首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 954 毫秒
1.
Morphological types of arbuscular mycorrhizal (AM) fungi associated with Lotus glaber in sodic soils of the Salado River basin were studied. At least eight colonization patterns (IP) of AM fungi in roots of L. glaber were observed after 30 plants were analyzed. Arum- and Paris-type infection were found in the same plant species. This result supports the idea that AM morphology is not solely under plant control, but is also influenced by fungal identity. One infection pattern, presumably corresponding to Glomus intraradices, and a second, possibly assignable to Glomus tenue, were the most commonly found. Our results reinforce previous suggestions that G. intraradices is well adapted to sodic-saline conditions and may play a role in the resistance of L. glaber to these soils.  相似文献   

2.
Sugarcane fields in 14 different study sites were analyzed for the presence of different arbuscular mycorrhizal fungal (AMF) spores. A total of 23 AMF species representing four genera were identified, among which Glomus fasciculatum and G. mosseae were the dominant species. The mean spore density in the root-zone soils of sugarcane plants varied from 119 to 583 per 100 g of soil, and the mean percentage root colonization varied from 60 to 89 %. A study of the effect of edaphic factors on AM spore density and percentage root colonization revealed a positive correlation between pH and AMF spore density and root colonization and a negative correlation between electrical conductivity, nitrogen, and phosphorus. A positive correlation was observed between AMF spore density and root colonization. Season was also found to play a vital role in determining AMF spore density and percentage root colonization, with high spore density and root colonization observed during the summer season and lower spore densities and root colonization during the winter season.  相似文献   

3.
Lotus glaber is a glycophytic, perennial legume from Europe that occurs widely in saline habitats. We evaluated the effect of mycorrhizal fungus colonization on the response to salt stress of two genotypes of L. glaber differing in their tolerance to salinity. The experiment consisted of a randomized block design with two factors: (1) mycorrhizal fungus treatments (with or without AM fungus) and (2) two salinity levels of 0 and 200 mM NaCl. Our results indicated that Glomus intraradices established a more efficient symbiosis with the tolerant than with the sensitive genotype. G. intraradices improved growth of L. glaber plants under saline conditions. They showed higher values of net growth, shoot/root and K+/Na+ ratios, and protein concentrations than controls. Tolerant AM plants also showed higher chlorophyll levels than non-AM ones. Prevention of Na+ accumulation in the plant and enhancement of K+ concentrations in roots observed in this work could be part of the general mechanism of salt stress alleviation of L. glaber by G. intraradices.  相似文献   

4.
Liu A  Wang B  Hamel C 《Mycorrhiza》2004,14(2):93-101
Temperature has a strong influence on the activity of living organisms. This study, involving two indoor experiments, evaluated the effects of root zone temperature (10, 15 and 23°C) on the formation and development of arbuscular mycorrhizae (AM). In the first trial, greenhouse-grown sorghum [Sorghum bicolor (L.) Moench] was either colonized by Glomus intraradices Schenck & Smith or left non-mycorrhizal. Root length, root and shoot weight and root colonization were measured after 5, 10 and 15 weeks of plant growth. Although suboptimal root zone temperatures reduced growth in both mycorrhizal and non-mycorrhizal plants, mycorrhizal plants were larger than non-mycorrhizal plants after 15 weeks at 15 and 23°C. At suboptimal root zone temperatures, mycorrhizal inoculation sometimes slightly reduced root development. AM colonization was more affected than root growth at suboptimal root zone temperatures. Colonization was markedly reduced at 15°C compared with 23°C, and almost completely inhibited at 10°C. The second experiment was conducted in vitro using transformed carrot (Daucus carota L.) roots supporting G. intraradices. Mycelium length and spore number were measured weekly for 15 weeks. Spore metabolic activity (iodonitrotetrazolium reduction), root length and percentage root colonization were measured after 15 weeks. G. intraradices sporulation was reduced at temperatures below 23°C, while spore metabolic activity was significantly reduced only at 10°C. Root length and in particular percentage colonization were decreased at suboptimal temperatures. A negative interaction between AM hyphal growth and root growth resulting in reduced probability of contact at suboptimal root zone temperatures is proposed to explain the greater reduction observed in root colonization than in root and hyphal growth.  相似文献   

5.
The influence of plant functional groups and moderate seasonality on arbuscular mycorrhizal (AM) fungal status (root colonization and spore density) was investigated during 13 consecutive months in a chronosequence of succession in southern Brazil, consisting of grassland field, scrub vegetation, secondary forest and mature forest, in a region of transition from tropical to subtropical zones. AM root colonization and spore density decreased with advancing succession and were highest in early successional sites with grassland and scrub vegetation, intermediary in the secondary forest and lowest in the mature forest. They were little influenced by soil properties, but were sufficiently influenced by the fine root nutrient status and fine root traits among different functional plant groups. AM root colonization and spore density were higher during the favourable plant growth season (spring and summer) than during the less favourable plant growth season (autumn and winter). Spore density displayed significant seasonal variation at all sites, whilst root colonization displayed significant seasonal variation in grassland, scrub and secondary forest, but not in mature forest. The data suggest that (1) different plant functional groups display different relationships with AM fungi, influencing their abundance differentially; (2) plant species from early successional phases are more susceptible to AM root colonization and maintain higher AM sporulation than late successional species; (3) fine root traits and nutrient status influence these AM fungal attributes; and (4) higher AM spore production and root colonization is associated with the season of higher light incidence and temperature, abundant water in soil and higher plant metabolic activity.  相似文献   

6.
Arbuscular mycorrhizal fungi and plant symbiosis in a saline-sodic soil   总被引:3,自引:0,他引:3  
García IV  Mendoza RE 《Mycorrhiza》2007,17(3):167-174
The seasonality of arbuscular mycorrhizal (AM) fungi–plant symbiosis in Lotus glaber Mill. and Stenotaphrum secundatum (Walt.) O.K. and the association with phosphorus (P) plant nutrition were studied in a saline-sodic soil at the four seasons during a year. Plant roots of both species were densely colonized by AM fungi (90 and 73%, respectively in L. glaber and S. secundatum) at high values of soil pH (9.2) and exchangeable sodium percentage (65%). The percentage of colonized root length differed between species and showed seasonality. The morphology of root colonization had a similar pattern in both species. The arbuscular colonization fraction increased at the beginning of the growing season and was positively associated with increased P concentration in both shoot and root tissue. The vesicular colonization fraction was high in summer when plants suffer from stress imposed by high temperatures and drought periods, and negatively associated with P in plant tissue. Spore and hyphal densities in soil were not associated with AM root colonization and did not show seasonality. Our results suggest that AM fungi can survive and colonize L. glaber and S. secundatum roots adapted to extreme saline-sodic soil condition. The symbiosis responds to seasonality and P uptake by the host altering the morphology of root colonization.  相似文献   

7.
Seedlings of Lotus glaberMill., were grown in a native saline-sodic soil in a greenhouse for 50 days and then subjected to waterlogging for an additional period of 40 days. The effect of soil waterlogging was evaluated by measuring plant growth allocation, mineral nutrition and soil chemical properties. Rhizobiumnodules and mycorrhizal colonisation in L. glaberroots were measured before and after waterlogging. Compared to control plants, waterlogged plants had decreased root/shoot ratio, lower number of stems per plant, lower specific root length and less allocation of P and N to roots. Waterlogged plants showed increased N and P concentrations in plant tissues, larger root crown diameter and longer internodes. Available N and P and organic P, pH and amorphous iron increased in waterlogged soil, but total N, EC and exchangeable sodium were not changed. Soil waterlogging decreased root length colonised by arbuscular mycorrhizal (AM) fungi, arbuscular colonisation and number of entry points per unit of root length colonised. Waterlogging also increased vesicle colonisation and Rhizobium nodules on roots. AM fungal spore density was lower at the end of the experiment in non-waterlogged soil but was not reduced under waterlogging. The results indicate that L. glaber can grow, become nodulated by Rhizobium and colonised by mycorrhizas under waterlogged condition. The responses of L. glaber may be related its ability to form aerenchyma.  相似文献   

8.
Zhang Y  Guo LD  Liu RJ 《Mycorrhiza》2004,14(1):25-30
The colonization and diversity of arbuscular mycorrhizal (AM) fungi associated with common pteridophytes were investigated in Dujiangyan, southwest China. Of the 34 species of ferns from 16 families collected, 31 were colonized by AM fungi. The mean percentage root length colonized was 15%, ranging from 0 to 47%. Nineteen species formed Paris-type and 10 intermediate-type AM. In two ferns, only rare intercellular non-septate hyphae or vesicles were observed in the roots and AM type could not be determined. Of the 40 AM fungal taxa belonging to five genera isolated from rooting-zone soils, 32 belonged to Glomus, five to Acaulospora, one to Archaeospora, one to Entrophospora, and one to Gigaspora. Acaulospora and Glomus were the dominant genera and Glomus versiforme was the most common species. The average AM spore density was 213 per 100 g air-dried soil and the average species richness was 3.7 AM species per soil sample. There was no correlation between spore density and percentage root length colonized by AM fungi.  相似文献   

9.
Seven different hosts,Panicum maximum, Chrysopogon fulvis, Themeda triandra, Chloris gayana, Brachiaria brizantha, Paspalum scrobiculatum andEleusine coracana were screened in order to select a better host for mass multiplication ofGlomus fasciculatum inoculum. Of these,Chloris gayana (Rhodes grass) was found to be the best host on the basis of root colonization and spore production and of the infective propagules of the potball.  相似文献   

10.
The aim of this research was to investigate the effect of arbuscular mycorrhizal (AM) colonisation on root morphology and nitrogen uptake capacity of carob ( Ceratonia siliqua L.) under high and low nutrient conditions. The experimental design was a factorial arrangement of presence/absence of mycorrhizal fungus inoculation ( Glomus intraradices) and high/low nutrient status. Percent AM colonisation, nitrate and ammonium uptake capacity, and nitrogen and phosphorus contents were determined in 3-month-old seedlings. Grayscale and colour images were used to study root morphology and topology, and to assess the relation between root pigmentation and physiological activities. AM colonisation lead to a higher allocation of biomass to white and yellow parts of the root. Inorganic nitrogen uptake capacity per unit root length and nitrogen content were greatest in AM colonised plants grown under low nutrient conditions. A better match was found between plant nitrogen content and biomass accumulation, than between plant phosphorus content and biomass accumulation. It is suggested that the increase in nutrient uptake capacity of AM colonised roots is dependent both on changes in root morphology and physiological uptake potential. This study contributes to an understanding of the role of AM fungi and root morphology in plant nutrient uptake and shows that AM colonisation improves the nitrogen nutrition of plants, mainly when growing at low levels of nutrients.  相似文献   

11.
In this study, it is aimed to asses the association of arbuscular mycorrhizal (AM) fungi within colonised rhizosphere of Gramineae family members through a survey by using nested- polymerase chain reaction method in Van province (Turkey). From 24 agro-ecological fields, a total of 82 samples belonging to Gramineae family were tested by molecular methods. The presence of Glomus intraradices and Glomus mosseae was ascertained in 10 plants belonging to eight different species by using fungus specific primers. Root colonisation ranged from 6 to 37% within rhizosphere of Gramineae family members and the average root colonisation by AM fungi was 22%.  相似文献   

12.
The rate of global deposition of Cd, Pb, and Zn has decreased over the past few decades, but heavy metals already in the soil may be mobilized by local and global changes in soil conditions and exert toxic effects on soil microorganisms. We examined in vitro effects of Cd, Pb, and Zn on critical life stages in metal-sensitive ecotypes of arbuscular mycorrhizal (AM) fungi, including spore germination, presymbiotic hyphal extension, presymbiotic sporulation, symbiotic extraradical mycelium expansion, and symbiotic sporulation. Despite long-term culturing under the same low-metal conditions, two species, Glomus etunicatum and Glomus intraradices, had different levels of sensitivity to metal stress. G. etunicatum was more sensitive to all three metals than was G. intraradices. A unique response of increased presymbiotic hyphal extension occurred in G. intraradices exposed to Cd and Pb. Presymbiotic hyphae of G. intraradices formed presymbiotic spores, whose initiation was more affected by heavy metals than was presymbiotic hyphal extension. In G. intraradices grown in compartmentalized habitats with only a portion of the extraradical mycelium exposed to metal stress, inhibitory effects of elevated metal concentrations on symbiotic mycelial expansion and symbiotic sporulation were limited to the metal-enriched compartment. Symbiotic sporulation was more sensitive to metal exposure than symbiotic mycelium expansion. Patterns exhibited by G. intraradices spore germination, presymbiotic hyphal extension, symbiotic extraradical mycelium expansion, and sporulation under elevated metal concentrations suggest that AM fungi may be able to survive in heavy metal-contaminated environments by using a metal avoidance strategy.  相似文献   

13.
The effect of arbuscular mycorrhizal (AM) fungi on the accumulation and transport of lead was studied in a pot experiment on maize plants grown in anthropogenically-polluted substrate. The plants remained uninoculated or were inoculated with different Glomus intraradices isolates, either indigenous to the polluted substrate used or reference from non-polluted soil. A considerably lower tolerance to the conditions of polluted substrate was observed for the reference isolate that showed significantly lower frequency of root colonisation as well as arbuscule and vesicule abundance. Plants inoculated with the reference isolate also had significantly lower shoot P concentrations than plants inoculated with the isolate from polluted substrate. Nevertheless, inoculation with either indigenous or reference G. intraradices isolate resulted in higher shoot and root biomass and inoculated plants showed lower Pb concentrations in their shoots than uninoculated plants, regardless of differences in root colonisation. Root biomass of maize plants was divided according to AM-induced colouration into brightly yellow segments intensively colonised by AM fungus and non-colonised or only slightly colonised whitish ones. Intensively colonised segments of the isolate from polluted substrate contained significantly higher concentrations of phosphorus and lead than non-colonised ones, which suggest significant participation of fungal structures in element accumulation. Responsible Editor: Peter Christie.  相似文献   

14.
The factors which may influence temporal and spatial variation in plant arbuscular mycorrhizal (AM) colonization and propagule occurrence were evaluated in a Portuguese salt marsh poor in plant diversity. Two distinct sites were studied: a more-flooded (low marsh) and a less-flooded zone (high marsh). AM root colonization, AM fungal spore number and inoculum potential, soil edaphic parameters and tidal flooding time periods were analysed. Levels of AM colonization were considerable in Aster tripolium and Inula crithmoides but very low in Puccinellia maritima and non-existent in Spartina maritima, Halimione portulacoides, Arthrocnemum fruticosum and Arthrocnemum perenne. Fungal diversity was very low, with Glomus geosporum dominant at both marsh zones. Colonization showed no spatial variation within marsh zones but temporal variation was observed in the high marsh, dependent on plant phenological phases. In the low marsh, no significantly seasonal variation was observed. Apparently, plant phenological events were diluted by stressful conditions (e.g. flooding, salinity). Spore density was significantly different between marsh zones and showed temporal variation in both zones. This study showed that distribution of mycorrhizas in salt marsh is more dependent on host plant species than on environmental stresses.  相似文献   

15.
Summary Growth and phosphorus uptake of pearl millet (Pennisetum americanum) on an unsterile, phosphorus-deficient soil was improved by the seed inoculation withAzospirillum brasilense or soil inoculation with the vesicular-arbuscular mycorrhizal fungi (Acaulospora,Gigaspora margarita, Glomus fasciculatum). These microorganisms acted synergistically when added simultaneously and the response was significant withAzospirillum brasilense + Gigaspora margarita andAzospirillum brasilense + Glomus fasciculatum combinations over uninoculated control as far as the dry matter content of shoots, root biomass and phosphorus uptake of the millet was concerned.  相似文献   

16.
The influence of anthracene, a low molecular weight polycyclic aromatic hydrocarbon (PAH), on chicory root colonization by Glomus intraradices and the effect of the root colonization on PAH degradation were investigated in vitro. The fungus presented a reduced development of extraradical mycelium and a decrease in sporulation, root colonization, and spore germination when exposed to anthracene. Mycorrhization improved the growth of the roots in the medium supplemented containing 140 mg l−1 anthracene, suggesting a positive contribution of G. intraradices to the PAH tolerance of roots. Anthracene disappearance from the culture medium was quantified; results suggested that nonmycorrhizal chicory roots growing in vitro were able to contribute to anthracene dissipation, and in addition, that mycorrhization significantly enhanced anthracene dissipation. These monoxenic experiments demonstrated a positive contribution of the symbiotic association to anthracene dissipation in the absence of other microorganisms. In addition to anthracene dissipation, intracellular accumulation of anthracene was detected in lipid bodies of plant cells and fungal hyphae, indicating intracellular storage capacity of the pollutant by the roots and the mycorrhizal fungus.  相似文献   

17.
Abstract

Six species AM fungi, namely Glomus fasciculatum, G. constrictum, G. intraradices sp., Gigaspora margarita, Acaulospora sp. and Sclerocystis sp., were used for the biological control of root-rot disease complex of chickpea caused by Meloidogyne incognita and Macrophomina phaseolina. Application of these AM fungi increase plant growth, pod number, chlorophyll, nitrogen, phosphorus and potassium contents in diseased plants and also reduced nematode multiplication and root-rot index. G. fasciculatum caused greater increase in plant growth, pod number, chlorophyll, nitrogen, phosphorus and potassium contents of pathogen inoculated plants followed by G. intaradices, G. constrictum, Sclerocystis, G. margarita and Acaulospora sp. Percent root colonization caused by G. fasciculatum was high followed by G. intaradices, G. constrictum, Sclerocystis sp., G. margarita and Acaulospora sp. Glomus fasciculatum also caused higher reduction in root-rot index, galling and nematodes multiplication while Acaulospora sp. produced the least.  相似文献   

18.
The effects of the interaction between Pratylenchus vulnus and the endomycorrhizal fungus Glomus intraradices on growth and nutrition of Santa Lucia 64 cherry rootstock was studied under microplot conditions during one growing season. Fresh top weight, and stem diameter of mycorrhizal plants and high P treatments with and without P. vulnus were significantly higher than those of non-mycorrhizal plants. The lowest shoot length and fresh root weights were recorded in nematode inoculated plants in low P soil. Mycorrhizal infection did not affect the number of nematodes per gram of root in plants infected with P. vulnus. In the presence of the nematode, internal spore production by G. intraradices was significantly reduced. No nutrient deficiencies were detected through foliar analysis, although low levels of Ca, Mn and Fe were detected in nematode treatments. Mycorrhizal plants achieved the highest values for N, P, S, Fe, and Zn, whereas high P treatments increased absorption of Ca and Mn. Early mycorrhizal infection of Santa Lucia 64 cherry rootstock by G. intraradices confers increased growth capacity in the presence of P. vulnus.  相似文献   

19.
In view of the high mycorrhizal dependency of neem trees (Azadirachta indica), an experiment was conducted to study if Arbuscular Mycorrhizal (AM) inoculation can enhance the azadirachtin content in seed kernels of trees grown in the field. Azadirachtin is an important active ingredient in neem seed kernels based on which a large biopesticide industry has emerged in India and few countries in Europe and the USA. Inoculation of neem seedlings in the nursery with Glomus fasciculatum and Glomus mosseae resulted in increased height, dry weight, root colonization and phosphorus (P) content. In a separate experiment, field-grown neem plants inoculated in the nursery and during transplantation with Glomus fasciculatum were evaluated after 5 years. No significant differences were found in the tree height, girth at breast height (GBH) and fruit yield but oil percentage, total triterpenoids and azadirachtin content in kernels increased significantly as a result of AM inoculation. A similar enhancement in azadirachtin was noted with P application. These results open up possibilities of producing quality neem seed with high bioactive ingredients through AM inoculation.  相似文献   

20.
The arbuscular mycorrhizal status of fifteen mangroves and one mangrove associate was investigated from 27 sites of three inundation types namely, diurnal, usual springtide and summer springtide. Roots and rhizospheric soil samples were analysed for spore density, frequency of mycorrhizal colonization and some chemical characteristics of soil. Relative abundance, frequency and spore richness of AMF were assessed at each inundation type. All the plant species except Avicennia alba exhibited mycorrhizal colonization. The study demonstrated that mycorrhizal colonization and spore density were more influenced by host plant species than tidal inundation. Forty four AMF species belonging to six genera, namely Acaulospora, Entrophospora, Gigaspora, Glomus, Sclerocystis and Scutellospora, were recorded. Glomus mosseae exhibited highest frequency at all the inundation types; Glomus fistulosum, Sclerocystis coremioides and Glomus mosseae showed highest relative abundance at sites inundated by usual springtides, summer springtides and diurnal tides, respectively. Spore richness of AMF was of the order usual springtide > diurnal > summer springtide inundated sites. The mean spore richness was 3.27. Diurnally inundated sites had the lowest concentrations of salinity, available phosphorus, exchangeable potassium, sodium and magnesium. Statistical analyses indicated that mycorrhizal frequency and AMF spore richness were significantly negatively correlated to soil salinity. Spore richness was also significantly negatively correlated to available phosphorus. The soil parameters of the usual springtide inundated sites appeared to be favourable for the existence of maximum number of AMF. Glomus mosseae was the predominant species in terms of frequency in the soils of the Sundarbans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号