首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Isocitrate lyase from the mycelium of Phycomyces blakesleeanus was inactivated with thiol-reactive reagents, 5,5'-dithiobis-(2-nitrobenzoic)acid, p-hydroxymercuribenzoic acid, N-ethylmaleimide or iodoacetate, at pH 6.8 and 25 degrees C. In all cases the inactivation is characterized by a biphasic kinetic profile. The rapid initial phase of inactivation does not increase linearly with increasing reagent concentration, but exhibits an apparent saturation effect, suggesting the formation of a reversible complex between the enzyme and the reagent prior to the inactivation step. Re-activation of the enzyme was observed under thiol excess treatment. The pH dependence of the initial phase of inactivation suggests that a group on the enzyme with pKa = 6.8 is being modified. The effect of ligands was tested on the inactivation reaction. Mg(2+)-Ds-isocitrate and Ds-isocitrate provided total protection, whereas Mg2+ ions, succinate and oxalate provided only partial protection of the enzyme against inactivation. On the basis of these results, we would suggest that the thiol-reactive reagents modify at least one thiol group crucial for the enzymatic activity and probably located in the interface between succinate and glyoxylate subsite.  相似文献   

2.
Inactivation of isocitrate lyase (native and EDTA-dialysed) by excess tetranitromethane (TNM) exhibits, biphasic kinetics, in which half of the initial activity is lost in a fast and the remaining half in a slow phase each following the pseudo-first order kinetics. Rate constants of the two phases are proportional to the TNM concentration. High succinate concentration protects the enzyme against TNM inactivation only in the slow phase without any effect on the fast phase. With the EDTA-dialysed enzyme, no such protection (against inactivation by TNM) is observed in the presence of succinate or Mg2+ ions. Addition of both these ligands together brings about protection against the slow phase (as with the native enzyme). It has been proposed that the site-site heterogeneity of isocitrate lyase is a consequence of its quaternary structure constraints.  相似文献   

3.
Isocitrate lyase was purified to homogeneity from Escherichia coli ML308. Its subunit Mr and native Mr were 44,670 +/- 460 and 17,000-180,000 respectively. The kinetic mechanism of the enzyme was investigated by using product and dead-end inhibitors of the cleavage and condensation reactions. The data indicated a random-order equilibrium mechanism, with formation of a ternary enzyme-isocitrate-succinate complex. In an attempt to predict the properties of isocitrate lyase in intact cells, the effects of pH, inorganic anions and potential regulatory metabolites on the enzyme were studied. The Km of the enzyme for isocitrate was 63 microM at physiological pH and in the absence of competing anions. Chloride, phosphate and sulphate ions inhibited competitively with respect to isocitrate. Phosphoenolpyruvate inhibited non-competitively with respect to isocitrate, but the Ki value suggested that this effect was unlikely to be significant in intact cells. 3-Phosphoglycerate was a competitive inhibitor. At the concentration reported to occur in intact cells, this metabolite would have a significant effect on the activity of isocitrate lyase. The available data suggest that the Km of isocitrate lyase for isocitrate is similar to the concentration of isocitrate in E. coli cells growing on acetate, about one order of magnitude higher than the Km determined in vitro in the absence of competing anions.  相似文献   

4.
Effect of glucose on isocitrate lyase in Phycomyces blakesleeanus.   总被引:2,自引:0,他引:2       下载免费PDF全文
J Rua  D De Arriaga  F Busto    J Soler 《Journal of bacteriology》1989,171(11):6391-6393
Repression of the synthesis of isocitrate lyase by glucose and/or induction of the synthesis of isocitrate lyase by acetate in Phycomyces blakesleeanus were demonstrated. Both glycerol and ethanol failed to induce isocitrate lyase activity. Furthermore, glucose appeared to cause an in vivo catabolite inactivation of the derepressed enzyme. Isocitrate lyase was inactivated both reversibly and irreversibly by glucose.  相似文献   

5.
Phycomyces blakesleeanus isocitrate lyase (EC 4.1.3.1) is in vivo reversibly inactivated by hydrogen peroxide. The purified enzyme showed reversible inactivation by an ascorbate plus Fe(2+) system under aerobic conditions. Inactivation requires hydrogen peroxide; was prevented by catalase, EDTA, Mg(2+), isocitrate, GSH, DTT, or cysteine; and was reversed by thiols. The ascorbate served as a source of hydrogen peroxide and also reduced the Fe(3+) ions produced in a "site-specific" Fenton reaction. Two redox-active cysteine residues per enzyme subunit are targets of oxidative modification; one of them is located at the catalytic site and the other at the metal regulatory site. The oxidized enzyme showed covalent and conformational changes that led to inactivation, decreased thermal stability, and also increased inactivation by trypsin. These results represent an example of redox regulation of an enzymatic activity, which may play a role as a sensor of redox cellular status.  相似文献   

6.
Escherichia coli isocitrate lyase was inactivated by iodacetate in a pseudo-first-order process. Complete inactivation was associated with the incorporation of only one carboxymethyl group per enzyme subunit. The substrate and products of the enzyme protected against inactivation, suggesting that the reactive group may be located at the active site. Isolation and sequencing of a carboxymethylated peptide showed that the modified residue was a cysteine, in the sequence Cys-Gly-His-Met-Gly-Gly-Lys. The reactivity of isocitrate lyase to iodoacetate declined with pH, following a titration curve for a group of pKa 7.1. The Km of the enzyme for isocritrate declined over the same pH range.  相似文献   

7.
Incubation of pig heart NADP-dependent isocitrate dehydrogenase with ethoxyformic anhydride (diethylpyrocarbonate) at pH 6.2 results in a 9-fold greater rate of loss of dehydrogenase than of oxalosuccinate decarboxylase activity. The rate constants for loss of dehydrogenase and decarboxylase activities depend on the basic form of ionizable groups with pK values of 5.67 and 7.05, respectively, suggesting that inactivation of the two catalytic functions results from reaction with different amino acid residues. The rate of loss of dehydrogenase activity is decreased only slightly in the presence of manganous isocitrate, but is reduced up to 10-fold by addition of the coenzymes or coenzyme analogues, such as 2'-phosphoadenosine 5'-diphosphoribose (Rib-P2-Ado-P). Enzyme modified at pH 5.8 fails to bind NADPH, but exhibits manganese-enhanced isocitrate binding typical of native enzyme, indicating that reaction takes place in the region of the nucleotide binding site. Dissociation constants for enzyme . coenzyme-analogue complexes have been calculated from the decrease in the rate of inactivation as a function of analogue concentration. In the presence of isocitrate, activating metals (Mn2+, Mg2+, Zn2+) decrease the Kd value for enzyme . Rib-P2-Ado-P, while the inhibitor Ca2+ increases Kd. The strengthened binding of nucleotide produced by activating metal-isocitrate complexes may be essential for the catalytic reaction, reflecting an optimal orientation of NADP+ to facilitate hydride transfer. Measurements of ethoxyformyl-histidine formation at 240 nm and of incorporation of [14C]ethoxy groups in the presence and absence of Rib-P2-Ado-P indicate that loss of activity may be related to modification of approximately one histidine. The critical histidine appears to be located in the nucleotide binding site in a region distal from the substrate binding site.  相似文献   

8.
NADP-linked malic enzyme from Escherichia coli W contains 7 cysteinyl residues per enzyme subunit. The reactivity of sulfhydryl (SH) groups of the enzyme was examined using several SH reagents, including 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) and N-ethylmaleimide (NEM). 1. Two SH groups in the native enzyme subunit reacted with DTNB (or NEM) with different reaction rates, accompanied by a complete loss of the enzyme activity. The second-order modification rate constant of the "fast SH group" with DTNB coincided with the second-order inactivation rate constant of the enzyme by the reagent, suggesting that modification of the "fast SH group" is responsible for the inactivation. When the enzyme was denatured in 4 M guanidine HCl, all the SH groups reacted with the two reagents. 2. Althoug the inactivation rate constant was increased by the addition of Mg2+, an essential cofactor in the enzyme reaction, the modification rate constant of the "fast SH group" was unaffected. The relationship between the number of SH groups modified with DTNB or NEM and the residual enzyme activity in the absence of Mg2+ was linear, whereas that in the presence of Mg2+ was concave-upwards. These results suggest that the Mg2+-dependent increase in the inactivation rate constant is not the result of an increase in the rate constant of the "fast FH group" modification. 3. The absorption spectrum of the enzyme in the ultraviolet region was changed by addition of Mg2+. The dissociation constant of the Mg2+-enzyme complex obtained from the Mg2+- dependent increment of the difference absorption coincided with that obtained from the Mg2+- dependent enhancement of NEM inactivation. 4. Both the inactivation rate constant and the modification rate constant of the "fast SH group" were decreased by the addition of NADP+. The protective effect of NADP+ was increased by the addition of Mg2+. Based on the above results, the effects of Mg2+ on the SH-group modification are discussed from the viewpoint of conformational alteration of the enzyme.  相似文献   

9.
Pig heart NAD-specific isocitrate dehydrogenase is inactivated by reaction with iodoacetate at pH 6.0. Loss of activity can be attributed to the formation of 1-2 mol of carboxymethyl-cysteine per peptide chain. The rate of inactivation is markedly decreased by the combined addition of Mn2+ and isocitrate, but not by alpha-ketoglutarate, the coenzyme NAD or the allosteric activator ADP. The substrate concentration dependence of the decreased rate of inactivation yields a dissociation constant of 1.6 mM for the enzyme-manganous-dibasic isocitrate complex, a value that is 50 times higher than the Km for this substrate. This result suggests that in protecting the enzyme against iodoacetate, isocitrate may bind to a region distinct from the catalytic site. Isocitrate and Mn2+ also prevent thermal denaturation, with an affinity for the enzyme close to that observed for the iodoacetate-sensitive site. The alkylatable cysteine residues may contribute to a manganous-isocitrate binding site which is responsible for stabilizing an active conformation of the enzyme.  相似文献   

10.
A new method of affinity chromatography using blue dextran-Sepharose 4B resin was established to purify NADP+-dependent isocitrate dehydrogenase [EC 1.1.1.42] from Bacillus stearothermophilus in high yield. The purified preparation was found to be homogeneous on disc gel electrophoresis. The SH groups of the enzyme were modified with 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) to determine the number of SH groups per molecule and their contribution to the enzyme activity. One SH group was titrated with DTNB per subunit (the native enzyme consisted of two subunits) and after complete denaturation with 4 M guanidine-HCl the number of titratable SH groups remained unchanged. ORD and CD measurements showed that the alpha-helical conformation of the polypeptide backbone was unaffected by DTNB modification, though the near ultraviolet CD spectrum was evidently altered. The fluorescence derived from tryptophanyl residue(s) was quenched by the modification to 30% of the native level, which may indicate the presence of SH in the vicinity of tryptophanyl residue(s). A remarkable decrease of the enzyme activity was detected upon modification with DTNB, but there was some discrepancy between the rate of inactivation and that of modification of SH groups. The presence of substrate and Mg2+ gave partial protection against modification of the SH groups by DTNB. Complete protection of the native enzyme activity against heating at 65 degrees was observed in the presence of substrate and Mg2+, but the thermostability of the enzyme was markedly reduced by modification of the SH groups.  相似文献   

11.
The reaction of the water-soluble carbodimide, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), with active papain in the presence of the nucleophile ethyl glycinate results in an irreversible inactivation of the enzyme. This inactivation is accompanied by the derivatization of the catalytically essential thiol group of the enzyme (Cys-25) and by the modification of 6 out of 14 of papain's carboxyl groups and up to 9 out of 19 of the enyzme's tyrosyl residues. No apparent irreversible modification of histidine residues is observed. Mercuripapain is also irreversibly inactivated by EDC/ethyl glycinate, again with the concomitant modification of 6 carboxyl groups, up to 10 tyrosyl residues, and no histidine residues; but in this case there is no thiol derivatization. Treatment of either modified native papain or modified mercuripapain with hydroxylamine results in the complete regeneration of free tyrosyl residues but does not restore any activity. The competitive inhibitor benzamidoacetonitrile substantially protects native papain against inactivation and against the derivatization of the essential thiol group as well as 2 of the 6 otherwise accessible carboxyl groups. The inhibitor has no effect upon tyrosyl modification. These findings are discussed in the context of a possible catalytic role for a carboxyl group in the active site of papain.  相似文献   

12.
When oxidized to cysteic acid by performic acid or converted to carboxymethylcysteine by alkylation of the reduced enzyme with iodoacetate, a total of six half-cystine residues/subunit are found in L-threonine dehydrogenase (L-threonine: NAD+ oxidoreductase, EC 1.1.1.103; L-threonine + NAD(+)----2-amino-3-oxobutyrate + NADH) from Escherichia coli K-12. Of this total, two exist in disulfide linkage, whereas four are titratable under denaturing conditions by dithiodipyridine, 5,5'-dithiobis(2-nitrobenzoic acid), or p-mercuribenzoate. The kinetics of enzyme inactivation and of modification by the latter two reagents indicate that threonine dehydrogenase has no free thiols that selectively react with bulky compounds. While incubation of the enzyme with a large excess of iodoacetamide causes less than 10% loss of activity, the native dehydrogenase is uniquely reactive with and completely inactivated by iodoacetate. The rate of carboxymethylation by iodoacetate of one -SH group/subunit is identical with the rate of inactivation and the carboxymethylated enzyme is no longer able to bind Mn2+. NADH (0.5 mM) provides 40% protection against this inactivation; 60 to 70% protection is seen in the presence of saturating levels of NADH plus L-threonine. Such results coupled with an analysis of the kinetics of inactivation caused by iodoacetate are interpreted as indicating the inhibitor first forms a reversible complex with a positively charged moiety in or near the microenvironment of a reactive -SH group in the enzyme before irreversible alkylation occurs. Specific alkylation of one -SH group/enzyme subunit apparently causes protein conformational changes that entail a loss of catalytic activity and the ability to bind Mn2+.  相似文献   

13.
The substrate analogue 3-bromo-2-ketoglutarate reacts with pig heart NADP+-dependent isocitrate dehydrogenase to yield partially inactive enzyme. Following 65% inactivation, no further inactivation was observed. Concomitant with this inactivation, incorporation of 1 mol of reagent/mol of enzyme dimer was measured. The dependence of the inactivation rate on bromoketoglutarate concentration is consistent with reversible binding of reagent (KI = 360 microM) prior to irreversible reaction. Manganous isocitrate reduces the rate of inactivation by 80% but does not provide complete protection even at saturating concentrations. Complete protection is obtained with NADP+ or the NADP+-alpha-ketoglutarate adduct. By modification with [14C]bromoketoglutarate or by NaB3H4 reduction of modified enzyme, a single major radiolabeled tryptic peptide was obtained by high performance liquid chromatography with the sequence: Asp-Leu-Ala-Gly-X-Ile-His-Gly-Leu-Ser-Asn-Val-Lys. Evidence in the following paper (Bailey, J.M., Colman, R.F. (1987) J. Biol. Chem. 262, 12620-12626) indicates that X is glutamic acid. Enzyme modified at the coenzyme site by 2-(bromo-2,3-dioxobutylthio)-1,N(6)-ethenoadenosine 2',5'-biphosphate in the presence of manganous isocitrate is not further inactivated by bromoketoglutarate. Bromoketoglutarate-modified enzyme exhibits a stoichiometry of binding isocitrate and NADPH equal to 1 mol/mol of enzyme dimer, half that of native enzyme. These results indicate that bromoketoglutarate modifies a residue in the nicotinamide region of the coenzyme site proximal to the substrate site and that reaction at one catalytic site of the enzyme dimer decreases the activity of the other site.  相似文献   

14.
T Chase  Jr 《The Biochemical journal》1986,239(2):435-443
Mannitol-1-phosphate dehydrogenase was purified to homogeneity, and some chemical and physical properties were examined. The isoelectric point is 4.19. Amino acid analysis and polyacrylamide-gel electrophoresis in presence of SDS indicate a subunit Mr of about 22,000, whereas gel filtration and electrophoresis of the native enzyme indicate an Mr of 45,000. Thus the enzyme is a dimer. Amino acid analysis showed cysteine, tyrosine, histidine and tryptophan to be present in low quantities, one, three, four and four residues per subunit respectively. The zinc content is not significant to activity. The enzyme is inactivated (greater than 99%) by reaction of 5,5'-dithiobis-(2-nitrobenzoate) with the single thiol group; the inactivation rate depends hyperbolically on reagent concentration, indicating non-covalent binding of the reagent before covalent modification. The pH-dependence indicated a pKa greater than 10.5 for the thiol group. Coenzymes (NAD+ and NADH) at saturating concentrations protect completely against reaction with 5,5'-dithiobis-(2-nitrobenzoate), and substrates (mannitol 1-phosphate, fructose 6-phosphate) protect strongly but not completely. These results suggest that the thiol group is near the catalytic site, and indicate that substrates as well as coenzymes bind to free enzyme. Dissociation constants were determined from these protective effects: 0.6 +/- 0.1 microM for NADH, 0.2 +/- 0.03 mM for NAD+, 9 +/- 3 microM for mannitol 1-phosphate, 0.06 +/- 0.03 mM for fructose 6-phosphate. The binding order for reaction thus may be random for mannitol 1-phosphate oxidation, though ordered for fructose 6-phosphate reduction. Coenzyme and substrate binding in the E X NADH-mannitol 1-phosphate complex is weaker than in the binary complexes, though in the E X NADH+-fructose 6-phosphate complex binding is stronger.  相似文献   

15.
O-Acetylserine (thiol) lyase, the last enzyme in the cysteine biosynthetic pathway, was purified to homogeneity from spinach leaf chloroplasts. The enzyme has a molecular mass of 68,000 and consists of two identical subunits of Mr 35,000. The absorption spectrum obtained at pH 7.5 exhibited a peak at 407 nm due to pyridoxal phosphate, and addition of O-acetylserine induced a considerable modification of the spectrum. The pyridoxal phosphate content was found to be 1.1 per subunit of 35,000, and the chromophore was displaced from the enzyme by O-acetylserine, leading to a progressive inactivation of the holoenzyme. Upon gel filtration chromatography on Superdex 200, part of the chloroplastic O-acetylserine (thiol) lyase eluted in association with serine acetyltransferase at a position corresponding to a molecular mass of 310,000 (such a complex called cysteine synthase has been characterized in bacteria). The activity of O-acetylserine (thiol) lyase was optimum between pH 7.5 and 8.5. The apparent Km for O-acetylserine was 1.3 mM and for sulfide was 0.25 mM. The calculated activation energy was 12.6 kcal/mol at 10 mM O-acetylserine. The overall amino-acid composition of spinach chloroplast O-acetylserine (thiol) lyase was different than that determined for the same enzyme (cytosolic?) obtained from a crude extract of spinach leaves. A polyclonal antibody prepared against the chloroplastic O-acetylserine (thiol) lyase exhibited a very low cross-reactivity with a preparation of mitochondrial matrix and cytosolic proteins suggesting that the chloroplastic isoform was distinct from the mitochondrial and cytosolic counterparts.  相似文献   

16.
The modification of SH-groups in the native isocitrate dehydrogenase accessible to 5,5-dithiobis (2-nitrobenzoic acid) (DTNB) is accompanied by the enzyme inactivation. Isocitrate rather than NADP and MnCl2 protects two SH-groups of the enzyme from modification by DTNB and attendant inactivation. The isocitrate dehydrogenase inactivation by DTNB obeys pseudofirst-order reaction kinetics. The number of DTNB-titrated sulphydryl groups does not change after the isocitrate dehydrogenase denaturation by sodium dodecyl sulphate. In the presence of manganese ions isocitrate and to a lesser extent NADP protect isocitrate dehydrogenase from the inactivation induced by 2,3-butanedione, a specific modifier of arginine residues. It has also been shown that the methylene blue-sensitized photoinactivation of the enzyme associated with the photooxidation of histidine residues decreases in the presence of NADP. These data provide evidence for an essential role of the SH-groups, arginine residues and, probably, histidine in the functioning of NADP-dependent isocitrate dehydrogenase from adrenal cortex.  相似文献   

17.
Phosphoenolpyruvate carboxylase [EC 4.1.1.31] from Escherichia coli W was alkylated by incubation with bromopyruvate, substrate analog, leading to irreversible inactivation. The reaction followed pseudo-first-order kinetics. Mg2+, an essential cofactor for catalysis, enhanced the inactivation, and the enhancing effect increased as the pH increased. The inactivation rate showed a tendency to saturate with increasing concentrations of bromopyruvate, indicating that an enzyme-bromopyruvate complex was formed prior to the alkylation. DL-Phospholactate, a potent competitive inhibitor with respect to phosphoenolpyruvate, protected the enzyme from inactivation in a competitive manner. Examination of the acid hydrolysate of the enzyme modified with [14C]bromopyruvate by paper chromatography showed that radioactivity was solely incorporated into carboxyhydroxyethyl cysteine. In addition, determination of sulfhydryl groups of the native and modified enzymes with 5,5'-dithiobis(2-nitrobenzoate) showed that inactivation occurred concomitant with the modification of one cysteinyl residue per subunit. The results indicate that bromopyruvate reacted with the enzyme as an active-site-directed reagent.  相似文献   

18.
Y H Ko  P Vanni  G R Munske  B A McFadden 《Biochemistry》1991,30(30):7451-7456
The inactivation of tetrameric 188-kDa isocitrate lyase from Escherichia coli at pH 6.8 (37 degrees C) by diethyl pyrocarbonate, exhibiting saturation kinetics, is accompanied by modification of histidine residues 266 and 306. Substrates isocitrate, glyoxylate, or glyoxylate plus succinate protect the enzyme from inactivation, but succinate alone does not. Removal of the carbethoxy groups from inactivated enzyme by treatment with hydroxylamine restores activity of isocitrate lyase. The present results suggest that the group-specific modifying reagent diethyl pyrocarbonate may be generally useful in determining the position of active site histidine residues in enzymes.  相似文献   

19.
A purification scheme is described for the glyoxylate cycle enzyme isocitrate lyase from maize scutella. Purification involves an acetone precipitation and a heat denaturation step, followed by ammonium sulfate precipitation and chromatography on DEAE-cellulose and on blue-Sepharose. The latter step results in the removal of the remaining malate dehydrogenase activity, and of a high molecular mass (62 kDa) but inactive degradation product of isocitrate lyase. Catalase can be completely removed by performing the DEAE-cellulose chromatography in the presence of Triton X-100. Pure isocitrate lyase can be stored without appreciable loss of activity at -70 degrees C in 5 mM triethanolamine buffer containing 6 mM MgCl2, 7 mM 2-mercaptoethanol, and 50% (v/v) glycerol, pH 7.6. Maize isocitrate lyase is a tetrameric protein with a subunit molecular mass of 64 kDa. Purity of the enzyme preparation was demonstrated by polyacrylamide gel electrophoresis in the presence of dodecylsulfate, in acid (pH 3.2) urea and by isoelectric focusing (pI = 5.1). Maize isocitrate lyase is devoid of covalently linked sugar residues. From circular dichroism measurements we estimate that its structure comprises 30% alpha-helical and 15% beta-pleated sheet segments. The enzyme requires Mg2+ ions for activity, and only Mn2+ apparently is able to replace this cation to a certain extent. The kinetics of the isocitrate lyase-catalyzed cleavage reaction were investigated, and the amino acid composition of the maize enzyme was determined. Finally the occurrence of an association between maize isocitrate lyase and catalase was observed. Such a multienzyme complex may be postulated to play a protective role in vivo.  相似文献   

20.
The kinetics of the reaction of the thiol residue in Zn2+-dependent β-lactamase II with 5,5′-dithiobis[2-nitrobenzoic acid], and the concomitant inactivation revealed that both events take place at the same rate. The inactivation could not be reverted by incubation with Zn2+ or by using a substrate concentration about eight times the Km of the enzyme. EDTA incubation also produced inactivation of the enzyme, although it was reverted by increasing the substrate concentration in the assay. A dual role is proposed for Zn2+ in β-lactamase. The kinetic analysis of the thiol modification and the concomitant inactivation is in agreement with previous reports on the implication of the metal ion in catalysis. A role in stabilizing the native structure of the enzyme is also suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号