首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Integrated process concepts for enzymatic cephalexin synthesis were investigated by our group, and this article focuses on the integration of reactions and product removal during the reactions. The last step in cephalexin production is the enzymatic kinetic coupling of activated phenylglycine (phenylglycine amide or phenylglycine methyl ester) and 7-aminodeacetoxycephalosporanic acid (7-ADCA). The traditional production of 7-ADCA takes place via a chemical ring expansion step and an enzymatic hydrolysis step starting from penicillin G. However, 7-ADCA can also be produced by the enzymatic hydrolysis of adipyl-7-ADCA. In this work, this reaction was combined with the enzymatic synthesis reaction and performed simultaneously (i.e., one-pot synthesis). Furthermore, in situ product removal by adsorption and complexation were investigated as means of preventing enzymatic hydrolysis of cephalexin. We found that adipyl-7-ADCA hydrolysis and cephalexin synthesis could be performed simultaneously. The maximum yield on conversion (reaction) of the combined process was very similar to the yield of the separate processes performed under the same reaction conditions with the enzyme concentrations adjusted correctly. This implied that the number of reaction steps in the cephalexin process could be reduced significantly. The removal of cephalexin by adsorption was not specific enough to be applied in situ. The adsorbents also bound the substrates and therewith caused lower yields. Complexation with beta-naphthol proved to be an effective removal technique; however, it also showed a drawback in that the activity of the cephalexin-synthesizing enzyme was influenced negatively. Complexation with beta-naphthol rendered a 50% higher cephalexin yield and considerably less byproduct formation (reduction of 40%) as compared to cephalexin synthesis only. If adipyl-7-ADCA hydrolysis and cephalexin synthesis were performed simultaneously and in combination with complexation with beta-naphthol, higher cephalexin concentrations also were found. In conclusion, a highly integrated process (two reactions simultaneously combined with in situ product removal) was shown possible, although further optimization is necessary.  相似文献   

2.
Reactive separations using green catalysts offer great opportunities for manufacturing fatty esters, involved in specialty chemicals and biodiesel production. Integrating reaction and separation into one unit provides key benefits such as: simplified operation, no waste, reduced capital investment and low operating costs.This work presents a novel heat-integrated reactive absorption process that eliminates all conventional catalyst related operations, efficiently uses the raw materials and equipment, and considerably reduces the energy requirements for biodiesel production - 85% lower as compared to the base case. Rigorous simulations based on experimental results were carried out using Aspen Plus and Dynamics. Despite the high degree of integration, the process is well controllable using an efficient control structure proposed in this work. The main results are provided for a plant producing 10 ktpy fatty acid methyl esters from methanol and waste vegetable oil with high free fatty acids content, using sulfated zirconia as solid acid catalyst.  相似文献   

3.
This paper presents a research interest concentrating on aims to establish a feasible industrial process for enzymatic production of highly pure glycerol monooleate (GMO). The synthesis of high oleic glycerol monooleate by enzymatic glycerolysis of high oleic sunflower oil, using Novozyme 435 as the biocatalyst, in a binary solvent mixture of tert-butanol and tert-pentanol (80/20, v/v), at a lab scale has been studied. A yield of 75.31% monoacylglycerol has been achieved at the first stage. A yield of 93.3% GMO was finally reached after further purification at the second stage. To evaluate the possibility of the process for industrialization, production of GMO was performed at a pilot-plant scale under the correspondingly adjusted conditions. A yield of 68.17% and 93.4% of GMO was obtained, respectively, at the end of the three stages.  相似文献   

4.
Herein we report the practical chemo enzymatic synthesis of trisaccharide and derivatives of iGb3 and Gb3, and a novel purification process using immobilized yeast to remove the monosaccharide from the reaction mixture. High purity oligosaccharide compounds were achieved in large scale. This study represents a facile enzymatic synthesis of and novel purification process of oligosaccharide.  相似文献   

5.
Abstract

Panthenyl esters (panthenyl monoacetate and panthenyl diacetate) were synthesized in high yields (≈100%) by a kinetic reaction control using a commercial immobilized Candida Antarctica lipase B (Novozyme 435) in acetonitrile. The enzyme showed excellent synthetic activity, regioselectivity, and operational stability under the conditions used.  相似文献   

6.
Enzymes are potential catalysts for a wide range of large-scale chemical synthesis steps, particularly when the creation of a specific chiral center is desired. The efficient recycling of the enzyme catalyst and the removal of carryover impurities were crucial factors in the improvement of a stereoselective ester hydrolysis step used in the synthesis of a selective leukotriene antagonist. In this enzymatic reaction step, the substrate and product were both largely insoluble, while the enzyme was soluble in the aqueous reaction mixture. Microfiltration and ultrafiltration of the slurry reaction mother liquor indicated near 100% enzyme protein recovery, while activity recovery was about 70% to 80%. These activity losses might be accounted for by enzyme degradation (1 to 2 mg/L . h) during the 40-hour reaction period. Dissolved impurities, principally a diacid byproduct, in the enzyme recycling stream were reduced 60% to 70% by either lowering the solution pH to 4.0 or raising the solution ionic strength to 1 M. (c) 1993 John Wiley & Sons, Inc.  相似文献   

7.
8.
A novel method for synthesizing CMP-NeuAc was established. We first confirmed that the putative neuA gene of Haemophilus influenzae, identified by its whole genome sequence project, indeed encodes CMP-NeuAc synthetase (EC 2.7.7.43). The enzyme requires CTP as a cytidylyl donor for cytidylylation of NeuAc. The enzyme was coupled with an enzymatic CTP-generating system from CMP and inorganic polyphosphate as a sole phospho-donor driven by the combination of polyphosphate kinase and CMP kinase, where phosphorylation of CMP is done by the combined activity expressed by both enzymes, and subsequent phosphorylation of CDP by polyphosphate kinase itself occurred efficiently. When CMP-NeuAc synthetase of H. influenzae, polyphosphate kinase, and CMP kinase were added to the reaction mixture containing equimolar concentrations (15 mM) of CMP and NeuAc, and polyphosphate (150 mM in terms of phosphate), CMP-NeuAc was synthesized up to 10 mM in 67% yield.  相似文献   

9.
Summary Enzymatic reactions were performed in a modified auto-injector unit of a Shimadzu HPLC system. The reactions were analyzed by automated injections directly into the HPLC separation system. Two reactions were studied, and the enzymes mandelonitrile lyase and α-chymotrypsin were immobilized by adsorption onto a solid support, e.g., Celite and Chromosorb. The reactions were performed in various organic solvents e.g., diisopropyl ether, heptane/ethyl acetate mixtures and acetonitrile.  相似文献   

10.
Two well-established methods to prepare glycogen are available: (1) extraction from natural resources such as shellfish and animal tissues; (2) synthesis from glucose-1-phosphate using two enzymes, α-glucan phosphorylase (EC 2.4.1.1) and branching enzyme (EC 2.4.1.18). We have developed a novel enzymatic process for glycogen production, in which short-chain amylose is first prepared from starch or dextrin by using isoamylase (EC 3.2.1.68), and then branching enzyme and amylomaltase (EC 2.4.1.25) are added to synthesize glycogen. Our enzymatic process, using isoamylase, branching enzyme and amylomaltase, is currently the most efficient for glycogen production. Furthermore, the molecular weight of glycogen is controllable in a range of 3.0×106 to 3.0×107 by adjusting some parameters of the reaction.  相似文献   

11.
12.
13.
14.
Investigation of the enzymatic synthesis of sphingomyelin   总被引:4,自引:0,他引:4  
  相似文献   

15.
The kinetics of the enzymatic synthesis of benzylpenicillin catalysed by penicillin amidase (EC 3.5.1.11) from Escherichia coli have been studied. Both free phenylacetic acid (PAA) and its activated derivative, phenylacetylglycine (PAG), were used in the synthesis as acylating agents for 6-aminopenicillanic acid (6-APA). The catalytic rate constants for synthesis carried out at pH 6.0 were 11.2 and 25.2 s−1, respectively, i.e. they are close and have high absolute values. The main feature of the enzymatic synthesis of benzylpenicillin from phenylacetylglycine, compared with the synthesis from phenylacetic acid, is the shape of the progress curve of antibiotic accumulation. In the former case, benzylpenicillin gradually accumulates until equilibrium is reached. Thus, if the reaction is carried out at the thermodynamically optimum pH of synthesis (low pH), penicillin can be obtained in high yield. In the case of phenylacetylglycine, the kinetic curves are more complex and are characterized by a clear-cut maximum. The presence of the maximum, its value and position on the time axis depend on reagent concentration and on the pH used. A kinetic scheme is proposed which describes well the experimental dependencies. The possibility of using activated acid derivatives in synthesis and the advantages of using computer calculations for process optimization are discussed.  相似文献   

16.
17.
18.
The enzymatic synthesis of sphingosine   总被引:5,自引:0,他引:5  
  相似文献   

19.
20.
UDP-GalNAc has been synthesised with high yield from GalNAc, UTP and ATP using recombinant human GalNAc kinase GK2 and UDP-GalNAc pyrophosphorylase AGX1. Both enzymes have been prepared in one step from 1 L cultures of transformed Escherichia coli and the UDP-GalNAc produced has been purified by a simple procedure. The method described is a rapid and efficient means to produce UDP-GalNAc as well as analogues like UDP-N-azidoacetylgalactosamine (UDP-GalNAz).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号