首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Development of autoreactive CD4 T cells contributing to type 1 diabetes (T1D) in both humans and nonobese diabetic (NOD) mice is either promoted or dominantly inhibited by particular MHC class II variants. In addition, it is now clear that when co-expressed with other susceptibility genes, some common MHC class I variants aberrantly mediate autoreactive CD8 T cell responses also essential to T1D development. However, it was unknown whether the development of diabetogenic CD8 T cells could also be dominantly inhibited by particular MHC variants. We addressed this issue by crossing NOD mice transgenically expressing the TCR from the diabetogenic CD8 T cell clone AI4 with NOD stocks congenic for MHC haplotypes that dominantly inhibit T1D. High numbers of functional AI4 T cells only developed in controls homozygously expressing NOD-derived H2(g7) molecules. In contrast, heterozygous expression of some MHC haplotypes conferring T1D resistance anergized AI4 T cells through decreased TCR (H2(b)) or CD8 expression (H2(q)). Most interestingly, while AI4 T cells exert a class I-restricted effector function, H2(nb1) MHC class II molecules can contribute to their negative selection. These findings provide insights to how particular MHC class I and class II variants interactively regulate the development of diabetogenic T cells and the TCR promiscuity of such autoreactive effectors.  相似文献   

2.
When expressed in NOD, but not C57BL/6 (B6) genetic background mice, the common class I variants encoded by the H2g7 MHC haplotype aberrantly lose the ability to mediate the thymic deletion of autoreactive CD8+ T cells contributing to type 1 diabetes (T1D). This indicated some subset of the T1D susceptibility (Idd) genes located outside the MHC of NOD mice interactively impair the negative selection of diabetogenic CD8+ T cells. In this study, using both linkage and congenic strain analyses, we demonstrate contributions from a polymorphic gene(s) in the previously described Idd7 locus on the proximal portion of Chromosome 7 predominantly, but not exclusively, determines the extent to which H2g7 class I molecules can mediate the thymic deletion of diabetogenic CD8+ T cells as illustrated using the AI4 TCR transgenic system. The polymorphic Idd7 region gene(s) appears to control events that respectively result in high vs low expression of the AI4 clonotypic TCR alpha-chain on developing thymocytes in B6.H2g7 and NOD background mice. This expression difference likely lowers levels of the clonotypic AI4 TCR in NOD, but not B6.H2g7 thymocytes, below the threshold presumably necessary to induce a signaling response sufficient to trigger negative selection upon Ag engagement. These findings provide further insight to how susceptibility genes, both within and outside the MHC, may interact to elicit autoreactive T cell responses mediating T1D development in both NOD mice and human patients.  相似文献   

3.
Positive selection of CD4+ T cells requires that the TCR of a developing thymocyte interact with self MHC class II molecules on thymic cortical epithelium. In contrast, clonal deletion is mediated by dendritic cells and medullary epithelium. We previously generated K14 mice expressing MHC class II only on thymic cortical epithelium. K14 CD4+ T cells were positively, but not negatively, selected and had significant in vitro autoreactivity. Here, we examine the function of these autoreactive CD4+ T cells in more detail. Analysis of a series of K14-derived T hybrids demonstrated that the autoreactive population of CD4+ T cells is phenotypically and functionally diverse. Purified K14 CD4+ T cells transferred into lethally irradiated wild-type B6 mice cause acute graft vs host disease with bone marrow failure. Further, these autoreactive CD4+ T cells cause hypergammaglobulinemia and the production of autoantibodies when transferred into unirradiated wild-type hosts. Thus, positive selection by normal thymic cortical epithelial cells, unopposed by negative selection, produces polyclonal CD4+ T cells that are pathologic.  相似文献   

4.
We have studied the relationship between MHC-restricted, Ag-specific recognition and TCR structure in a panel of seven Th-hybridomas specific for the foreign protein Ag, hen egg-white lysozyme, and the I-Ak class II MHC molecule. The fine specificity of these Th cells had been determined previously by their reactivity to a panel of APC lines bearing mutant I-Ak molecules and to proteolytic fragments of HEL. TCR gene segment composition was determined by cDNA cloning and DNA sequencing. A heterogeneous, yet repetitive usage of gene segments was observed within the panel. The same V alpha C10-J alpha MD13 rearrangement was used in three of the hybridomas, two with identical Ag and MHC-restriction fine specificities. The prevalent usage of the V beta 14 gene segment and members of J beta 2 cluster was noted. Inasmuch as gene segment usage did not correlate with MHC-restriction or Ag fine specificity alone, these results favor an interactive Ag model of T-cell recognition, in which Ag and MHC are recognized as a bimolecular complex.  相似文献   

5.
Natural development of diabetes in nonobese diabetic (NOD) mice requires both CD4 and CD8 T cells. Transgenic NOD mice carrying alphabeta TCR genes from a class I MHC (Kd)-restricted, pancreatic beta cell Ag-specific T cell clone develop diabetes significantly faster than nontransgenic NOD mice. In these TCR transgenic mice, a large fraction of T cells express both transgene derived and endogenous TCR beta chains. Only T cells expressing two TCR showed reactivity to the islet Ag. Development of diabetogenic T cells is inhibited in mice with no endogenous TCR expression due to the SCID mutation. These results demonstrate that the expression of two TCRs is necessary for the autoreactive diabetogenic T cells to escape thymic negative selection in the NOD mouse. Further analysis with MHC congenic NOD mice revealed that diabetes development in the class I MHC-restricted islet Ag-specific TCR transgenic mice is still dependent on the presence of the homozygosity of the NOD MHC class II I-Ag7.  相似文献   

6.
We examined the activity of human T cells engineered to express variants of a single TCR (1G4) specific for the cancer/testis Ag NY-ESO-1, generated by bacteriophage display with a wide range of affinities (from 4 microM to 26 pM). CD8(+) T cells expressing intermediate- and high-affinity 1G4 TCR variants bound NY-ESO-1/HLA-A2 tetramers with high avidity and Ag specificity, but increased affinity was associated with a loss of target cell specificity of the TCR gene-modified cells. T cells expressing the highest affinity TCR (K(D) value of 26 pM) completely lost Ag specificity. The TCRs with affinities in the midrange, K(D) 5 and 85 nM, showed specificity only when CD8 was absent or blocked, while the variant TCRs with affinities in the intermediate range-with K(D) values of 450 nM and 4 microM-demonstrated Ag-specific recognition. Although the biological activity of these two relatively low-affinity TCRs was comparable to wild-type reactivity in CD8(+) T cells, introduction of these TCR dramatically increased the reactivity of CD4(+) T cells to tumor cell lines.  相似文献   

7.
Specificity of T cell receptor (TCR) and its interaction with coreceptor molecules play decisive role in successful passing of T lymphocytes via check-points during their development and finally determine the efficiency of adaptive immunity. Genes encoding alpha- and beta-chains of TCR hybridoma 1D1 have been cloned. The hybridoma 1D1 was established by the fusion of BWZ.36CD8alpha cell line with CD8+ memory cells specific to MHC class I H-2Kb molecule. Exploiting retroviral transduction of thymoma 4G4 cells with TCR genes and coreceptors CD4 and CD8, variants of this cell line expressing on the surface CD3/TCR complex and coreceptors, separately or simultaneously have been obtained. The main function of CD4 is stabilization of interaction between TCR and MHC class II molecule. Nevertheless, we have found that CD4 could successfully participate in the activation of transfectants via TCR specific to MHC class I molecule H-2Kb. Moreover, coreceptor CD4 dominates CDS, because the response of transfectants CD4+CD8+ is blocked by antibodies to CD4 and MHC Class II Ab molecule but not to coreceptor CD8. The response of CD4+ cells was not due to cross-reaction between TCR 1D1 with MHC class II molecules, because transfectants do not respond to splenocytes of H-2b knockouted mice with impaired assembly of TCR/beta2-microglobulin/peptide complexes resulting in their absence on the cell surphace. The effect of domination was not due to sequestration of kinase p56lck, because truncated CD4 with the loss of binding motif for p56lck remained functional in 4G4 cells. Results obtained can explain the number of features of intrathymic selection and represent experimental basis for development of new methods of cancer gene therapy.  相似文献   

8.
MHC variant peptides are analogues of immunogenic peptides involving alterations of the MHC-binding residues, thereby altering the affinity of the peptide for the MHC molecule. Recently, our laboratory demonstrated that immunization of WT B6 mice with 45D, a low-affinity MHC variant peptide of MOG(35-55), results in significantly attenuated experimental autoimmune encephalomyelitis (EAE), yet IFN-gamma production is comparable to myelin oligodendrocyte glycoprotein (MOG)(35-55)-immunized mice. In light of these findings, we asked whether IFN-gamma was required for the reduced encephalitogenicity of the weak ligand 45D in EAE. In this study, we report that immunization of mice deficient in IFN-gamma or its receptor with 45D exhibit significant EAE signs compared with 45D-immunized wild-type B6 mice. Moreover, 45D-immunized IFN-gamma(-/-) and IFN-gammaR(-/-) mice demonstrate MOG tetramer-positive CD4(+) T cells within the CNS and display substantial numbers of MOG-specific CD4(+) T cells in the periphery. In contrast, wild-type mice immunized with 45D exhibit reduced numbers of MOG-specific CD4(+) T cells in the periphery and lack MOG tetramer- positive CD4(+) T cells in the CNS. Importantly, the increased encephalitogenicity of 45D in mice lacking IFN-gamma or IFN-gammaR was not due to deviation toward an enhanced IL-17-secreting phenotype. These findings demonstrate that IFN-gamma significantly attenuates the encephalitogenicity of 45D and are the first to highlight the importance of IFN-gamma signaling in setting the threshold level of responsiveness of autoreactive CD4(+) T cells to weak ligands.  相似文献   

9.
Antileishmanial defense has been ascribed to the antimicrobial effects induced by soluble macrophage-activating lymphokines (MAFs), such as interferon-gamma and granulocyte-macrophage colony-stimulating factor. Recently, we identified an additional mechanism of T cell-mediated macrophage activation of defense against Leishmania that is apparently lymphokine independent, requires cell-cell contact, and is not cytotoxic to host cells. By employing antigen-specific murine T cell hybridoma lines, we observed that this property was associated with CD4+ subpopulations possessing the characteristics of the Th1 subset. In the present study, we address the question of whether contact-mediated macrophage activation can also be induced by Th2 lymphocytes. We employed as T effector cells in antileishmanial defense assays the Th2 cell line D10.G1.4 (D10) which is specific for conalbumin. We observed that D10 cells were able to induce activation of Leishmania-infected macrophages only when the macrophages were also primed with conalbumin, and that this activation apparently occurred by a mechanism without the secretion of MAF. Moreover, when mice infected with L. major were injected into footpad lesions with conalbumin and D10 cells, in situ parasite replication was partially inhibited. The expression of this antimicrobial mechanism by Th1 as well as Th2 clones suggests that the property of contact-mediated (lymphokine-independent) activation may be shared by certain lymphocytes in both Th1 and Th2 subpopulations. We hypothesize that this activation mechanism may involve the interaction of a lymphocyte membrane-associated MAF (such as tumor necrosis factor) and its receptor on the infected macrophage, resulting in the induction of antimicrobial effects but not cytotoxicity to the host cell.  相似文献   

10.
Huber SA  Sartini D  Exley M 《Journal of virology》2002,76(21):10785-10790
T cells expressing the Vgamma4 T-cell receptor (TCR) promote myocarditis in coxsackievirus B3 (CVB3)-infected BALB/c mice. CD1, a major histocompatibility complex (MHC) class I-like molecule, is required for activation of Vgamma4(+) cells. Once activated, Vgamma4(+) cells initiate myocarditis through gamma interferon (IFN-gamma)-mediated induction of CD4(+) T helper type 1 (Th1) cells in the infected animal. These CD4(+) Th1 cells are required for activation of an autoimmune CD8(+) alphabeta TCR(+) effector, which is the predominant pathogenic agent in this model of CVB3-induced myocarditis. Activated Vgamma4(+) cells can adoptively transfer myocarditis into BALB/c mice infected with a nonmyocarditic variant of CVB3 (H310A1) but cannot transfer myocarditis into either uninfected or CD1(-/-) recipients, demonstrating the need for both infection and CD1 expression for Vgamma4(+) cell function. In contrast, CD8(+) alphabeta TCR(+) cells transfer myocarditis into either infected CD1(-/-) or uninfected recipients, showing that once activated, the CD8(+) alphabeta TCR(+) effectors function independently of both virus and CD1. Vgamma4(+) cells given to mice lacking CD4(+) T cells minimally activate the CD8(+) alphabeta TCR(+) cells. These studies show that Vgamma4(+) cells determine CVB3 pathogenicity by their ability to influence both the CD4(+) and CD8(+) adaptive immune response. Vgamma4(+) cells enhance CD4(+) Th1 (IFN-gamma(+)) cell activation through IFN-gamma- and CD1-dependent mechanisms. CD4(+) Th1 cells promote activation of the autoimmune CD8(+) alphabeta TCR(+) effectors.  相似文献   

11.
Granulomatous inflammation in schistosomiasis is strictly dependent on CD4+ Th lymphocytes sensitized to egg Ags, but its intensity is genetically regulated. C3H and CBA (H-2k) are strains of mice that develop large granulomas; they also strongly respond to the major egg Ag Sm-p40. We now show that the immunodominant epitope recognized by CD4+ Th cells from infected H-2k mice is confined to 13-mer peptide 234-246 (PKSDNQIKAVPAS), which elicits an I-Ak-restricted Th1-type response. Using a panel of alanine-monosubstituted peptides, we identified Asp237 as the main contact residue with I-Ak. On the other hand, three TCR contact residues were essential to stimulate epitope-specific T cell hybridomas: for two hybridomas these were Asn238, Gln239, and Lys241; and for one, Asn238, Lys241, and Pro244. In one instance, alanine substitution for Gln239 generated an antagonist that blocked subsequent stimulation with wild-type peptide. Most importantly, replacement of Asn238, Gln239, or Lys241 caused a profound loss of polyclonal CD4+ T cell reactivity from schistosome-infected mice. This study identifies the critical residues of immunodominant peptide 234-246 involved in the T cell response against the Sm-p40 egg Ag and suggests that suitable altered peptides may be capable of precipitating its down-regulation.  相似文献   

12.
D10.G4.1 (D10) cells, a murine conalbumin-reactive Th2 cell line, made to overexpress the beta(2) integrin LFA-1 by pharmacological manipulation or by transfection become autoreactive and are capable of inducing in vivo autoimmunity. However, whether this is specific to LFA-1 and whether overexpression of other T cell integrin molecules has the same effect are unknown. We examined the functional consequences of T cell CD49d (alpha(4) integrin) overexpression by transfecting murine CD49d cDNA into D10 cells. Similar to the LFA-1-transfected cells, the CD49d-overexpressing T cells are autoreactive and proliferate in response to APCs in an MHC class II-dependent manner in the absence of nominal Ag. Additionally, CD49d overexpression is associated with increased in vitro adhesion to endothelial cells and increased in vivo splenic homing. However, in contrast to LFA-1 overexpression, increased T cell CD49d expression is not associated with autoreactive cytotoxicity or the ability to induce in vivo autoimmunity. In addition to the novel observation that CD49d overexpression is sufficient to induce T cell autoreactivity, our results also support the hypothesis that the ability to induce in vivo autoimmunity is related to T cell cytotoxicity and not to T cell proliferation function in the D10 murine adoptive transfer model of autoimmunity.  相似文献   

13.
Editing autoreactive TCR enables efficient positive selection   总被引:2,自引:0,他引:2  
Allelic exclusion is inefficient at the TCRalpha locus, allowing a sizeable portion of T cells to carry two functional TCRs. The potential danger of dual TCR expression is a rescue of autoreactive TCRs during selection in the thymus and subsequent development of autoimmunity. In this study, we examine the reason(s) for replacing an autoreactive TCR and for allowing the survival of cells carrying two TCRs. We compared development of TCR transgenic CD4(+)CD8(-) thymocytes in the presence or absence of MHC class II autoantigen that does not induce deletion of thymocytes. Contrary to the expected negative effect of the presence of autoantigen, approximately 100% more CD4(+)CD8(-) thymocytes were found in the presence of MHC class II autoantigen than in the neutral background. A further increase in the strength of autoantigenic signal via expression of a human CD4 transgene led to an additional increase in the numbers of CD4(+)CD8(-) thymocytes. Thus, editing autoreactive TCR results in more efficient positive selection, and this may be both a reason and a reward for risking autoimmunity.  相似文献   

14.
Leishmania major disseminates in genetically susceptible BALB/c mice to cause fatal disease. Progressive infection has been linked to the failure of parasite-specific Th1, IFN-gamma-producing, CD4+ T lymphocytes to expand and direct macrophage activation and control of intracellular parasitism. In contrast, Th2 CD4+ cell expansion accompanies disease progression. Immunomodulation using CD4 cell depletion at the time of infection results in control of infection and Th1 CD4+ cell expansion. A Th1-like cell line, H1A, was established from the draining lymph nodes of an anti-CD4-pretreated BALB/c mouse infected with L. major, H1A was CD4, TCR(+)-alpha/beta, and released IL-2 and IFN-gamma in response to parasite Ag. A Th2-like cell line, U1A, was established from the lymph node cells of an infected BALB/c mouse that was also CD4, TCR(+)-alpha/beta but released IL-4 and IL-5 after stimulation. Mice with severe combined immunodeficiency were reconstituted with H1A and U1A before infection with L. major. Non-reconstituted mice were unable to restrict parasite growth. Mice reconstituted with H1A healed infection, whereas mice reconstituted with U1A suffered exacerbation of disease. Analysis of spleen cells by flow cytometry confirmed the reconstitution of CD4+ cells in both instances, and stimulation with mitogen established that the lymphokine profile of the donor cells had been maintained during 6 to 8 wk of infection. Histologic analysis of the lesions confirmed migration of donated cells to sites of infection. Neutralization of IFN-gamma in H1A-reconstituted mice and IL-4 in U1A-reconstituted mice reversed the disease phenotype mediated by the two cell lines. These data demonstrate the capacity of CD4+ T cells alone to modulate both positively and negatively the course of leishmaniasis in a lymphokine-dependent manner.  相似文献   

15.
Chronic inflammation can associate with autoreactive immune responses, including CD4(+) T cell responses to self-Ags. In this paper, we show that the adipocyte-derived proinflammatory hormone leptin can affect the survival and proliferation of autoreactive CD4(+) T cells in experimental autoimmune encephalomyelitis, an animal model of human multiple sclerosis. We found that myelin olygodendrocyte glycoprotein peptide 35-55 (MOG(35-55))-specific CD4(+) T cells from C57BL/6J wild-type mice could not transfer experimental autoimmune encephalomyelitis into leptin-deficient ob/ob mice. Such a finding was associated with a reduced proliferation of the transferred MOG(35-55)-reactive CD4(+) T cells, which had a reduced degradation of the cyclin-dependent kinase inhibitor p27(kip1) and ERK1/2 phosphorylation. The transferred cells displayed reduced Th1/Th17 responses and reduced delayed-type hypersensitivity. Moreover, MOG(35-55)-reactive CD4(+) T cells in ob/ob mice underwent apoptosis that associated with a downmodulation of Bcl-2. Similar results were observed in transgenic AND-TCR- mice carrying a TCR specific for the pigeon cytochrome c 88-104 peptide. These molecular events reveal a reduced activity of the nutrient/energy-sensing AKT/mammalian target of rapamycin pathway, which can be restored in vivo by exogenous leptin replacement. These results may help to explain a link between chronic inflammation and autoimmune T cell reactivity.  相似文献   

16.
Autoreactive T cells represent a natural repertoire of T cells in both diseased patients and healthy individuals. The mechanisms regulating the function of these autoreactive T cells are still unknown. Ob1A12 is a myelin basic protein (MBP)-reactive Th cell clone derived from a patient with relapsing-remitting multiple sclerosis. Mice transgenic for this human TCR and DRA and DRB1*1501 chains develop spontaneous experimental autoimmune encephalomyelitis. The reactivity of Ob1A12 is reported to be restricted to recognition of MBP peptide 85-99 in the context of DRB1*1501. DRA/DRB1*1501 and the patient's other restriction element, DRA/DRB1*0401, differ significantly in their amino acid sequences. In this study we describe an altered peptide ligand derived from MBP(85-99) with a single amino acid substitution at position 88 (Val to Lys; 88V-->K), that could stimulate the Ob1A12.TCR in the context of both DRA/DRB1*1501 and DRA/DRB1*0401. Analysis of a panel of transfected T cell hybridomas expressing Ob1A12.TCR and CD4 indicated that Ob1A12.TCR cross-reactivity in the context of DRA/DRB1*0401 is critically dependent on the presence of the CD4 coreceptor. Furthermore, we found that activation of Ob1A12.TCR with MBP altered peptide ligand 85-99 88V-->K presented by DRB1*1501 or DRB1*0401 resulted in significant differences in TCR zeta phosphorylation. Our data indicate that injection of altered peptide ligand into patients heterozygous for MHC class II molecules may result in unexpected cross-reactivities, leading to activation of autoreactive T cells.  相似文献   

17.
Our lab has demonstrated that encephalitogenic T cells can be effectively anergized by treatment with MHC variant peptides, which are analogues of immunogenic peptides containing an amino acid substitution at an MHC anchor residue. The MHC variant peptide of myelin oligodendrocyte glycoprotein (MOG)(35-55) proves an effective treatment as it does not induce symptoms of experimental autoimmune encephalomyelitis and fails to recruit macrophages or MOG(35-55)-specific T cells to the CNS. In this study, we sought to characterize the signaling pathways required for the induction of anergy by building upon the observations identifying the tyrosine phosphatase SHP-1 as a critical regulator of T cell responsiveness. Motheaten viable heterozygous mice, which contain a mutation in the SHP-1 gene resulting in a reduction in functional SHP-1, were challenged with MOG(35-55) or the MOG(35-55) MHC variant 45D. These mice display symptoms of experimental autoimmune encephalomyelitis upon immunization with MHC variant peptide and have significant CNS infiltration of tetramer-positive CD4(+) cells and macrophages, unlike B6 mice challenged with the variant peptide. The effects of SHP-1 are directly on the T cell as Motheaten viable heterozygous mice autoreactive T cells are not anergized in vitro. Lastly, we demonstrate no distinguishable difference in the initial interaction between the TCR and agonist or MHC variant. Rather, an unstable interaction between peptide and MHC attenuates the T cell response, seen in a decreased half-life relative to MOG(35-55). These results identify SHP-1 as a mediator of T cell anergy induced by destabilized peptide:MHC complexes.  相似文献   

18.
The MOG35-55 peptide-induced experimental autoimmune encephalomyelitis (EAE) model in C57BL/6 mice is a useful animal model to explore therapeutic approaches to T cell-mediated autoimmune diseases because the dominant T-cell epitope(s) have been defined. It is rational that antigen-specific immunosuppression can be induced by using MHC-peptide complexes as specific TCR ligand(s) that interact with autoreactive T cells in the absence of co-stimulation. In this study, a soluble divalent MOG35-55/I-Ab fusion protein (MOG35-55/I-Ab dimer) was constructed to specifically target the autoreactive CD4+ T cells in the EAE mouse. Intraperitoneal administration of the MOG35-55/I-Ab dimer significantly delayed and ameliorated EAE symptoms by reducing EAE-related inflammation in the mouse CNS and reducing encephalitogenic Th1 and Th17 cells in the peripheral lymphoid organs. We observed that dimer intervention at a concentration of 1.2 nM suppressed MOG35-55 peptide-specific 2D2 transgenic T cells (2D2 T cells) proliferation by over 90% after in vitro activation with MOG35-55 peptide. The mechanisms involved in this antigen-specific dimer-mediated suppression were found to be downregulated TCR-CD3 expression as well as upregulated expression of membrane-bound TGF-β (mTGF-β) and IL-10 suppressive cytokines by the autoreactive CD4+ T cells. Collectively, our data demonstrates that soluble divalent MHC class II molecules can abrogate pathogenic T cells in EAE. Furthermore, our data suggests that this strategy may provide an efficient and clinically useful option to treat autoimmune diseases.  相似文献   

19.
20.
We have evaluated the relative contributions of the extracellular and cytoplasmic domains of MHC class II molecules in determining the Ag-processing requirements for class II-restricted Ag presentation to T cells. Hybrid genes were constructed to encode a heterodimeric I-Ak molecule in which the extracellular portion of the molecule resembled wild type I-Ak but where the connecting stalk, transmembrane and cytoplasmic domains of both the alpha- and beta-chain were derived from the class I molecule H-2Dd. Mutant I-Ak molecules were expressed as heterodimeric membrane glycoproteins reactive with mAb specific for wild type I-Ak. Fibroblast and B lymphoma cells expressing either wild type or mutant I-Ak molecules were able to process and present hen egg lysozyme (HEL) and conalbumin to Ag-specific, I-Ak-restricted, T cell hybridomas or clones. The mutant-expressing cells presented native and peptide Ag less efficiently than the wild type-expressing cells, suggesting that the disparity in presentation efficiency was not due to a difference in Ag processing. CD4 interaction was intact on the mutant I-Ak molecules. Presentation of native Ag by mutant and wild type-I-Ak-expressing cells was abolished by preincubation with chloroquine, or after paraformaldehyde fixation. After transfection of a cDNA encoding the gene for HEL, neither mutant nor wild type-I-Ak-expressing cells presented endogenously synthesized HEL to a specific T hybrid. Newly synthesized mutant I-Ak molecules were associated with invariant chain. These data demonstrate the ability of hybrid class II molecules to associate intracellularly with invariant chain and degraded foreign Ag in a conventional class II-restricted processing pathway indicating that the extracellular domains of class II molecules play a dominant role in controlling these Ag-processing requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号