首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two species of speckled wood butterfly occur in Medeira. Pararge xiphia is endemic and is very similar in morphology, behaviour and general ecology to P. aegeria which was first recorded on the island in 1976. We collected behavioural data on the males of the two species at sites where the indigenous laurel forest meets non-native forest and agriculture. It is in these areas that the two species are found together in particularly high densities. Male Pararge butterflies defend sunlit areas of vegetation and attempt to exclude other butterflies. If a territorial intruder is a conspecific or the other Pararge species, extended chases or spiraling flights may take place. Interactions between the two Pararge species are longer and more likely to be escalated than those between either species and a range of other butterfly species. Pararge aegeria is more aggressive in its territorial behaviour than P. xiphia and the latter may be suffering more from the interactions. The results demonstrate that the two species are competing for space and therefore, that territorial behaviour could be a mechanism by which interspecific competition could be taking place. Any adaptive explanation for the interspecifc territoriality remains speculative but this recent and probably natural, colonization may provide an excellent opportunity to examine the role of interspecific competition in structuring communities. The arrival of P. aegeria on Madeira has created an almost unique natural experiment, the study of which will potentially avoid many of the problems traditionally associated with the study of competition.  相似文献   

2.
Abstract.  The genus Pararge comprises three species: P. aegeria , distributed in Europe and North Africa; P. xiphia , endemic to Madeira; and P. xiphioides , endemic to the Canary Islands. Two subspecies are recognized in P. aegeria , P. a. tircis and P. a. aegeria , distributed in northern and southern Europe, respectively. In the 1970s, P. aegeria appeared on Madeira. However, despite the status of P. aegeria as a model species in ecological studies, the evolutionary history of Pararge remains unknown. We studied the phylogenetic relationships of the three Pararge species, using the mitochondrial gene cytochrome oxidase subunit I and the nuclear gene wingless to infer modes and times of speciation. On the basis of our analyses, Pararge forms a strongly supported monophyletic group, with the DNA haplotypes of the three species also forming well-supported monophyletic groups. We found that P. xiphia diverged first from the common ancestor a maximum of five million years ago, with P. xiphioides and P. aegeria being sister species that diverged a maximum of three million years ago. The two subspecies, P. a. tircis and P. a. aegeria , were not distinguishable on the basis of DNA haplotypes; instead, our data clearly distinguished between European specimens and those from North Africa. Madeiran P. aegeria has North African haplotypes and thus originated from there rather than from Europe. We hypothesize that the Mediterranean Sea forms a strong barrier to dispersal for Pararge butterflies, and has done so for approximately the past one million years.  相似文献   

3.
Some species are expanding their ranges polewards during current climate warming. However, anthropogenic fragmentation of suitable habitat is affecting expansion rates and here we investigate interactions between range expansion, habitat fragmentation and genetic diversity. We examined three closely related Satyrinae butterflies, which differ in their habitat associations, from six sites along a transect in England from distribution core to expanding range margin. There was a significant decline in allozyme variation towards an expanding range margin in Pararge aegeria, which has the most restricted habitat availability, but not in Pyronia tithonus whose habitat is more widely available, or in a non-expanding 'control species' (Maniola jurtina). Moreover, data from another transect in Scotland indicated that declines in genetic diversity in P. aegeria were evident only on the transect in England, which had greater habitat fragmentation. Our results indicate that fragmentation of breeding habitats leads to more severe founder events during colonization, resulting in reduced diversity in marginal populations in more specialist species. The continued widespread loss of suitable habitats in the future may increase the likelihood of loss of genetic diversity in expanding species, which may affect whether or not species can adapt to future environmental change.  相似文献   

4.
Abstract 1. Species would be expected to shift northwards in response to current climate warming, but many are failing to do so because of fragmentation of breeding habitats. Dispersal is important for colonisation and an individual‐based spatially explicit model was developed to investigate impacts of habitat availability on the evolution of dispersal in expanding populations. Model output was compared with field data from the speckled wood butterfly Pararge aegeria, which currently is expanding its range in Britain. 2. During range expansion, models simulated positive linear relationships between dispersal and distance from the seed location. This pattern was observed regardless of quantity (100% to 10% habitat availability) or distribution (random vs. gradient distribution) of habitat, although higher dispersal evolved at expanding range margins in landscapes with greater quantity of habitat and in gradient landscapes. Increased dispersal was no longer evident in any landscape once populations had reached equilibrium; dispersal values returned to those of seed populations. However, in landscapes with the least quantity of habitat, reduced dispersal (below that of seed populations) was observed at equilibrium. 3. Evolutionary changes in adult flight morphology were examined in six populations of P. aegeria along a transect from the distribution core to an expanding range margin in England (spanning a latitudinal distance of >200 km). Empirical data were in agreement with model output and showed increased dispersal ability (larger and broader thoraxes, smaller abdomens, higher wing aspect ratios) with increasing distance from the distribution core. Increased dispersal ability was evident in populations from areas colonised >30 years previously, although dispersal changes were generally evident only in females. 4. Evolutionary increases in dispersal ability in expanding populations may help species track future climate changes and counteract impacts of habitat fragmentation by promoting colonisation. However, at the highest levels of habitat loss, increased dispersal was less evident during expansion and reduced dispersal was observed at equilibrium indicating that, for many species, continued habitat fragmentation is likely to outweigh any benefits from dispersal.  相似文献   

5.
During recent climate warming, some species have expanded their ranges northwards to keep track of climate changes. Evolutionary changes in dispersal have been demonstrated in these expanding populations and here we show that increased dispersal is associated with reduced investment in reproduction in populations of the speckled wood butterfly, Pararge aegeria. Evolutionary changes in flight versus reproduction will affect the pattern and rate of expansion at range boundaries in the future, and understanding these responses will be crucial for predicting the distribution of species in the future as climates continue to warm.  相似文献   

6.
Refuges for threatened species are important to prevent species extinction. They provide protection from a range of environmental and biotic stressors, and ideally provide protection against all threatening processes. However, for some species it may not be clear why some areas are refuges and others are not. The forty‐spotted pardalote (Pardalotus quadragintus) is an endangered, sedentary, cryptic and specialised bird endemic to the island of Tasmania, Australia. Having undergone an extreme range contraction over the past century the species is now mostly confined to a few small offshore island refuges. Key threatening processes to the species include habitat loss, wildfire, competition and predation. The ways in which these processes have molded the species’ contemporary range have not been clearly evaluated. Furthermore, the security of the remnant population within refuges is uncertain. To overcome this uncertainty we assessed key threats and established the population status in known refuges by developing a robust survey protocol within an occupancy modelling framework. We discuss our results in the context of planning trial reintroductions of this endangered species in suitable habitat across its former range. We found very high occupancy rates (0.75–0.96) at two refuges and in suitable conditions, the species was highly detectable (p, 0.43–0.77). At a third location our surveys indicated a local extinction, likely due to recent wildfire. We demonstrate that all refuges are at high risk of one or more threatening processes and the current distribution across island refuges is unlikely to secure the species from extinction. We identified large areas of potential habitat across the species’ former mainland range, but these are likely too distant from source populations for natural recolonisation. We propose that establishing new populations of forty‐spotted pardalotes via reintroduction is essential to secure the species and that this is best achieved while robust source populations still exist.  相似文献   

7.
We compared the habitat preference and the mobility of different populations of primarily forest living, satyrine butterflies by observing them in a manipulated environment, containing different habitat types inside a large outdoor cage. The cage was 30 m long and divided into three parts. Each end of the cage contained a shady habitat, made to be similar to the floor of a forest with sunlit spots. In between these shady parts, there was a 14 m long open part, like a glade or a meadow. We performed two studies in the cage. In the first study, we compared a population of a species with very restricted distribution in Sweden, Lopinga achine , and a population of a widely distributed and expanding species, Pararge aegeria . We found that the two species had similar habitat preferences in the cage, but that L. achine had a lower rate of dispersal from one shady part of the cage to the other. In the second study, we compared two populations of P. aegeria , a Swedish forest living population and a Madeiran population inhabiting a fairly open habitat. We found that, although individuals of the Swedish population avoided staying in the open, middle part of the cage, they dispersed between the shady parts of the cage at a higher rate than individuals of the Madeiran population. We argue that studies of the kind we performed can serve the purpose of testing hypotheses about habitat preference and mobility that derive from other field work or from information about distribution patterns.  相似文献   

8.
Resource control by territorial male cichlid fish in Lake Malawi   总被引:4,自引:0,他引:4  
1. The rocky habitat communities of Lake Malawi contain a high diversity of ecologically similar, predominantly herbivorous, cichlid fish species. How so many species can coexist is still unknown.
2. Adult males of the majority of these species hold permanent territories which form dense multispecies mosaics across the shores.
3. The study examined six coexisting species of cichlids from the rocky habitat where males are known to control access to the algal food resources within their territorial space. These included four sibling species of the Pseudotropheus ( Tropheops ) species complex, which are specialized epilithic algal herbivores, and two sibling species of the trophically more generalist P . ( Maylandia ) species complex which feed upon both epilithic algae and plankton.
4. The hypotheses that both intraspecific and interspecific territoriality occur in these communities and that interspecific aggression initiated by territorial males is preferentially directed at species with the most similar diets to their own were tested.
5. It was found that males preferred to exclude conspecific intruders, while they tolerated intruders with different diets to their own. Also, male P . ( Tropheops ) preferentially excluded similar heterospecific dietary specialists, while male P. ( Maylandia ) tolerated similar heterospecific dietary generalists.
6. Based on this study, it is proposed that interspecific territoriality may be reducing competition between species with different diets and promoting their coexistence, while it may be enhancing competition between species with the same diet. Furthermore, it suggests that ecological generalism may be reducing the intensity of interspecific competition, while specializations for the same resources may be increasing competition.  相似文献   

9.
Evidence of anthropogenic global climate change is accumulating, but its potential consequences for insect distributions have received little attention. We use a ''climate response surface'' model to investigate distribution changes at the northern margin of the speckled wood butterfly, Pararge aegeria. We relate its current European distribution to a combination of three bioclimatic variables. We document that P. aegeria has expanded its northern margin substantially since 1940, that changes in this species'' distribution over the past 100 years are likely to have been due to climate change, and that P. aegeria will have the potential to shift its range margin substantially northwards under predicted future climate change. At current rates of expansion, this species could potentially colonize all newly available climatically suitable habitat in the UK over the next 50 years or more. However, fragmentation of habitats can affect colonization, and we show that availability of habitat may be constraining range expansion of this species at its northern margin in the UK. These lag effects may be even more pronounced in less-mobile species inhabiting more fragmented landscapes, and highlight how habitat distribution will be crucial in predicting species'' responses to future climate change.  相似文献   

10.
Habitat selection is complex due to density dependence and functional responses, defined as variation in relative habitat use depending on availability. In this study we unite these concepts by empirically testing for density‐dependent functional responses in habitat selection using a large herbivore, elk Cervus canadensis manitobensis, as a model species. Theory on density‐dependent habitat selection predicts specialised behaviour when densities are low with a gradual switch to generalist behaviour (more even selection of habitat) as competition intensifies. This suggests that functional responses in habitat selection should be positive when competition is low, but that density may have a negative effect on the functional response due to constraining effects of competition on habitat use and availability. We tested this prediction using data from Global Positioning System (GPS) collared elk (n = 33) and empirical data on spatiotemporal variation in local density during winter in Riding Mountain National Park, Manitoba, Canada (2002–2011). As local density increased, winter home range size decreased and the proportion of mixed forest (providing shelter and forage to elk) used and available within the home range also decreased. Our resource selection function (RSF) revealed clear density‐dependent effects in selection, being strongest (or weakest) for high quality (or low quality) habitat types at lowest observed density leading to more even selection as densities increased. The functional response in mixed forest selection was negatively affected by local density. Increasing availability of mixed forest in the home range was associated with higher selection at low density (positive functional response); no effect of availability on selection at moderate density (no functional response); and lower selection as availability increased at high density (negative functional response). Our study demonstrates that this process is largely driven by the negative effect of density on home range size as it constrains use and availability of habitat.  相似文献   

11.
Climate is predicted to change rapidly in the current century, which may lead to shifts of species' ranges, reduced populations and extinctions. Predicting the responses of species abundance to climate change can provide valuable information to quantify climate change impacts and inform their management and conservation, but most studies have been limited to changes in habitat area due to a lack of abundance data. Here, we use generalized linear model and Bayesian information criteria to develop a predictive model based on the abundance of the grey‐headed robin (GHR) and the data of climatic environmental variables. The model is validated by leave‐one‐out cross‐validation and equivalence tests. The responses of GHR abundance, population size and habitat area by elevation are predicted under the current climate and 15 climate change scenarios. The model predicts that when temperature increases, abundance of GHR displays a positive response at high elevation, but a negative response at low elevation. High precipitation at the higher elevations is a limiting factor to GHR and any reduction in precipitation at high elevation creates a more suitable environment, leading to an increase in abundance of GHR, whereas changes in precipitation have little impact at low elevation. The loss of habitat is much more than would otherwise be assumed in response to climate change. Temperature increase is the predominant factor leading to habitat loss, whereas changes in precipitation play a secondary role. When climate changes, the species not only loses part of its habitat but also suffers a loss in its population size in the remaining habitat. Population size declines more than the habitat area under all considered climate change scenarios, which implies that the species might become extinct long before the complete loss of its habitat. This study suggests that some species might experience much more severe impacts from climate change than predicted from models of habitat area alone. Management policies based on predictions of habitat area decline using occurrence data need to be re‐evaluated and alternative measures need to be developed to conserve species in the face of rapid climate change.  相似文献   

12.
We compared resource utilization of two insular endemic mammalian carnivores, the island spotted skunk and island fox, along niche dimensions of space, food, and time on Santa Cruz Island. We predicted that resource use by foxes and skunks would differ along one or more niche dimensions, and that both species would have broader niches or higher densities compared with mainland relatives. Island foxes and island spotted skunks differed to some extent in habitat use, diets, and circadian activity, which may account for their long-term coexistence. Nonetheless, substantial overlap between skunks and foxes in spatial, dietary, and temporal dimensions suggests that competition between the two species does occur. Moreover, competition may be asymmetric, affecting skunks more than foxes. Compared with mainland foxes, island foxes have smaller body size, smaller home range, increased population density, increased diurnal activity, and behavior that is more highly inquisitive and less flightprone all common features of insular faunas. Island skunks, however, apparently have not developed these changes, perhaps due to asymmetric competition with foxes in conjunction with severe ecosystem disturbances caused by feral sheep.  相似文献   

13.
Six species of Meliphaga studied in detail in South Australia all differ in some important aspect of their ecology consistent with the concept of interspecific competition. Four species are very similar in their feeding ecology but show distinct habitat preferences. The two remaining species are rather different in their feeding ecology and frequently overlap with their congeners in habitat. Two other species, not studied in detail, also appear to have distinct habitat preferences. One species has increased its range of habitat on Kangaroo Island, in the absence of potential competitors. The case for interspecific competition playing a part in the moulding of the niches of species in this genus is thus strengthened.  相似文献   

14.
In order for competing species to coexist, segregation on some ecological niche component is required and is often mediated by differential habitat use. When unequal competitors are involved, the dominant species tends to displace the subordinate one to its less preferred habitat. Here, we use habitat isodars, an approach which reflects evolutionary stable strategies of habitat selection, to evaluate whether interspecific competition between two competing species with distinct habitat preferences, the little bustard Tetrax tetrax and the great bustard Otis tarda, modulates their habitat use. Field data on these endangered species demonstrate that unequal competitors can coexist without completely segregating on their preferred habitats. The negatively sloped isodar of the subordinate little bustard unveils its competition with the dominant great bustard. Interference from great bustards in secondary cereal habitats reinforces use of preferred natural habitat by little bustards. Studies of density‐dependent habitat selection by a single‐species can thus aid in identifying the effects of competition on community composition, and guide the conservation of at‐risk species. Isodars, in particular, represent a promising method to gain clear knowledge on interspecific competition for species in which experimental manipulations are not feasible.  相似文献   

15.
Aims According to conventional theory, larger plant species are likely to inflict more intense competition on other (smaller) species. We tested a deducible prediction from this: that a larger species should generally be expected to impose greater limits on the number of species that can coexist with it.Methods Species richness was sampled under plant canopies for a selection of woody species ('host' species) that display a wide range of adult sizes (from small shrubs to large trees), growing within natural vegetation of the Interior Douglas-fir zone of southern British Columbia, Canada. These data were compared with species richness levels sampled within randomly placed plots within the host species habitat.Important findings A prominent host species size effect on species richness was detected but only narrowly at the small end of the species size range. Across most (90%) of the increasing size range of host species, the number of species residing under the host canopy showed no significant decrease relative to the number expected by random assembly, based on species richness within randomly defined equivalent areas within the habitat of the host species. This apparent 'null effect', we suggest, is explained not because these larger species have no effect on community assembly. We postulate that larger species are indeed likely to be more effective in causing competitive exclusion of some smaller species (as expected from conventional theory), but that any potential limitation effect of this on resident species richness is offset for two reasons: (i) larger species also generate niche spaces that they cannot exploit under their own canopies and so have minimal impact (as competitors) on smaller species that can occupy these niches and (ii) certain other small species—despite small size—have effective competitive abilities under the severe competition that occurs within host neighbourhoods of larger species. These and other recent studies call for re-evaluation of traditional views on the role of plant size in affecting competitive ability and community assembly.  相似文献   

16.
Habitat selection in avian species is a hierarchical process driven by different factors acting at multiple scales. Habitat preferences and site fidelity are two main factors affecting how colonial birds choose their breeding locations. Although these two factors affect how colonial species choose their habitats, previous studies have only focused on one factor at a time to explain the distribution of species at regional scales. Here we used 28 yr of colony location data of herons and egrets around Ibaraki prefecture in Japan in order to analyze the relative importance of habitat preferences and colony site fidelity for selecting breeding locations. We used Landsat satellite images together with a ground survey‐based map to create land‐use maps for past years and determine the habitats surrounding the herons and egrets colonies. Combining the estimated colony site fidelity with the habitat data, we used a random forest algorithm to create habitat selection models, which allowed us to analyze the changes in the importance of those factors over the years. We found high levels of colony site fidelity for each year of study, with its relative importance as a predictor for explaining colony distribution increasing drastically in the most recent five years. The increase in collective site fidelity could have been caused by recent changes in the population size of grey herons Ardea cinerea, a key species for colony establishment. We observed a balance between habitat preferences and colony site fidelity: habitat preferences were a more powerful predictor of colony distribution until 2008, when colony site fidelity levels were lower. Considering changes in the relative importance of these factors can lead to a better understanding of the habitat selection process and help to analyze bird species’ responses to environmental changes.  相似文献   

17.
Understanding the ultimate causes for the presence of polymorphisms within populations requires knowledge of how the expression of discrete morphs is regulated. In the present study, we explored the determination mechanism of a colour dimorphism in larvae of the butterfly Pararge xiphia (Satyrinae: Nymphalidae) with the ultimate aim of understanding its potential adaptive value. Last-instar larvae of P. xiphia develop into either a green or a brown morph, although all individuals are invariably green during the preceding three instars. A series of laboratory experiments reveal that morph development is strongly environmentally dependent and not the result of alternative alleles at one locus. Photoperiod, temperature, and in particular larval density, all influenced morph determination. The strong effect of a high larval density in inducing the brown morph parallels other known cases of density-dependent melanization in Lepidopteran larvae. Because melanization is often correlated with increased immune function, this type of determination mechanism is expected to be adaptive. However, the ecology and behaviour of P. xiphia larvae suggests that increased camouflage under high-density conditions may be an additional adaptive explanation. We conclude that the colour dimorphism of P. xiphia larvae is determined by a developmental threshold that is influenced both by heredity and by environmental conditions, and that selection for increased immune function and camouflage under high-density conditions may be responsible for maintaining the dimorphism.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 256–266.  相似文献   

18.
BACKGROUND: Past and current range or spatial expansions have important consequences on population genetic structure. Habitat-use expansion, i.e. changing habitat associations, may also influence genetic population parameters, but has been less studied. Here we examined the genetic population structure of a Palaeartic woodland butterfly Pararge aegeria (Nymphalidae) which has recently colonized agricultural landscapes in NW-Europe. Butterflies from woodland and agricultural landscapes differ in several phenotypic traits (including morphology, behavior and life history). We investigated whether phenotypic divergence is accompanied by genetic divergence between populations of different landscapes along a 700 km latitudinal gradient. METHODOLOGY/PRINCIPAL FINDINGS: Populations (23) along the latitudinal gradient in both landscape types were analyzed using microsatellite and allozyme markers. A general decrease in genetic diversity with latitude was detected, likely due to post-glacial colonization effects. Contrary to expectations, agricultural landscapes were not less diverse and no significant bottlenecks were detected. Nonetheless, a genetic signature of recent colonization is reflected in the absence of clinal genetic differentiation within the agricultural landscape, significantly lower gene flow between agricultural populations (3.494) than between woodland populations (4.183), and significantly higher genetic differentiation between agricultural (0.050) than woodland (0.034) pairwise comparisons, likely due to multiple founder events. Globally, the genetic data suggest multiple long distance dispersal/colonization events and subsequent high intra- and inter-landscape gene flow in this species. Phosphoglucomutase deviated from other enzymes and microsatellite markers, and hence may be under selection along the latitudinal gradient but not between landscape types. Phenotypic divergence was greater than genetic divergence, indicating directional selection on some flight morphology traits. MAIN CONCLUSIONS/SIGNIFICANCE: Clinal differentiation characterizes the population structure within the original woodland habitat. Genetic signatures of recent habitat expansion remain, notwithstanding high gene flow. After differentiation through drift was excluded, both latitude and landscape were significant factors inducing spatially variable phenotypic variation.  相似文献   

19.
Behavioural stresses such as crowding are thought to incur a metabolic cost to insect larvae, and fluctuating asymmetry (FA) has been shown to be a possible indicator of this stress. A study of a Madeiran population of the butterfly Pararge aegeria L. (Lepidoptera: Satyrinae) shows that larval crowding affects larval development and growth, with female larvae being more adversely affected than males. It was predicted that if larval crowding increases FA, male and female P. aegeria adults may show different responses to this stress. The FA of five different wing pattern elements on the dorsal hindwings of adult male and female P. aegeria that had been reared at different larval densities was measured. Crowding in P. aegeria resulted in a trait-specific and sex-specific increase in FA. Although a significant correlation between FA and longevity was not observed, there was a significant correlation with egg-laying rate. Stressed females increased their egg-laying rate. An increased egg-laying rate may carry a further fitness cost through the offspring of stressed females, because high egg-laying rates are associated with a decline in oviposition site quality.  相似文献   

20.
Species losses and local extinctions are alarmingly common, frequently as a consequence of habitat destruction. Nevertheless, many intact habitats also face species losses, most likely due to environmental changes. However, the exact drivers, and why they affect some species more than others in apparently intact habitats, are still poorly understood. Addressing these questions requires data on changes in occurrence frequency of many species, and comparisons of the responses of those species to experimental manipulations of the environment. Here, we use historic (1911) and contemporary (2017) data on the presence–absence of 42 plant species in 14 seemingly intact Molinia meadows around Lower Lake Constance to quantify changes in occurrence frequency. Then, we performed a common‐garden experiment to test whether occurrence frequencies in 1911 and changes therein by 2017 could be explained by responses of the 42 species to nutrient addition and competition with the acquisitive generalist grass Poa pratensis. Within the 14 still intact Molinia meadows, 36 of the 42 species had declined since 1911. As expected, nutrient addition generally led to increased biomass production of the 42 target species, and competition with P. pratensis had a negative effect. The latter was stronger at high nutrient availability. The more frequent species were in 1911 and the more they declined in frequency between 1911 and 2017, the less above‐ground biomass they produced in our experiment. Competition with P. pratensis magnified this effect. Our work highlights that environmental change can contribute to local extinction of species in otherwise intact habitat remnants. Specifically, we showed that increased nutrient availability negatively affected formerly widespread Molinia‐meadow species in competition with P. pratensis. Our study thus identified a likely mechanism for the decline in occurrence frequency of species in the remaining Molinia meadows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号