首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
The molecular basis of a dramatically decreased steady state level of beta-hexosaminidase beta subunit mRNA in a patient with juvenile Sandhoff disease was investigated. Nucleotide sequence analysis of the HEXB gene coding for the beta subunit revealed two single base substitutions, one in exon 2 (A to G, a known polymorphism) and the other in exon 11 (C to T). Analysis of the beta subunit mRNA species demonstrated activation of a cryptic splice site in exon 11 as well as skipping of the exon. A transfection assay using a chimeric gene containing intron 10 flanked by cDNA sequences carrying the mutation confirmed that the single base substitution located at position 8 of exon 11 inhibits the selection of the normal 3' splice site. The results demonstrate a new type of exon mutation affecting 3' splice site selection.  相似文献   

3.
Recognition of 5' splice points by group I and group II self-splicing introns involves the interaction of exon sequences--directly preceding the 5' splice site--with intronic sequence elements. We show here that the exon binding sequences (EBS) of group II intron aI5c can accept various substitutes of the authentic intron binding sites (IBS) provided in cis or in trans. The efficiency of cleavages at these cryptic 5' splice sites was enhanced by deletion of the authentic IBS2 element. All cryptic 5' cleavage sites studied here were preceded by an IBS1 like sequence; indicating that the IBS1/EBS1 pairing alone is sufficient for proper 5' splice site selection by the intronic EBS element. The results are discussed in terms of minimal requirements for 5' cleavages and position effects of IBS sites relative to the intron.  相似文献   

4.
5.
The fourth exon of the mouse polymeric immuno-globulin receptor (pIgR) is 654 nt long and, despite being surrounded by large introns, is constitutively spliced into the mRNA. Deletion of an 84 nt sequence from this exon strongly activated both cryptic 5' and 3' splice sites surrounding a 78 nt cryptic intron. The 84 nt deletion is just upstream of the cryptic 3' splice site; the cryptic 3' splice site was likely activated because the deletion created a better 3' splice site. However, the cryptic 5' splice site was also required to activate the cryptic splice reaction; point mutations in either of the cryptic splice sites that decreased their match to the consensus splice site sequence inactivated the cryptic splice reaction. The activation and inactivation of these cryptic splice sites as a pair suggests that they are being co-recognized by the splicing machinery. Interestingly, the large fourth exon of the pIgR gene encodes two immunoglobulin-like extracellular protein domains; the cryptic 3' splice site coincides with the junction between these protein domains. The cryptic 5' splice site is located between protein subdomains where an intron is found in another gene of the immunoglobulin superfamily.  相似文献   

6.
Regulation of calcitonin (CT)/calcitonin gene-related peptide (CGRP) RNA processing involves the use of alternative 3' terminal exons. In most tissues and cell lines, the CT terminal exon is recognized. In an attempt to define regulatory sequences involved in the utilization of the CT-specific terminal exon, we performed deletion and mutation analyses of a mini-gene construct that contains the CT terminal exon and mimics the CT processing choice in vivo. These studies identified a 127-nucleotide intron enhancer located approximately 150 nucleotides downstream of the CT exon poly(A) cleavage site that is required for recognition of the exon. The enhancer contains an essential and conserved 5' splice site sequence. Mutation of the splice site resulted in diminished utilization of the CT-specific terminal exon and increased skipping of the CT exon in both the mini-gene and in the natural CT/CGRP gene. Other components of the intron enhancer modified utilization of the CT-specific terminal exon and were necessary to prevent utilization of the 5' splice site within the intron enhancer as an actual splice site directing cryptic splicing. Conservation of the intron enhancer in three mammalian species suggests an important role for this intron element in the regulation of CT/CGRP processing and an expanded role for intronic 5' splice site sequences in the regulation of RNA processing.  相似文献   

7.
Group I self-splicing introns have a 5' splice site duplex (P1) that contains a single conserved base pair (U.G). The U is the last nucleotide of the 5' exon, and the G is part of the internal guide sequence within the intron. Using site-specific mutagenesis and analysis of the rate and accuracy of splicing of the Tetrahymena thermophila group I intron, we found that both the U and the G of the U.G pair are important for the first step of self-splicing (attack of GTP at the 5' splice site). Mutation of the U to a purine activated cryptic 5' splice sites in which a U.G pair was restored; this result emphasizes the preference for a U.G at the splice site. Nevertheless, some splicing persisted at the normal site after introduction of a purine, suggesting that position within the P1 helix is another determinant of 5' splice site choice. When the U was changed to a C, the accuracy of splicing was not affected, but the Km for GTP was increased by a factor of 15 and the catalytic rate constant was decreased by a factor of 7. Substitution of U.A, U.U, G.G, or A.G for the conserved U.G decreased the rate of splicing by an even greater amount. In contrast, mutation of the conserved G enhanced the second step of splicing, as evidenced by a trans-splicing assay. Furthermore, a free 5' exon ending in A or C instead of the conserved U underwent efficient ligation. Thus, unlike the remainder of the P1 helix, which functions in both the first and second steps of self-splicing, the conserved U.G appears to be important only for the first step.  相似文献   

8.
Effect of 5'' splice site mutations on splicing of the preceding intron.   总被引:48,自引:21,他引:27       下载免费PDF全文
Three exon constructs containing identical intron and exon sequences were mutated at the 5' splice site beginning intron 2 and assayed for the effect of the mutation on splicing of the upstream intron in vitro. Alteration of two or six bases within the 5' splice site reduced removal of intron 1 at least 20-fold, as determined by quantitation of either spliced product or released lariat RNA. The prominent product was skip splicing of exon 1 to exon 3. Examination of complex formation indicated that mutation of the 5' splice site terminating exon 2 depressed the ability of precursor RNAs containing just the affected exon to direct assembly in vitro. These results suggest that mutation at the end of an internal exon inhibits the ability of the exon to be recognized by splicing factors. A comparison of the known vertebrate 5' splice site mutations in which the mutation resides at the end of an internal exon indicated that exon skipping is the preferred phenotype for this type of mutation, in agreement with the in vitro observation reported here. Inhibition of splicing by mutation at the distal and of the exon supports the suggestion that exons, rather than splice sites, are the recognition units for assembly of the spliceosome.  相似文献   

9.
Inclusion of fibronectin alternative exon B in mRNA is developmentally regulated. Here we demonstrate that exon B contains two unique purine-rich sequence tracts, PRE1 and PRE2, that are important for proper 5' splice site selection both in vivo and in vitro. Targeted mutations of both PREs decreased the inclusion of exon B in the mRNA by 50% in vivo. Deletion or mutation of the PREs reduced removal of the downstream intron, but not the upstream intron, and induced the activation of cryptic 5' splice sites in vitro. PRE-mediated 5' splice selection activity appears sensitive to position and sequence context. A well characterized exon sequence enhancer that normally acts on the upstream 3' splice site can partially rescue proper exon B 5' splice site selection. In addition, we found that PRE 5' splice selection activity was preserved when exon B was inserted into a heterologous pre-mRNA substrate. Possible roles of these unique activities in modulating exon B splicing are considered.  相似文献   

10.
The first intron of the early region 3 from adenovirus type 2 contains a cryptic 5' splice site, Dcr1, 74 nucleotides downstream from the natural site D1. The cryptic site can be activated when the natural site is inactivated by mutagenesis. To investigate the basis for selection between a natural and a cryptic 5' splice site, we searched for cis-acting elements responsible for the exclusive selection of the natural site. We show that both the relative intrinsic strength of the sites and the sequence context affect the selection. A 120-nucleotide segment located at the 3' end of exon 1 enhances splicing at the proximal site D1; in its absence the two sites are used according to their strength. Thus, three cis-acting elements are involved in the silencing of the cryptic site: the sequence of D1, the sequence of Dcr1, and an upstream exonic sequence. We show that the exonic element folds, in solution, into a 113-nucleotide-long stem-loop structure. We propose that this potential stem-loop structure which is located 6 nucleotides upstream of the exon 1-intron junction is responsible for the preferential use of the natural 5' splice site.  相似文献   

11.
Activation of a cryptic 5' splice site by U1 snRNA   总被引:1,自引:0,他引:1       下载免费PDF全文
In the course of analyzing 5' splice site mutations in the second intron of Schizosaccharomyces pombe cdc2, we identified a cryptic 5' junction containing a nonconsensus nucleotide at position +2. An even more unusual feature of this cryptic 5' junction was its pattern of activation. By analyzing the profile of splicing products for an extensive series of cdc2 mutants in the presence and absence of compensatory U1 alleles, we have obtained evidence that the natural 5' splice site participates in activation of the cryptic 5' splice site, and that it does so via base pairing to U1 snRNA. Furthermore, the results of follow-up experiments strongly suggest that base pairing between U1 snRNA and the cryptic 5' junction itself plays a dominant role in its activation. Most remarkably, a mutant U1 can activate the cryptic 5' splice site even in the presence of a wild-type sequence at the natural 5' junction, providing unambiguous evidence that this snRNA redirects splicing via base pairing. Although previous work has demonstrated that U5 and U6 snRNAs can activate cryptic 5' splice sites through base pairing interactions, this is the first example in which U1 snRNA has been implicated in the final selection of a cryptic 5' junction.  相似文献   

12.
A two-site model for the binding of U1 small nuclear ribonucleoprotein particle (U1 snRNP) was tested in order to understand how exon partners are selected in complex pre-mRNAs containing alternative exons. In this model, it is proposed that two U1 snRNPs define a functional unit of splicing by base pairing to the 3' boundary of the downstream exon as well as the 5' boundary of the intron to be spliced. Three-exon substrates contained the alternatively spliced exon 4 (E4) region of the preprotachykinin gene. Combined 5' splice site mutations at neighboring exons demonstrate that weakened binding of U1 snRNP at the downstream site and improved U1 snRNP binding at the upstream site result in the failure to rescue splicing of the intron between the mutations. These results indicate the stringency of the requirement for binding a second U1 snRNP to the downstream 5' splice site for these substrates as opposed to an alternative model in which a certain threshold level of U1 snRNP can be provided at either site. Further support for the two-site model is provided by single-site mutations in the 5' splice site of the third exon, E5, that weaken base complementarity to U1 RNA. These mutations block E5 branchpoint formation and, surprisingly, generate novel branchpoints that are specified chiefly by their proximity to a cryptic 5' splice site located at the 3' terminus of the pre-mRNA. The experiments shown here demonstrate a true stimulation of 3' splice site activity by the downstream binding of U1 snRNP and suggest a possible mechanism by which combinatorial patterns of exon selection are achieved for alternatively spliced pre-mRNAs.  相似文献   

13.
14.
We have characterized the in vitro self-splicing of intron aI5 alpha containing precursor RNA from the yeast mitochondrial gene coding for cytochrome oxidase subunit I. This intron follows the rules for group I self-splicing introns and all the characteristic products have been identified. In addition we have detected abnormal RNA products with features that indicate that the self-splicing behaviour of this intron is more complex. Two intron circles are formed by use of a major and minor intron-internal site for circle closure. A cryptic 5'-splice site located in the 3' exon results in guanosine nucleotide mediated opening at a position 30 nt downstream of the normal 3' splice site. The reactions can all be explained on the basis of the "splice guide" model proposed by Davies et al (1982 Nature 300 719-724). Although the sequence motifs at cyclization and splice sites occur more often in this intron, only some of them are allowed to interact with the internal guide sequence, suggesting that both primary structure and spatial folding of the RNA are involved in formation of productive reaction sites.  相似文献   

15.
Precursor RNA transcribed from the yeast mitochondrial gene coding for the large ribosomal RNA contains a group I intron that can excise itself in vitro. Apart from group I specific sequence elements the intron also contains a gene encoding a DNA endonuclease involved in intron dispersal. A precursor RNA derivative from which this gene has been removed self-splices efficiently, but due to activation of cryptic opening sites located in the 5' exon, the 3' part of this exon is sometimes co-excised with the intron. Upon further reaction, this enlarged intron molecules give rise to interlocked circles, comprising small circles derived from 5' exon parts and large circles of the intron. Sequence comparison between cryptic opening sites and authentic splice sites reveals in most cases homology with the 3' exon part that is capable of interacting with the Internal Guide Sequence. The role of the IGS was further substantiated by replacing the cryptic opening sites with well defined sequences of authentic splice sites: one corresponding to the 3' splice site and its mutant derivatives, the other to a fragment containing the natural 5'-3' exon junction. Precursor RNAs derived from these constructs give rise to interlocked circles, and mutation studies confirm that the 3' exon nucleotides flanking a 3' splice site are essential for their formation. The results underline the crucial role of the IGS in interlocked circle formation which behaves similarly as in the normal self-splicing reactions. It has been proposed that the two short helices formed by basepairing of the IGS with the 5' and 3' exon can co-axially stack on top of each other forming a quasi continuous RNA double helix or pseudoknot. We present a model explaining how transesterification reactions of a mutant precursor RNA in such a pseudoknot can lead to interlocked circles. The experiments support the notion that a similar structure is also operative in splicing of wild type precursor RNA.  相似文献   

16.
We report that the 3' splice site associated with the alternatively spliced exon 6 of the Fas receptor CD95 displays strict sequence requirements and that a mutation that disrupts this particular sequence arrangement leads to constitutive exon 6 skipping in a patient suffering from autoimmune lymphoproliferative syndrome (ALPS). Specifically, we find an absolute requirement for RCAG/G at the 3' splice site (where R represents purine, and / indicates the intron/exon boundary) and the balance between exon inclusion and skipping is exquisitely sensitive to single nucleotide variations in the uridine content of the upstream polypyrimidine (Py)-tract. Biochemical experiments revealed that the ALPS patient mutation reduces U2 snRNP recruitment to the 3' splice site region and that this effect cannot be explained by decreased interaction with the U2 snRNP Auxiliary Factor U2AF, whose 65- and 35-kDa subunits recognize the Py-tract and 3' splice site AG, respectively. The effect of the mutation, which generates a tandem of two consecutive AG dinucleotides at the 3' splice site, can be suppressed by increasing the distance between the AGs, mutating the natural 3' splice site AG or increasing the uridine content of the Py-tract at a position distal from the 3' splice site. The suppressive effects of these additional mutations correlate with increased recruitment of U2 snRNP but not with U2AF binding, again suggesting that the strict architecture of Fas intron 5 3' splice site region is tuned to regulate alternative exon inclusion through modulation of U2 snRNP assembly after U2AF binding.  相似文献   

17.
A conserved 3' splice site YAG is essential for the second step of pre-mRNA splicing but no trans-acting factor recognizing this sequence has been found. A direct, non-Watson-Crick interaction between the intron terminal nucleotides was suggested to affect YAG selection. The mechanism of YAG recognition was proposed to involve 5' to 3' scanning originating from the branchpoint or the polypyrimidine tract. We have constructed a yeast intron harbouring two closely spaced 3' splice sites. Preferential selection of a wild-type site over mutant ones indicated that the two sites are competing. For two identical sequences, the proximal site is selected. As previously observed, an A at the first intron nucleotide spliced most efficiently with a 3' splice site UAC. In this context, UAA or UAU were also more efficient 3' splice sites than UAG and competed more efficiently than the wild-type sequence with a 3' splice site UAC. We observed that a U at the first intron nucleotide is used for splicing in combination with 3' splice sites UAG, UAA or UAU. Our data indicate that the 3' splice site is not primarily selected through an interaction with the first intron nucleotide. Selection of the 3' splice site depends critically on its distance from the branchpoint but does not occur by a simple leaky scanning mechanism.  相似文献   

18.
19.
We previously reported that exon skipping in vivo due to point mutations in the 5' splice site (5'ss) signal of an internal mammalian exon can be prevented by coexpression of U1 small nuclear RNAs, termed shift-U1s, with complementarity to sequence upstream or downstream of the mutated site. We now show by S1 nuclease protection experiments that a typical shift-U1 restores splicing of the upstream intron, but not necessarily of the down stream intron. This indicates that the normal 5'ss sequence acts as an enhancer for splicing of the upstream intron, that it owes this activity to base pairing with U1, and that the enhancer activity is reproduced by base pairing of U1 with other sequences in the area. Shift-U1s are dispensable when the 3'ss sequence of the upstream intron is improved, which suggests that base pairing of U1 with sequences at or near the downstream end of the exon normally functions by compensating for a weakness in the upstream 3'ss. Accordingly, U1 appears to be involved in communication across the exon, but our data indicate at the same time that extensive base pairing between U1 and the 5'ss sequence is not necessary for accurate splicing of the downstream intron. These findings are discussed in relation to the coordinate selection exon termini proposed by the exon definition model.  相似文献   

20.
The Tetrahymena intron, after splicing from its flanking exons, can mediate its own circularization. This is followed by site-specific hydrolysis of the phosphodiester bond formed during the circularization reaction. The structural components involved in recognition of this bond for hydrolysis have not been established. We have made base substitutions to the P9.0 pairing and at the 3'-terminal guanosine residue (G414) of the intron to investigate their effects on circle formation and reopening. We have found that disruption of either P9.0 pairing or binding of the terminal nucleotide result in the formation of a large circle, C-413:5E23 from precursor RNA molecules that have undergone hydrolysis at the 3' splice site. This circle is formed at the phosphodiester bond of the 5'-terminal guanosine residue of the upstream exon via nucleophilic attack by the 3'-terminal nucleotide of the intron. The large circle is novel since it can reopen eight bases downstream from the original circularization junction at a site resembling the normal 3' splice site, restoring a guanosine to the 3' terminus and re-establishing P9.0 pairing. The new 3' terminus of the intron is capable of recircularization at any of the three normal wild-type sites. We conclude that both P9.0 and the 3'-terminal guanosine residue are required for the selection of the phosphodiester bond hydrolysed during circle reopening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号