首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell-cell recognition is the key for muhicellular organisms to survive. This recognition critically depends on protein-protein interactions from opposing cell surfaces. Recent structural investigations reveal unique features of these cell surface receptors and how they interact. These interactions are specific, but usually relatively weak, with more hydrophilic forces involved in binding. The receptors appear to have specialized ways to present their key interacting elements for ligand-binding from the cell surface. Cell-cell contacts are multivalent. A large group of cell surface molecules are engaged in interactions. Characteristic weak interactions make possible for each individual molecule pair within the group to constantly associate-dissociate-reassociate, such that the cell-cell recognition becomes a dynamic process. The immunological synapse is a good example for immune receptors to be orchestrated in performing immunological function in a collective fashion.  相似文献   

2.
A 90-kD lymphocyte surface glycoprotein, defined by monoclonal antibodies of the Hermes series, is involved in lymphocyte recognition of high endothelial venules (HEV). Lymphocyte gp90Hermes binds in a saturable, reversible fashion to the mucosal vascular addressin (MAd), a tissue-specific endothelial cell adhesion molecule for lymphocytes. We and others have recently shown that the Hermes antigen is identical to or includes CD44 (In[Lu]-related p80), human Pgp-1, and extracellular matrix receptor III-molecules reportedly expressed on diverse cell types. Here, we examine the relationship between lymphoid and nonlymphoid Hermes antigens using serologic, biochemical, and, most importantly, functional assays. Consistent with studies using mAbs to CD44 or Pgp-1, mAbs against five different epitopes on lymphocyte gp90Hermes reacted with a wide variety of nonhematolymphoid cells in diverse normal human tissues, including many types of epithelium, mesenchymal elements such as fibroblasts and smooth muscle, and a subset of glia in the central nervous system. To ask whether these non-lymphoid molecules might also be functionally homologous to lymphocyte homing receptors, we assessed their ability to interact with purified MAd using fluorescence energy transfer techniques. The Hermes antigen isolated from both glial cells and fibroblasts--which express a predominant 90-kD form similar in relative molecular mass, isoelectric point, and protease sensitivity to lymphocyte gp90Hermes--was able to bind purified MAd. In contrast, a 140-160-kD form of the Hermes antigen isolated from squamous epithelial cells lacked this capability. Like lymphocyte binding to mucosal HEV, the interaction between glial gp90Hermes and MAd is inhibited by mAb Hermes-3, but not Hermes-1, suggesting that similar molecular domains are involved in the two binding events. The observation that the Hermes/CD44 molecules derived from several nonlymphoid cell types display binding domains homologous to those of lymphocyte homing receptors suggests that these glycoproteins represent a novel type of cell adhesion/recognition molecule (H-CAM) potentially mediating cell-cell or cell-matrix interactions in multiple tissues.  相似文献   

3.
The three HLA class II alleles of the DR2 haplotype, DRB1*1501, DRB5*0101, and DQB1*0602, are in strong linkage disequilibrium and confer most of the genetic risk to multiple sclerosis. Functional redundancy in Ag presentation by these class II molecules would allow recognition by a single TCR of identical peptides with the different restriction elements, facilitating T cell activation and providing one explanation how a disease-associated HLA haplotype could be linked to a CD4+ T cell-mediated autoimmune disease. Using combinatorial peptide libraries and B cell lines expressing single HLA-DR/DQ molecules, we show that two of five in vivo-expanded and likely disease-relevant, cross-reactive cerebrospinal fluid-infiltrating T cell clones use multiple disease-associated HLA class II molecules as restriction elements. One of these T cell clones recognizes >30 identical foreign and human peptides using all DR and DQ molecules of the multiple sclerosis-associated DR2 haplotype. A T cell signaling machinery tuned for efficient responses to weak ligands together with structural features of the TCR-HLA/peptide complex result in this promiscuous HLA class II restriction.  相似文献   

4.
Hans R. Schöler  Peter Gruss 《Cell》1984,36(2):403-411
Using an in vivo assay, we have obtained competition between several types of enhancer-containing molecules for cellular components that interact with them. The presence of these cellular factors is required for enhancer function. Specific competition involved enhancers and not other SV40 promoter elements such as the 21 bp repeats or TATA box. Point mutants within the 72 bp repeat of SV40 that were defective in enhancer function were unable to compete for the cellular components in the competition assay. Although heterologous enhancers compete in several types of cells for the same set of cellular molecules, the host cell preference of different enhancers is reflected in the competition assay. This result might explain the previously described host cell preference of enhancer elements.  相似文献   

5.
Costimulation of T cells by OX40, 4-1BB,and CD27   总被引:6,自引:0,他引:6  
Costimulatory signals have been defined as signals brought about by ligation of membrane bound molecules that synergize with, or modify, signals provided when the T cell receptor engages peptide-MHC complexes. In large part, costimulatory signals are essential for many facets of a T cell response, and the general rule is that without these signals, a T cell is ineffective and may often succumb to death or become unresponsive. Until recently, costimulation has been dominated by studies of the Ig superfamily member, CD28, a constitutively expressed molecule that is required to initiate a majority of T cell responses. However, growing evidence over the past few years has now shown that several members of the TNFR family, OX40 (CD134), 4-1BB (CD137), and CD27, are equally important to the effective generation of many types of T cell response. In contrast to CD28, these molecules are either induced or highly upregulated on the T cell surface a number of hours or days after recognition of antigen, and appear to provide signals to allow continued cell division initially regulated by CD28 and/or to prevent excessive cell death several days into the response. An argument can be made that these molecules control the absolute number of effector T cells that are generated at the peak of the immune response and dictate the frequency of memory T cells that subsequently develop. The exact relationship between OX40, 4-1BB, and CD27, is at present unknown, including whether these molecules act together, or sequentially, or control differing types of T cell response. This review will focus on recent studies of these molecules and discuss their implications.  相似文献   

6.
RNA structural motifs are recurrent structural elements occurring in RNA molecules. RNA structural motif recognition aims to find RNA substructures that are similar to a query motif, and it is important for RNA structure analysis and RNA function prediction. In view of this, we propose a new method known as RNA Structural Motif Recognition based on Least-Squares distance (LS-RSMR) to effectively recognize RNA structural motifs. A test set consisting of five types of RNA structural motifs occurring in Escherichia coli ribosomal RNA is compiled by us. Experiments are conducted for recognizing these five types of motifs. The experimental results fully reveal the superiority of the proposed LS-RSMR compared with four other state-of-the-art methods.  相似文献   

7.
In addition to their role as peptide binding proteins, MHC class II proteins can also function as signal transducing molecules. Recent work using B cells expressing genetically engineered truncated MHC class II molecules has suggested that signaling through the cytoplasmic domains of these proteins plays an important role in the generation of signals required for the activation of some T cell hybrids. Treatment of truncated Ia-expressing B cells with cAMP-elevating agents corrects the deficiency in Ag presentation by these cells. We report that the MHC class II-mediated signal appears to act by a mechanism that increases the efficiency of Ag presentation by B cells thereby lowering the amount of specific Ag required for T cell activation. We further show that the induction of the cAMP-induced signal in B cells is inhibited by cycloheximide and cytochalasin A, implicating protein synthesis as well as cytoskeletal rearrangements in Ag presentation to accessory signal- dependent hybrids. In contrast, these agents do not block Ag presentation to a T cell hybrid previously shown not to require the cAMP-induced signal for activation. The signal-dependent T hybrid is additionally dependent on LFA-1-ICAM-1 interaction for activation, whereas the signal-independent hybrid is not. These observations suggest the existence of two types of T cell hybrid with respect to their requirements for activation: those that require only the recognition of MHC class II-peptide complexes without accessory signals, as shown by their ability to respond to purified Ia on planar membranes, and those that, in addition to recognition of MHC II/Ag, require LFA-1-ICAM-1 interaction and the delivery of additional signal(s) induced in the B cell via signal transduction through MHC class II molecules.  相似文献   

8.
MHC-linked class-Ib molecules are a subfamily of class-I molecules that display limited genetic polymorphism. At one time these molecules were considered to have an enigmatic function. However, recent studies have shown that MHC-linked class-Ib molecules can function as antigen presentation structures that bind bacteria-derived epitopes for recognition by CD8+ effector T cells. This role for class-Ib molecules has been demonstrated across broad classes of intracellular bacteria including Listeria moncytogenes, Salmonella typhimurium, and Mycobacterium tuberculosis. Additionally, evidence is emerging that MHC-linked class-Ib molecules also serve an integral role as recognition elements for NK cells as well as several TCR alpha/beta and TCR gamma/delta T-cell subsets. Thus, MHC-linked class-Ib molecules contribute to the host immune response by serving as antigen presentation molecules and recognition ligands in both the innate and adaptive immune response to infection. In this review, we will attempt to summarize the work that supports a role for MHC-linked class-Ib molecules in the host response to infection with intracellular bacteria.  相似文献   

9.
The intriguing cell biology of apoptotic cell death results in the externalization of numerous autoantigens on the apoptotic cell surface, including protein determinants for specific recognition, linked to immune responses. Apoptotic cells are recognized by phagocytes and trigger an active immunosuppressive response ("innate apoptotic immunity" (IAI)) even in the absence of engulfment. IAI is responsible for the lack of inflammation associated normally with the clearance of apoptotic cells; its failure also has been linked to inflammatory and autoimmune pathology, including systemic lupus erythematosus and rheumatic diseases. Apoptotic recognition determinants underlying IAI have yet to be identified definitively; we argue that these molecules are surface-exposed (during apoptotic cell death), ubiquitously expressed, protease-sensitive, evolutionarily conserved, and resident normally in viable cells (SUPER). Using independent and unbiased quantitative proteomic approaches to characterize apoptotic cell surface proteins and identify candidate SUPER determinants, we made the surprising discovery that components of the glycolytic pathway are enriched on the apoptotic cell surface. Our data demonstrate that glycolytic enzyme externalization is a common and early aspect of cell death in different cell types triggered to die with distinct suicidal stimuli. Exposed glycolytic enzyme molecules meet the criteria for IAI-associated SUPER determinants. In addition, our characterization of the apoptosis-specific externalization of glycolytic enzyme molecules may provide insight into the significance of previously reported cases of plasminogen binding to α-enolase on mammalian cells, as well as mechanisms by which commensal bacteria and pathogens maintain immune privilege.  相似文献   

10.
The lytic function of human natural killer (NK) cells is markedly influenced by recognition of class I major histocompatibility complex (MHC) molecules, a process mediated by several types of activating and inhibitory receptors expressed on the NK cell. One of the most important of these mechanisms of regulation is the recognition of the non-classical class I MHC molecule HLA-E, in complex with nonamer peptides derived from the signal sequences of certain class I MHC molecules, by heterodimers of the C-type lectin-like proteins CD94 and NKG2. Using soluble, recombinant HLA-E molecules assembled with peptides derived from different leader sequences and soluble CD94/NKG2-A and CD94/NKG2-C proteins, the binding of these receptor-ligand pairs has been analysed. We show first that these interactions have very fast association and dissociation rate constants, secondly, that the inhibitory CD94/NKG2-A receptor has a higher binding affinity for HLA-E than the activating CD94/NKG2-C receptor and, finally, that recognition of HLA-E by both CD94/NKG2-A and CD94/NKG2-C is peptide dependent. There appears to be a strong, direct correlation between the binding affinity of the peptide-HLA-E complexes for the CD94/NKG2 receptors and the triggering of a response by the NK cell. These data may help to understand the balance of signals that control cytotoxicity by NK cells.  相似文献   

11.
Hemocytes from the moth Pseudoplusia includens encapsulate a variety of biotic and abiotic targets. Prior studies indicated that granular cells are usually the first hemocyte type to attach to foreign targets. Thereafter, large numbers of plasmatocytes attach to the target and form a capsule. To identify surface features that induce an encapsulation response, chromatography beads that differed in matrix composition, charge, and functional groups were tested using in vitro and in vivo bioassays. We first conducted in vitro assays using hemocytes with no plasma components present. These experiments indicated that bead types having sulfonic, diethylaminoethyl, and quaternary amine functional groups were encapsulated significantly more often than beads with other functional groups. Charge also significantly affected encapsulation with positively charged beads being encapsulated more often than negatively charged or neutral beads. In vitro assays using purified populations of hemocytes confirmed that these targets were recognized as foreign by granular cells, and that plasmatocytes only formed capsules after granular cells attached to the target. Bead types that were encapsulated under these in vitro conditions were always rapidly encapsulated when injected into P. includens larvae. However, some bead types, like CM-Sephadex, not encapsulated in vitro were encapsulated in vivo if left in the insect hemocoel for a longer period of time (ca. 24 h). Purified plasmatocytes encapsulated these beads in vitro if they were preincubated in plasma. Basic characterization studies suggest these humoral recognition molecules are proteins or small peptides. Comparative studies with other species of noctuid moths also indicated that encapsulation of some bead types differed significantly among species. Collectively, these results reveal that P. includens recognizes some targets as foreign by pattern recognition receptors on granular cells, whereas others are recognized by pattern recognition molecules in plasma. The binding affinities of these recognition molecules also appear to differ among closely related species of Lepidoptera.  相似文献   

12.
The Q7 alpha 3 domain alters T cell recognition of class I antigens.   总被引:1,自引:0,他引:1  
In this study we have analyzed the role of the alpha 3 domain of class I molecules in T cell recognition. Using the laboratory engineered molecules LLQQ (alpha 1/alpha 2 from Ld, alpha 3, and phosphatidyl inositol (PI) linked C terminus from Q7) and LLQL (alpha 1/alpha 2 from Ld, alpha 3 from Q7, transmembrane (TM) and cytoplasmic domains from Ld) we show that these molecules are not recognized by primary Ld-specific CTL. The cell membrane expression of both Ld and LLQL are upregulated by co-culture with an exogenously supplied murine cytomegalovirus-derived peptide indicating that the Q7 alpha 3 domain does not interfere with binding of Ag to alpha 1/alpha 2. However, only peptide pulsed Ld but not LLQL target cells are recognized by Ld-restricted-peptide specific CTL. In contrast to the above results, LLQL and LLQQ molecules can be recognized by bulk alloreactive anti-Ld CTL and 2/3 of CTL clones derived from in vivo primed mice. The fact that these secondary CTL recognize LLQQ indicates that a PI linkage is permissive for presentation of class I epitopes to alloreactive CTL. These secondary CTL are resistant to blocking at the effector stage by mAb against CD8 and express relatively low levels of membrane CD8 molecules compared to CTL from unprimed mice. Further, culture of unprimed CTL precursors in the presence of CD8 mAb also allows for the generation of CD8-independent CTL that recognize LLQL. Taken together, these data indicate that the alpha 3 domain of Q7 (Qa-2) prevents CD8-dependent CTL from recognizing Ld, regardless of whether the class I molecule is attached to the cell surface by a PI moiety or as a membrane spanning protein domain. We hypothesize that this defect in recognition is most likely due to an inability of CD8 to interact efficiently with the Q7 alpha 3 domain and could account for why Q7 molecules do not serve as restricting elements for virus and minor H-Ag-specific CTL.  相似文献   

13.
T helper cell-dependent B cell activation.   总被引:6,自引:0,他引:6  
R J Noelle  E C Snow 《FASEB journal》1991,5(13):2770-2776
Small, resting B lymphocytes are driven into the cell cycle as a consequence of receiving multiple signals from elements found within their local environment. The first of these signals results from the binding of specific antigen to membrane immunoglobulin (mIg) receptors on the B cells. Pursuant to antigen binding, signals are transduced and the B cell commences to endocytose and degrade the antigen. Fragments of the antigen are expressed on the B cell surface in noncovalent association with class II major histocompatibility complex (MHC) molecules. The antigen-class II MHC complex serves as a recognition complex for CD4+ helper T cells (Th). As a consequence of recognition, Th form stable physical conjugates with the B cells. Over an extended period of time the Th and B cells bilaterally signal one another. This interchange of signals results in the growth and differentiation of both cells. This review will discuss the sequence of events that culminate in the growth and differentiation of B lymphocytes to antibody-producing cells.  相似文献   

14.
We observe that PBMC from most adults (16 of 18 subjects tested) show a small but significant in vitro proliferative response to a 30-amino acid-long peptide (peptide 2, amino acids 34-63) derived from toxic shock syndrome toxin. By contrast, PBMC from newborn blood and thymocytes do not proliferate to this peptide, and furthermore, peptide 2 did not displace the binding of radiolabeled TSST-1 to MHC class II positive cells, nor did it induce IL-1 beta mRNA in monocytes, indicating that this peptide does not behave as a superantigen. Proliferation of PBMC to peptide 2 could be blocked by anti-HLA-DR, but not by anti-HLA-DP or DQ mAb, suggesting that HLA-DR molecules are the restriction elements for the recognition of this peptide by T cells. This premise was further confirmed by demonstrating that mouse L cells transfected with human HLA-DR, but not HLA-DP or DQ molecules, supported the proliferation of purified T cells to peptide 2. Studies with subjects of known HLA-DR types showed that all types tested are capable of responding to this peptide, PBMC from adults exposed to mycobacterial Ag showed significantly better proliferative response to peptide 2 than unexposed adults. Studies with truncations of this peptide suggest that a "core" region of eight amino acids that is conserved between low m.w. heat shock proteins and peptide 2 may be critical to T cell recognition of this peptide. The universal presentation of peptide 2 by HLA-DR molecules may contribute to the widespread natural immunity observed against toxic shock syndrome toxin.  相似文献   

15.
W Kolanus  C Romeo    B Seed 《The EMBO journal》1992,11(13):4861-4868
An emerging theme in immunology finds receptors which initiate cellular effector programs forming multichain complexes in which the ligand recognition elements associate with one or more 'trigger molecules' whose aggregation initiates a signal transduction cascade. The sequence motifs constituting the active sites of these trigger molecules are found in the T cell and B cell antigen receptors, and some Fc receptors, and appear to be central to effector function activation. For example, of the many molecules that mimic or potentiate the action of the T cell antigen receptor (TCR), none have yet been found to initiate effector programs autonomously in cells lacking TCR. We have devised two strategies to study activation mediated by myeloid Fc receptors, which appear not to associate with trigger molecules: the use of primary human cytolytic T cells as surrogate effector cells for genetically delivered receptors, and the use of vaccinia virus vectors to introduce genetically modified receptors into primary human monocytes. Using these approaches, we have found that the cytoplasmic domains of two Fc receptors show comparable function to equivalent domains of the trigger molecule family, but are not homologous to members of that family.  相似文献   

16.
It has long been understood that both antibody and delayed-type hypersensitivity responses are induced through collaborative events in which the determinants recognized by the precursor cells must be physically linked to the determinants recognized by the helper. Although it is clear that the generation of memory cytotoxic T lymphocyte precursors (CTLp) involves linked recognition of determinants, the induction of CTL responses has been viewed as being dependent upon interleukin 2 (IL 2), which could be provided by a helper cell, but independent of requirements for antigen bridging. In this work, we have designed a system that lacks exogenous IL 2 by using as our source of help, antigen-specific helper molecules derived from helper T cells. These soluble helper molecules are uncontaminated by IL 2 and unlike a helper cell, are unable to produce IL 2. Helper molecules specific for chicken red blood cells (Crbc) and for a synthetic polypeptide, poly 18, were tested. Thymocyte responders require a source of help to respond to alloantigens intrinsically expressed on the surface of adherent stimulator cells. To analyze the mechanism whereby the helper molecules acted, we used a system involving recognition of haptenic and carrier determinants that were physically linked by virtue of being located on the same cell surface (intra-structural linkage). Adherent stimulator cells were pulsed with Crbc or poly 18 so that the alloantigens recognized by the thymocyte CTLp (intrinsically expressed class I) were either linked or unlinked to the carrier determinants (Crbc or poly 18) presented by the adherent cells and recognized by the helper molecules. Both types of helper molecule were shown to be antigen-specific in crisscross experiments. The helper molecules specific for Crbc were able to induce the thymocyte CTLp only when both hapten and carrier were present on the same stimulator cell surface. Because we were not able to detect a requirement for H-2-restricted recognition of carrier antigen, this inductive event must be viewed as requiring linked associative recognition of determinants, but being noncognate. In contrast, the helper molecules recognizing poly 18 showed a requirement for both physical linkage of determinants and for H-2 restricted recognition, indicating that the mechanism of induction was cognate in nature. Therefore, we have shown that interactions between CTLp and soluble, antigen-specific, helper cell-derived inductive molecules are similar in nature to those of other T cell precursors and of B cells in the stringent requirement for close physical proximity achieved by linked or cognate recognition of determinants across an antigen bridge.  相似文献   

17.
The evolution of vertebrate antigen receptors: a phylogenetic approach   总被引:4,自引:0,他引:4  
Classical T cells, those with alpha beta T-cell receptors (TCRs), are an important component of the dominant paradigm for self-nonself immune recognition in vertebrates. alpha beta T cells recognize foreign peptide antigens when they are bound to MHC molecules on the surfaces of antigen-presenting cells. gamma delta T cells bear a similar receptor, and it is often assumed that these T cells also require specialized antigen-presenting molecules for immune recognition, which we term "indirect antigen recognition." B-cell receptors, or immunoglobulins, bind directly to antigens without the help of a specialized antigen-presenting molecule. Phylogenetically, it has been assumed that T-cell receptors and the genes that encode them are a monophyletic group, and that "indirect" antigen recognition evolved before the split into two types of TCR. Recently, however, it has been proposed that gamma delta-TCRs bind directly to antigens, as do immunoglobulins (Ig's). This calls into question the null hypothesis that indirect antigen recognition is a common characteristic of TCRs and, by extension, the hypothesis that all TCR gene sequences form a monophyletic group. To determine whether alternative explanations for antigen recognition and other historical relationships among TCR genes might be possible, we performed phylogenetic analyses on amino acid sequences of the constant and variable regions which encode the basic subunits of TCR and Ig molecules. We used both maximum-parsimony and genetic distance-based methods and could find no strong support for the hypothesis of TCR monophyly. Analyses of the constant region suggest that TCR gamma or delta sequences are the most ancient, implying that the ancestral immune cell was like a modern gamma delta T cell. From this gamma delta-like ancestor arose alpha beta T cells and B cells, implying that indirect antigen recognition is indeed a derived property of alpha beta-TCRs. Analyses of the variable regions are complicated by strong selection on antigen-binding sequences, but imply that direct antigen binding is the ancestral condition.  相似文献   

18.
The IgLONs are a family of glycosyl phosphatidyl inositol-linked cell adhesion molecules which are thought to modify neurite outgrowth and may play a role in cell-cell recognition. The family consists of LAMP, OBCAM, neurotrimin/CEPU-1 and neurotractin/kilon. In this paper we report the effect of recombinant LAMP, CEPU-1 and OBCAM, and transfected cell lines expressing these molecules, on the adhesion and outgrowth of dorsal root ganglion (DRG) and sympathetic neurones. CHO cells transfected with cDNA for CEPU-1 adhered to a recombinant CEPU-1-Fc substrate. However, DRG or sympathetic neurones only adhered to CEPU-1-Fc when presented on protein A. Although DRG and sympathetic neurones express IgLONs on their surface, both types of neurones exhibited differential adhesion to CEPU-1-Fc, LAMP-Fc and OBCAM-Fc. Neither DRG nor sympathetic neurones extended neurites on a protein A/IgLON-Fc substrate and overexpression of CEPU-1-GFP in DRG neurones also failed to stimulate neurite outgrowth on an IgLON-Fc substrate. DRG neurones adhered to and extended neurites equally on transfected and non-transfected cell lines and the recombinant proteins did not modulate the outgrowth of neurones on laminin. In contrast to previous reports we suggest that IgLONs may not have a primary role in axon guidance but may be more important for cell-cell adhesion and recognition.  相似文献   

19.
In the developing nervous system, individual neurons must occupy appropriate positions within circuits. This requires that these neurons recognize and form connections with specific pre- and postsynaptic partners. Cellular recognition is also required for the spacing of cell bodies and the arborization of dendrites, factors that determine the inputs onto a given neuron. These issues are particularly evident in the retina, where different types of neurons are evenly spaced relative to other cells of the same type. This establishes a reiterated columnar circuitry resembling the insect retina. Establishing these mosaic patterns requires that cells of a given type (homotypic cells) be able to sense their neighbors. Therefore, both synaptic specificity and mosaic spacing require cellular identifiers. In synaptic specificity, recognition often occurs between different types of cells in a pre- and postsynaptic pairing. In mosaic spacing, recognition is often occurring between different cells of the same type, orhomotypic self-recognition. Dendritic arborization can require recognition of different neurites of the same cell, or isoneuronal self-recognition. The retina is an extremely amenable system for studying the molecular identifiers that drive these various forms of recognition. The different neuronal types in the retina are well defined, and the genetic tools for marking cell types are increasingly available. In this review we will summarize retinal anatomy and describe cell types in the retina and how they are defined. We will then describe the requirements of a recognition code and discuss newly emerging candidate molecular mechanisms for recognition that may meet these requirements.  相似文献   

20.
Borna disease virus (BDV) can persistently infect the central nervous system (CNS) of mice. The infection remains nonsymptomatic as long as antiviral CD8 T cells do not infiltrate the infected brain. BDV mainly infects neurons which reportedly carry few, if any, major histocompatibility complex class I molecules on the surface. Therefore, it remains unclear whether T cells can recognize replicating virus in these cells or whether cross-presentation of viral antigen by other cell types is important for immune recognition of BDV. To distinguish between these possibilities, we used two lines of transgenic mice that strongly express the N protein of BDV in either neurons (Neuro-N) or astrocytes (Astro-N). Since these animals are tolerant to the neo-self-antigen, we adoptively transferred T cells with specificity for BDV N. In nontransgenic mice persistently infected with BDV, the transferred cells accumulated in the brain parenchyma along with immune cells of host origin and efficiently induced neurological disease. Neurological disease was also observed if antiviral T cells were injected into the brains of Astro-N or Neuro-N but not nontransgenic control mice. Our results demonstrate that CD8 T cells can recognize foreign antigen on neurons and astrocytes even in the absence of infection or inflammation, indicating that these CNS cell types are playing an active role in immune recognition of viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号