes produced in dicotyledonous plants as the result of a natural gene transfer phenomenon. Agrobacteria contain Ti plasmids that direct the transfer, stable integration and expression of a number of genes in plants, including the genes coding for octopine or nopaline synthase. This fact was used as the basis for the construction of a number of chimeric genes combining the 5' upstream promoter sequences and most of the untranslated leader sequence of the nopaline synthase (nos) gene with the coding sequence of two bacterial genes: the aminoglycoside phosphotransferase (APH(3')II) gene of Tn5 and the methotrexate-insensitive dihydrofolate reductase (DHFR MtxR) of the R67 plasmid. The APH(3')II enzyme inactivates a number of aminoglycoside antibiotics such as kanamycin, neomycin and G418. Kanamycin, G418 and methotrexate are very toxic to plants. The chimeric NOS-APH(3')II gene, when transferred to tobacco cells using the Ti plasmid as a gene vector, was expressed and conferred resistance to kanamycin to the plant cells. Kanamycin-resistant tobacco cells were shown to contain a typical APH(3')II phosphorylase activity. This chimeric gene can be used as a potent dominant selectable marker in plants. Similar results were also obtained with a NOS-DHFR MtxR gene. Our results demonstrate that foreign genes are not only transferred but are also functionally expressed when the appropriate constructions are made using promoters known to be active in plant cells.  相似文献   

6.
7.
8.
Hypocotyl protoplasts of German winter oilseed, rape (Brassica napus) lines of double-low quality were transformed using Agrobacterium tumefaciens harbouring pGV 38501103 neo (dimer) containing chimaeric kanamycin resistance reporter genes. Transformed protoplasts were regenerated to fertile and phenotypically normal plants. Transformation was confirmed by kanamycin resistance, nopaline production, neomycinphosphotransferase II activity, and Southern blot hybridization. Seed progeny from self-pollinated transformants expressed the introduced kanamycin resistance as a Mendelian trait.Abbreviations BAP 6-benzylaminopurine - Cf ClaforanR - 2.4D 2,4-dichlorophenoxy acetic acid - Km kanamycin - MS Murashige and Skoog (1962) - NAA -naphthalene acetic acid - NPT II neomycinphosphotransferase - npt II neomycinphosphotransferase II gene - NOS nopaline synthase - nos nopaline synthase gene - ocs octopine synthase gene - IAA indole-3-acetic acid  相似文献   

9.
The integration pattern and the inheritance of exogenous DNA in transgenic rice plants were analysed. Plasmid pCH (4.8 kb), that contains chimaeric cauliflower mosaic virus 35S promoter-hygromycin phosphotransferase structural gene, and plasmid pGP400 (7.2 kb), possessing oat phytochrome promoter and structural gene of bacterial -glucuronidase, were co-transferred into protoplasts of rice (Oryza sativa L.) plants via electroporation. Primary transformants (T0 generation) and their progenies (T1, T2 and T3) were selected by hygromycin B. Southern blot analysis of inserted genes in transgenic rice plants suggests the integration of an intact hygromycin phosphotransferase gene and non-functional DNA fragments into host genome. Co-inheritance of the hygromycin phosphotransferase gene and -glucuronidase gene was also observed. There were no significant differences in terms of the morphology and size of seeds between untransformed and transgenic plants (T3 generation).  相似文献   

10.
11.
Cloned DNA sequences encoding yeast alcohol dehydrogenase and a bacterial neomycin phosphotransferase have been inserted into the T-DNA of Agrobacterium tumefaciens plasmid pTiT37 at the “rooty” locus. Transformation of tobacco stem segments with the engineered bacterial strains produced attenuated crown gall tumors that were capable of regeneration into intact, normal tobacco plants. The yeast gene and entire transferred DNA (T-DNA) were present in the regenerated plants in multiple copies, and nopaline was found in all tissues. The plants were fertile, and seedlings resulting from self-pollination also contained intact and multiple copies of the engineered T-DNA. Expression of nopaline in the germinated seedlings derived from one regenerated plant was variable and did not correlate with the levels of T-DNA present in the seedlings. Preliminary evidence indicates that nopaline in progeny of other similarly engineered plants is more uniform. The disarming of pTiT37 by insertions at the “rooty” locus thus appears to produce a useful gene vector for higher plants.  相似文献   

12.
Tuber, minituber and in vitro-grown microtuber discs of potato (Solanum tuberosum L.) cultivars 85-14-3, 86-2 and Favorita were used in Agrobacterium mediated gene transfer. A simple, rapid and efficient transformation system was established. Among the three kinds of discs used, the microtuber disc was superior in obtaining transformants. Microtuber discs star ted to form shoots on shoot inducing medium containing kanamycin two to three weeks after cocultivation. Rooted transformants could be obtained in 6–7 weeks. The transformation efficiency could reach as high as 67.5%. The majority of kanamycin resistant plants gave nopaline positive or GUS expression. A number of transgenic plants were obtained using the plasmid containing a sweet protein NPT Ⅱ and nopaline synthase genes. The leaf callus assay and nopaline assay indicated that the foreign sweet protein gene was introduced into the potato genome.  相似文献   

13.
The coding region of the 2S albumin gene of Brazil nut (Bertholletia excelsa H.B.K.) was completely synthesized, placed under control of the cauliflower mosaic virus (CaMV) 35S promoter and inserted into the binary vector plasmid pGSGLUC1, thus giving rise to pGSGLUC1-2S. This was used for transformation of tobacco (Nicotiana tabacum L. cv. Petit Havanna) and of the grain legume Vicia narbonensis L., mediated by the supervirulent Agrobacterium tumefaciens strain EHA 101. Putative transformants were selected by screening for neomycin phosphotransferase (NPT II) and -glucuronidase (GUS) activities. Transgenic plants were grown until flowering and fruiting occurred. The presence of the foreign gene was confirmed by Southern analysis. GUS activity was found in all organs of the regenerated transgenic tobacco and legume plants, including the seeds. In the legume, the highest expression levels of the CaMV 35S promoter-controlled 2S albumin gene were observed in leaves and roots. 2S albumin was localized in the vacuoles of leaf mesophyll cells of transgenic tobacco. The Brazil nut protein was present in the 2S fraction after gel filtration chromatography of the legume seed proteins and could be clearly identified by immunoblotting. Analysis of seeds from the R2 progenies of the legume and of transgenic tobacco plants revealed Mendelian inheritance of the foreign gene. Agrobacterium rhizogenes strain RifR 15834 harbouring the binary vector pGSGLUCl2S was also used to transform Pisum sativum L. and Vicia faba L. Hairy roots expressed the 2S albumin-specific gene. Several shoots were raised but they never completely rooted and no fertile plants were obtained from these transformants.  相似文献   

14.
15.
In order to study the expression in plants of therolD promoter ofAgrobacterium rhizogenes, we have constructed chimaeric genes placing the coding region of thegusA (uidA) marker gene under control of tworolD promoter fragments of different length. Similar results were obtained with both genes. Expression studies were carried out in transformed R1 progeny plants. In mature transformed tobacco plants, therolD-gus genes were expressed strongly in roots, and to much lower levels in stems and leaves. This pattern of expression was transmitted to progeny, though the ratio of the level of expression in roots relative to that in leaves was much lower in young seedlings. The degree of root specificity inrolD-gus transformants was less than that of a gene constructed with domain A of the CaMV 35S promoter,domA-gus, but the level of root expression was much higher than with the latter gene. However, the level of expression of therolD-gus genes was less than that of agus gene with a 35S promoter with doubled domain B, 35S2-gus. TherolD-gus genes had a distinctive pattern of expression in roots, compared to that of the two other genes, with the strongest GUS activity observed in the root elongation zone and in vascular tissue, and much less in the root apex.  相似文献   

16.
We have constructed chimaeric genes that are expressed in embryo and endosperm compartments of the seed, induce dominant seed lethality and have potential to reduce seed size in 75% of seeds within a fruit such as Citrus [7]. The genes are not entirely seed-specific as a proportion of primary test tobacco transformants containing their gene were fully male-sterile [7]. Here we investigated why a proportion of apparently male-fertile transgenic plants showed segregation distortion from the 75% seed lethality expected for a single dominant gene. Reciprocal crosses were conducted between pollen fertile, primary tobacco transformants containing various copies of the CG1-400-RNase gene [7] and wild-type tobacco plants to examine the transmission of the gene through maternal and paternal gametes and also the effects of gene dosage in embryo and endosperm compartments on seed viability and phenotype. Pollen viability, seed set and seed phenotype were examined over a 16 month period to assess stability of gene expression in primary transformants because woody, fruit crops containing these genes will be vegetatively propagated from primary transformants. In male-fertile transformants, the gene was observed to be expressed to varying degrees post-meiotically in pollen over the time period examined resulting in lethality of transgenic pollen and reduced paternal transmission. A variable, low-level maternal expression component was also detected that resulted in seed lethality and influenced morphological variation in the seed lethal phenotype. The maternal and paternal expression components caused seed lethality to range from 50 to 75%. This study indicates the need to select for transformants with stable pollen transmission and high seed expression and raises questions in relation to possible environmental and epistatic effects on gene expression in primary, hemizygous transformants over long growth periods.  相似文献   

17.
Genetic transformation of flax (Linum usitatissimum) has been achieved using an A. tumefaciens strain carrying a non-oncogenic Ti plasmid-derived vector containing a chimaeric npt-II gene and a wild type nopaline synthase gene. Fertile, transformed shoots were most easily obtained from Kmr callus developing on hypocotyl sections. The totipotency of the Kmr callus was dependent upon its origin. T-DNA was visualised by Southern blotting in all Kmr tissues. Efficient expression of nopaline synthase and the chimaeric npt-II gene was found in transformed Kmr callus and regenerated shoots.Abbreviations npt-II neomycin phosphotransferase II gene - NPT-II neomycin phosphotransferase II - nos nopaline synthase gene promoter - Kmr kanamycin resistant - BAP 6-benzylaminopurine - NAA -naphthaleneacetic acid - MSD4×2 medium D4×2 based on Murashige & Skoog medium (see Scott & Draper, 1987)  相似文献   

18.
Summary Genetic transformation of Nicotiana tabacum protoplasts was achieved by incubation of protoplasts with a plasmid DNA-calcium phosphate coprecipitate, followed by fusion of the protoplasts in the presence of polyvinyl alcohol and subsequent exposure to high pH. A derivative of the plasmid pBR322 containing a chimaeric gene, consisting of the nopaline synthase promoter, the coding region of the aminoglycoside phosphotransferase gene of Tn5 and the polyadenylation signal region of the octopine synthase gene, was used for these transformation experiments. This chimaeric gene confers resistance of transformed plant cells to kanamycin. This novel transformation procedure reproducibly yielded transformants at frequencies of approximately 0.01%. Aminoglycoside phosphotransferase II activity was detected in both transformed calli and in regenerated plants. DNA from some of the transformed clones was analyzed by Southern blot hybridization. The input DNA appears to be integrated into high molecular weight cellular DNA. Genetic analysis of one of the kanamycin resistant plants shows that the chimaeric gene is transmitted to the progeny as a single dominant trait in a Mendelian fashion. As a comparison the input DNA was also introduced into tobacco protoplasts using Agrobacterium tumefaciens and Ti-plasmid derived gene vectors.Dedicated to Professor Georg Melchers to celebrate his 50-year association with the journal  相似文献   

19.
Summary We describe in this paper the construction and use of a set of novel Ti plasmid-derived vectors that can be used to produce transgenic plants. These vectors are based on one of two strategies: 1) double recombination into the wild-type Ti plasmid of genetic information flanked by two T-DNA fragments on a wide-host range plasmid; 2) the binary vector strategy. The vector based on the double recombination principle contains a kanamycin resistance gene for use as a plant selectable marker, a polylinker for the insertion of foreign genes, and a nopaline synthase gene. The vector was constructed such that a disarmed T-DNA results from the double recombination event. The binary vector combines several advantageous features including an origin of replication that is stable in Agrobacterium in the absence of selection, six unique sites for insertion of foreign genes, an intact nopaline synthase gene, and a kanamycin resistance marker for selection of transformed plant cells. All of these vectors have been used to produce tobacco plants transformed with a variety of foreign genes.  相似文献   

20.
A system was established for introducing cloned genes into white clover (Trifolium repens L.). A high regeneration white clover genotype was transformed with binary Agrobacterium vectors containing a chimaeric gene which confers kanamycin resistance. Transformed kanamycin resistant callus was obtained by culturing Agrobacterium inoculated stolon internode segments on selective medium. The kanamycin resistance phenotype was stable in cells and in regenerated shoots. Transformation was confirmed by the expression of an unselected gene, nopaline synthase in selected cells and transgenic shoots and by the detection of neomycin phosphotransferase II enzymatic activity in kanamycin resistant cells. Integration of vector DNA sequences into plant DNA was demonstrated by Southern blot hybridisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号