首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Most plants growing in temperate desert zone exhibit brief temperature-induced inhibition of photosynthesis at midday in the summer. Heat stress has been suggested to restrain the photosynthesis of desert plants like Alhagi sparsifolia S. It is therefore possible that high midday temperatures damage photosynthetic tissues, leading to the observed inhibition of photosynthesis. In this study, we investigated the mechanisms underlying heat-induced inhibition of photosynthesis in A. sparsifolia, a dominant species found at the transition zone between oasis and sandy desert on the southern fringe of the Taklamakan desert. The chlorophyll (Chl) a fluorescence induction kinetics and CO2 response curves were used to analyze the thermodynamic characters of both photosystem II (PSII) and Rubisco after leaves were exposed to heat stress. When the leaves were heated to temperatures below 43°C, the initial fluorescence of the dark-adapted state (Fo), and the maximum photochemical efficiency of PSII (Fv/Fm), the number of active reaction centers per cross section (RCs) and the leaf vitality index (PI) increased or declined moderately. These responses were reversed, however, upon cooling. Moreover, the energy allocation in PSII remained stable. The gradual appearance of a K point in the fluorescence curve at 48°C indicated that higher temperatures strongly impaired PSII and caused irreversible damage. As the leaf temperature increased, the activity of Rubisco first increased to a maximum at 34°C and then decreased as the temperature rose higher. Under high-temperature stress, cell began to accumulate oxidative species, including ammoniacal nitrogen, hydrogen peroxide (H2O2), and superoxide (O2 ·−), suggesting that disruption of photosynthesis may result from oxidative damage to photosynthetic proteins and thylakoid membranes. Under heat stress, the biosynthesis of nonenzyme radical scavenging carotenoids (Cars) increased. We suggest that although elevated temperature affects the heat-sensitive components comprising of PSII and Rubisco, under moderately high temperature the decrease in photosynthesis is mostly due to inactivation of dark reactions.  相似文献   

2.
The mechanisms controlling the photosynthetic performance of C4 plants at low temperature were investigated using ecotypes of Bouteloua gracilis Lag. from high (3000 m) and low (1500 m) elevation sites in the Rocky Mountains of Colorado. Plants were grown in controlled‐environment cabinets at a photon flux density of 700 μ mol m?2 s?1 and day/night temperatures of 26/16 °C or 14/7 °C. The thermal response of the net CO2 assimilation rate (A) was evaluated using leaf gas‐exchange analysis and activity assays of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco), phosphoenolpyruvate carboxylase (PEPCase) and pyruvate,orthophosphate dikinase (PPDK). In both ecotypes, a reduction in measurement temperature caused the CO2‐saturated rate of photosynthesis to decline to a greater degree than the initial slope of A versus the intercellular CO2 response, thereby reducing the photosynthetic CO2 saturation point. As a consequence, A in normal air was CO2‐saturated at sub‐optimal temperatures. Ecotypic variation was low when grown at 26/16 °C, with the major difference between the ecotypes being that the low‐elevation plants had higher A; however, the ecotypes responded differently when grown at cool temperature. At temperatures below the thermal optimum, A in high‐elevation plants grown at 14/7 °C was enhanced relative to plants grown at 26/16 °C, while A in low‐elevation plants grown at 14/7 °C was reduced compared to 26/16 °C‐grown plants. Photoinhibition at low growth temperature was minor in both ecotypes as indicated by small reductions in dark‐adapted Fv/Fm. In both ecotypes, the activity of Rubisco was equivalent to A below 17 °C but well in excess of A above 25 °C. Activities of PEPCase and PPDK responded to temperature in a similar proportion relative to Rubisco, and showed no evidence for dissociation that would cause them to become principal limitations at low temperature. Because of the similar temperature response of Rubisco and A, we propose that Rubisco is a major limitation on C4 photosynthesis in B. gracilis below 17 °C. Based on these results and for theoretical reasons associated with how C4 plants use Rubisco, we further suggest that Rubisco capacity may be a widespread limitation upon C4 photosynthesis at low temperature.  相似文献   

3.
Thermal acclimation and photoacclimation of photosynthesis were compared in Laminaria saccharina sporophytes grown at temperatures of 5 and 17 °C and irradiances of 15 and 150μmol photons m?2 s?1. When measured at a standard temperature (17°C), rates of light-saturated photosynthesis (Pmax) were higher in 5 °C-grown algae (c. 3.0 μmol O2 m?2 s?1) than in 17 °C-grown algae (c. 0.9 μmol O2 m-2 s-1). Concentrations of Rubisco were also 3-fold higher (per unit protein) in 5 °C-grown algae than in algae grown at 17 °C. Light-limited photosynthesis responded similarly to high temperature and low light Photon yields (α) were higher in algae grown at high temperature (regardless of light), and at 5 °C in low light, than in algae grown at 5 °C in high light Differences in a were correlated with light absorption; both groups of 17 °C algae and 5 °C low-light algae absorbed c. 75% of incident light, whereas 5 °C high-light algae absorbed c. 55%. Increased absorption was correlated with increases in pigment content PSII reaction centre densities and the fucoxanthin-Chl ale protein complex (FCP). Changes in a were also attributed, in part, to changes in the maximum photon yield of photosynthesis (0max). PSI reaction centre densities were unaffected by growth temperature, but the areal concentration of PSI in low-light-grown algae was twice that of high-light-grown algae (c. 160.0 versus 80.0 nmol m?2). We suggest that complex metabolic regulation allows L, saccharina to optimize photosynthesis over the wide range of temperatures and light levels encountered in nature.  相似文献   

4.
Maize plants were grown at 14, 18 and 20 °C until the fourth leaf had emerged. Leaves from plants grown at 14 and 18 °C had less chlorophyll than those grown at 20 °C. Maximal extractable ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity was decreased at 14 °C compared with 20 °C, but the activation state was highest at 14 °C. Growth at 14 °C increased the abundance (but not the number) of Rubisco breakdown products. Phosphoenolpyruvate carboxylase (PEPC) activity was decreased at 14 °C compared with 20 °C but no chilling-dependent effects on the abundance of the PEPC protein were observed. Maximal extractable NADP-malate dehydrogenase activity increased at 14 °C compared with 20 °C whereas the glutathione pool was similar in leaves from plants grown at both temperatures. Foliar ascorbate and hydrogen peroxide were increased at 14 °C compared with 20 °C. The foliar hydrogen peroxide content was independent of irradiance at both growth temperatures. Plants grown at 14 °C had decreased rates of CO2 fixation together with decreased quantum efficiencies of photosystem (PS) II in the light, although there was no photo-inhibition. Growth at 14 °C decreased the abundance of the D1 protein of PSII and the PSI psaB gene product but the psaA gene product was largely unaffected by growth at low temperatures. The relationships between the photosystems and the co-ordinate regulation of electron transport and CO2 assimilation were maintained in plants grown at 14 °C.  相似文献   

5.
6.
The photosynthetic performance of C4 plants is generally inferior to that of C3 species at low temperatures, but the reasons for this are unclear. The present study investigated the hypothesis that the capacity of Rubisco, which largely reflects Rubisco content, limits C4 photosynthesis at suboptimal temperatures. Photosynthetic gas exchange, chlorophyll a fluorescence, and the in vitro activity of Rubisco between 5 and 35 °C were measured to examine the nature of the low‐temperature photosynthetic performance of the co‐occurring high latitude grasses, Muhlenbergia glomerata (C4) and Calamogrostis canadensis (C3). Plants were grown under cool (14/10 °C) and warm (26/22 °C) temperature regimes to examine whether acclimation to cool temperature alters patterns of photosynthetic limitation. Low‐temperature acclimation reduced photosynthetic rates in both species. The catalytic site concentration of Rubisco was approximately 5.0 and 20 µmol m?2 in M. glomerata and C. canadensis, respectively, regardless of growth temperature. In both species, in vivo electron transport rates below the thermal optimum exceeded what was necessary to support photosynthesis. In warm‐grown C. canadensis, the photosynthesis rate below 15 °C was unaffected by a 90% reduction in O2 content, indicating photosynthetic capacity was limited by the capacity of Pi‐regeneration. By contrast, the rate of photosynthesis in C. canadensis plants grown at the cooler temperatures was stimulated 20–30% by O2 reduction, indicating the Pi‐regeneration limitation was removed during low‐temperature acclimation. In M. glomerata, in vitro Rubisco activity and gross CO2 assimilation rate were equivalent below 25 °C, indicating that the capacity of the enzyme is a major rate limiting step during C4 photosynthesis at cool temperatures.  相似文献   

7.
The impact of heat stress on the functioning of the photosynthetic apparatus was examined in pea (Pisum sativum L.) plants grown at control (25 °C; 25 °C-plants) or moderately elevated temperature (35 °C; 35 °C-plants). In both types of plants net photosynthesis (Pn) decreased with increasing leaf temperature (LT) and was more than 80% reduced at 45 °C as compared to 25 °C. In the 25 °C-plants, LTs higher than 40 °C could result in a complete suppression of Pn. Short-term acclimation to heat stress did not alter the temperature response of Pn. Chlorophyll a fluorescence measurements revealed that photosynthetic electron transport (PET) started to decrease when LT increased above 35 °C and that growth at 35 °C improved the thermal stability of the thylakoid membranes. In the 25 °C-plants, but not in the 35 °C-plants, the maximum quantum yield of the photosystem II primary photochemistry, as judged by measuring the Fv/Fm ratio, decreased significantly at LTs higher than 38 °C. A post-illumination heat-induced reduction of the plastoquinone pool was observed in the 25 °C-plants, but not in the 35 °C-plants. Inhibition of Pn by heat stress correlated with a reduction of the activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Western-blot analysis of Rubisco activase showed that heat stress resulted in a redistribution of activase polypeptides from the soluble to the insoluble fraction of extracts. Heat-dependent inhibition of Pn and PET could be reduced by increasing the intercellular CO2 concentration, but much more effectively so in the 35 °C-plants than in the 25 °C-plants. The 35 °C-plants recovered more efficiently from heat-dependent inhibition of Pn than the 25 °C-plants. The results show that growth at moderately high temperature hardly diminished inhibition of Pn by heat stress that originated from a reversible heat-dependent reduction of the Rubisco activation state. However, by improving the thermal stability of the thylakoid membranes it allowed the photosynthetic apparatus to preserve its functional potential at high LTs, thus minimizing the after-effects of heat stress.  相似文献   

8.
In January and February 2010, heavy sea ice formed along the coast of the Bohai Sea and the northern Yellow Sea, China. Intertidal organisms were subjected to serious freezing stress. In this study, we investigated the freezing tolerance of the upper intertidal economic seaweed Porphyra yezoensis. The maximum photochemical efficiency of PS II (F v/F m) in undehydrated thalli remained high after 24 h at −2°C and that in dehydrated thalli decreased in a proportion to thallial water loss. F v/F m dropped sharply after 24 h at −20°C, regardless of absolute cellular water content (AWC). The F v/F m in frozen thalli recovered rapidly at 0–20°C. A wide range of water loss in the thalli enhanced their tolerance to freezing. F v/F m values in undehydrated thalli dropped sharply after 3 d at −2°C or 10 d at −20°C while those in dehydrated thalli (20–53% AWCs) remained at high levels after 9 d at −2°C or 30 d at −20°C. These results indicate that P. yezoensis has high freezing tolerance by means of dehydration during the ebb tide and rapid recovery of F v/F m from freezing. A strategy of P. yezoensis industry to avoid heavy loss during freezing season is discussed based on these findings.  相似文献   

9.
Photosystem II (PSII) is considered to be one of the most thermolabile aspects of photosynthesis. In vivo measurements of chlorophyll fluorescence and photosynthetic oxygen evolution in 25°C-grown potato leaves (cv. Haig) indicated that the threshold temperature Tc above which PSII denatures was indeed rather low–about 38°C–with temperatures higher than Tc causing a rapid and irreversible loss of PSII activity. The present study demonstrates the existence of adaptive processes which rapidly adjust the in vivo thermal stability of PSII in response to temperature increase. Transfer of potato leaves from 25°C to temperatures slightly lower than Tc (between 30 and 35°C) was observed to cause an upward shift of the Tc value without any appreciable loss of PSII activity. This increase in PSII thermotolerance was substantial (around +5°C in the Haig cultivar), rapid (with a half-time of ~20 min) and slowly reversible at 25°C (>24h). As a consequence, high temperatures (e.g. 40°C) which caused a complete and irreversible inhibition of the PSII function had very little effect in 35°C-treated leaves, thus suggesting that the above-described PSII changes could be of prime importance for the plant's behaviour in the field. Accordingly, the rise in Tc at 35°C was much larger (+8°C) in Sahel, a stress-resistant potato variety, than in the heat-sensitive Haig cultivar.  相似文献   

10.
Abstract

Effects of drought and exogenous glycine betaine and proline on Photosystem II (PSII) photochemistry were studied in barley leaves under heat stress induced by exposing them to 45°C for 10 min. Polyphasic fluorescence transient (OJIP) was used to evaluate PSII photochemistry in leaves treated with either glycine betaine or proline, combined or not with heat treatment. A distinct K step in the fluorescence transient OJIP appeared in control leaves, indicating an inactivation of the oxygen evolving complex (OEC). Drought stress and exogenous glycine betaine and proline modified the shape of the OJIP curve of leaves heated at 45°C and the K step was not as pronounced. Increased thermostability of PSII may be associated with the resistance of OEC and increased energy connectivity between PSII units. The thermostability of PSII was also reflected by a lower decrease in maximum quantum yield of primary photochemistry (?Po = F V/F M) and performance index (PI). Exogenous application of glycine betaine or proline can play an important role in enhancing plant stress tolerance and may help reduce effects of environmental stresses.  相似文献   

11.
Numerous studies have illustrated the need for antioxidant enzymes in acquired photosynthetic thermotolerance, but information on their possible role in promoting innate thermotolerance is lacking. We investigated the hypothesis that genotypic differences in source leaf photosynthetic thermostability would be dependent upon prestress capacity for antioxidant protection of the photosynthetic apparatus in Gossypium hirsutum. To test this hypothesis, thermosensitive (cv. ST4554) and reportedly thermotolerant (cv. VH260) G. hirsutum plants were exposed to control (30/20°C) or high‐day temperature (38/20°C) conditions during flowering and source leaf gas exchange, chlorophyll content and maximum photochemical efficiency (Fv/Fm) were measured for each treatment. The relationship between source leaf thermostability and prestress antioxidant capacity was quantified by monitoring the actual quantum yield response of photosystem II (PSII) (ΦPSII) to a range of temperatures for both cultivars grown under the control temperature regime and measuring antioxidant enzyme activity for those same leaves. VH260 was more thermotolerant than ST4554 as evidenced by photosynthesis and Fv/Fm being significantly lower under high temperature for ST4554 but not VH260. Under identical growth conditions, VH260 had significantly higher optimal and threshold temperatures for ΦPSII and glutathione reductase (GR; EC 1.8.1.7) activity than ST4554, and innate threshold temperature was dependent upon endogenous GR and superoxide dismutase (SOD; EC 1.15.1.1) activity. We conclude that maintaining a sufficient antioxidant enzyme pool prior to heat stress is an innate mechanism for coping with rapid leaf temperature increases that commonly occur under field conditions.  相似文献   

12.
The early effects of heat stress on the photosynthesis of symbiotic dinoflagellates (zooxanthellae) within the tissues of a reef-building coral were examined using pulse-amplitude-modulated (PAM) chlorophyll fluorescence and photorespirometry. Exposure of Stylophora pistillata to 33 and 34 °C for 4 h resulted in (1) the development of strong non-photochemical quenching (qN) of the chlorophyll fluorescence signal, (2) marked decreases in photosynthetic oxygen evolution, and (3) decreases in optimal quantum yield (Fv/Fm) of photosystem II (PSII). Quantum yield decreased to a greater extent on the illuminated surfaces of coral branches than on lower (shaded) surfaces, and also when high irradiance intensities were combined with elevated temperature (33 °C as opposed to 28 °C). qN collapsed in heat-stressed samples when quenching analysis was conducted in the absence of oxygen. Collectively, these observations are interpreted as the initiation of photoprotective dissipation of excess absorbed energy as heat (qN) and O2-dependent electron flow through the Mehler-Ascorbate-Peroxidase cycle (MAP-cycle) following the point at which the rate of light-driven electron transport exceeds the capacity of the Calvin cycle. A model for coral bleaching is proposed whereby the primary site of heat damage in S. pistillata is carboxylation within the Calvin cycle, as has been observed during heat damage in higher plants. Damage to PSII and a reduction in Fv/Fm (i.e. photoinhibition) are secondary effects following the overwhelming of photoprotective mechanisms by light. This secondary factor increases the effect of the primary variable, temperature. Potential restrictions of electron flow in heat-stressed zooxanthellae are discussed with respect to Calvin cycle enzymes and the unusual status of the dinoflagellate Rubisco. Significant features of our model are that (1) damage to PSII is not the initial step in the sequence of heat stress in zooxanthellae, and (2) light plays a key secondary role in the initiation of the bleaching phenomena.  相似文献   

13.
To investigate the effects of exogenously applied brassinosteroids on the thermotolerance of plants, leaf CO2 assimilation, chlorophyll fluorescence parameters, and antioxidant enzyme metabolism were examined in tomato (Lycopersicon esculentum Mill. cv. 9021) plants with or without 24-epibrassinolide (EBR) application. Tomato plants were exposed to 40/30°C for 8 days and then returned to optimal conditions for 4 days. High temperature significantly decreased the net photosynthetic rate (P n), stomatal conductance (G s), and maximum carboxylation rate of Rubisco (V cmax), the maximum potential rate of electron transport contributed to ribulose-1,5-bisphosphate (RuBP), as well as the relative quantum efficiency of PSII photochemistry (ФPSII), photochemical quenching (q P), and increased nonphotochemical quenching (NPQ). However, only slight reversible photoinhibition occurred during heat stress. Interestingly, EBR pretreatment significantly alleviated high-temperature-induced inhibition of photosynthesis. The activities of antioxidant enzymes such as superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidase (GPOD), and catalase (CAT) increased during heat treatments, and these increases proved to be more significant in EBR-treated plants. EBR application also reduced total hydrogen peroxide (H2O2) and malonaldehyde (MDA) contents, while significantly increasing shoot weight following heat stress. It was concluded that EBR could alleviate the detrimental effects of high temperatures on plant growth by increasing carboxylation efficiency and enhancing antioxidant enzyme systems in leaves.  相似文献   

14.
Maximum photosynthetic capacity indicates that the Antarctic psychrophile Chlamydomonas raudensis H. Ettl UWO 241 is photosynthetically adapted to low temperature. Despite this finding, C. raudensis UWO 241 exhibited greater sensitivity to low‐temperature photoinhibition of PSII than the mesophile Chlamydomonas reinhardtii P. A. Dang. However, in contrast with results for C. reinhardtii, the quantum requirement to induce 50% photoinhibition of PSII in C. raudensis UWO 241 (50 μmol photons) was comparable at either 8°C or 29°C. To our knowledge, this is the first report of a photoautotroph whose susceptibility to photoinhibition is temperature independent. In contrast, the capacity of the psychrophile to recover from photoinhibition of PSII was sensitive to temperature and inhibited at 29°C. The maximum rate of recovery from photoinhibition of the psychrophile at 8°C was comparable to the maximum rate of recovery of the mesophile at 29°C. We provide evidence that photoinhibition in C. raudensis UWO 241 is chronic rather than dynamic. The photoinhibition‐induced decrease in the D1 content in C. raudensis recovered within 30 min at 8°C. Both the recovery of the D1 content as well as the initial fast phase of the recovery of Fv/Fm at 8°C were inhibited by lincomycin, a chloroplast protein synthesis inhibitor. We conclude that the susceptibility of C. raudensis UWO 241 to low‐temperature photoinhibition reflects its adaptation to low growth irradiance, whereas the unusually rapid rate of recovery at low temperature exhibited by this psychrophile is due to a novel D1 repair cycle that is adapted to and is maximally operative at low temperature.  相似文献   

15.
Bioinvasion events causing serious environmental damage have been a concern with the mariculture of Kappaphycus alvarezii (Doty) Doty ex P.C. Silva, suggesting the importance of studying the biological aspects of drifting specimens of K. alvarezii for monitoring programs. The present study aims to evaluate the tolerance and growth of drifting color variants of K. alvarezii under different temperatures and salinities to determine their physiological capacity for growing outside cultivation rafts. Drifting color variants were collected in Paraíba State, Brazil, in November 2011(dry month) and August 2012 (rainy month), and cultivated in the laboratory under different temperatures (20, 24, 28, and 32 °C) and salinities (15, 25, 35, 45, and 55 psu). Growth rates as well as pigment and protein contents were determined. Results showed that drifting specimens collected in the dry month showed higher tolerance to variation in temperature (20 to 28 °C) and salinity (25 to 35 psu) than drifting specimens collected in the rainy month. Higher growth rates occurred in samples cultured at 20 and 24 °C (2.8–3 % day?1) and 25 to 35 psu (3.4–3.5 % day?1), suggesting temperature and salinity optima. Higher phycobiliprotein levels were observed in the red and brown variants under hypersaline conditions (45 and 55 psu). Higher chlorophyll a contents were associated with samples cultivated at 20–24 °C and 24–35 psu. Based on the results of the present study, drifting specimens collected in dry month are more tolerant to temperature and salinity variations, suggesting that the drifting K. alvarezii should be monitored especially during this period to prevent its establishment outside the cultivation rafts and dispersion along the northeastern coast of Brazil.  相似文献   

16.
Warmer than average summer sea surface temperature is one of the main drivers for coral bleaching, which describes the loss of endosymbiotic dinoflagellates (genus: Symbiodinium) in reef‐building corals. Past research has established that oxidative stress in the symbiont plays an important part in the bleaching cascade. Corals hosting different genotypes of Symbiodinium may have varying thermal bleaching thresholds, but changes in the symbiont's antioxidant system that may accompany these differences have received less attention. This study shows that constitutive activity and up‐regulation of different parts of the antioxidant network under thermal stress differs between four Symbiodinium types in culture and that thermal susceptibility can be linked to glutathione redox homeostasis. In Symbiodinium B1, C1 and E, declining maximum quantum yield of PSII (Fv/Fm) and death at 33°C were generally associated with elevated superoxide dismutase (SOD) activity and a more oxidized glutathione pool. Symbiodinium F1 exhibited no decline in Fv/Fm or growth, but showed proportionally larger increases in ascorbate peroxidase (APX) activity and glutathione content (GSx), while maintaining GSx in a reduced state. Depressed growth in Symbiodinium B1 at a sublethal temperature of 29°C was associated with transiently increased APX activity and glutathione pool size, and an overall increase in glutathione reductase (GR) activity. The collapse of GR activity at 33°C, together with increased SOD, APX and glutathione S‐transferase activity, contributed to a strong oxidation of the glutathione pool with subsequent death. Integrating responses of multiple components of the antioxidant network highlights the importance of antioxidant plasticity in explaining type‐specific temperature responses in Symbiodinium.  相似文献   

17.
In the present study, we investigated the antioxidative potential in leaves of the chromatic (CC) versus green (GC) Amaranthus tricolor L. under moderate high-temperature stress at 45°C. Before heat stress, CC had significantly higher levels of betacyanins [about 3.2 mg g−1(FM)] than the green [1.8 mg g−1(FM) (p<0.01), while similar chlorophyll (Chl) content [about 2 mg g−1(FM)] was observed between both cultivars. After exposure to high temperature (45°C) for 6 days, betacyanins in leaves of CC were remarkably increased (about 2 times of that in control samples grown at 30°C). In contrast, betacyanins in GC significantly decreased by 56% in comparison with that of the control. Chl level in CC was higher than that in GC after heat stress for 6 days. Flavonoids and total phenolics in both cultivars were increased, but much more in CC. Significantly less H2O2 accumulation was observed in the leaves and stems of CC than in those of GC under heat stress. Interestingly, much stronger circadian oscillation in fluorescence was observed in both cultivars after treatment at 45°C, which suggested that heat stress stimulates endogenous rhythms of photosystem II (PSII). Under moderate high-temperature stress, Chl fluorescence parameters Fv/Fm (maximum quantum yield of PSII), qP (coefficient of photochemical quenching), ΦPSII (effective PSII quantum yield), and ETR (electron transport rate) exhibited a gradual decrease, NPQ (nonphotochemical quenching) showed a slight increase followed by a gradual decline, whereas Fo (minimum fluorescence of a dark-adapted leaf) increased continuously. In contrast to GC, after 120 h of high-temperature treatment, CC exhibited significantly lower Fo level, and higher levels of Fv/Fm and NPQ. It is clear that PSII in CC was more stable than that in GC. The results indicate that betacyanins are an effective antioxidant, and probably contribute greatly to the higher thermal stability of PSII and higher tolerance to heat stress.  相似文献   

18.
Inhibition of the net photosynthetic CO2 assimilation rate (Pn) by high temperature was examined in oak (Quercus pubescens L.) leaves grown under natural conditions. Combined measurements of gas exchange and chlorophyll (Chl) a fluorescence were employed to differentiate between inhibition originating from heat effects on components of the thylakoid membranes and that resulting from effects on photosynthetic carbon metabolism. Regardless of whether temperature was increased rapidly or gradually, Pn decreased with increasing leaf temperature and was more than 90% reduced at 45 °C as compared to 25 °C. Inhibition of Pn by heat stress did not result from reduced stomatal conductance (gs), as heat‐induced reduction of gs was accompanied by an increase of the intercellular CO2 concentration (Ci). Chl a fluorescence measurements revealed that between 25 and 45 °C heat‐dependent alterations of thylakoid‐associated processes contributed only marginally, if at all, to the inhibition of Pn by heat stress, with photosystem II being remarkably well protected against thermal inactivation. The activation state of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) decreased from about 90% at 25 °C to less than 30% at 45 °C. Heat stress did not affect Rubisco per se, since full activity could be restored by incubation with CO2 and Mg2+. Western‐blot analysis of leaf extracts disclosed the presence of two Rubisco activase polypeptides, but heat stress did not alter the profile of the activase bands. Inhibition of Pn at high leaf temperature could be markedly reduced by artificially increasing Ci. A high Ci also stimulated photosynthetic electron transport and resulted in reduced non‐photochemical fluorescence quenching. Recovery experiments showed that heat‐dependent inhibition of Pn was largely, if not fully, reversible. The present results demonstrate that in Q. pubescens leaves the thylakoid membranes in general and photosynthetic electron transport in particular were well protected against heat‐induced perturbations and that inhibition of Pn by high temperature closely correlated with a reversible heat‐dependent reduction of the Rubisco activation state.  相似文献   

19.
Photosynthetic responses to temperature and photosynthetically active radiation (PAR) were investigated on the heteromorphic life history stages (macroscopic and microscopic stages) of an edible Japanese brown alga, Cladosiphon okamuranus from the Ryukyu Islands. Measurements were carried out by using optical dissolved oxygen sensors and a pulse‐amplitude modulated fluorometer. Maximum net photosynthetic rates and other parameters of the Photosynthesis – PAR curves at 28°C were somewhat similar in both life history stages, without characteristic photoinhibition at 1000 μmol photons m?2 s?1. Results of oxygenic gross photosynthesis and dark respiration experiments over a temperature range of 8–40°C revealed similar temperature optima for both stages (29.7°C, macroscopic stage; 30.3°C, microscopic stage), which support their observed occurrences in the habitat during summer. Maximum quantum yields of photosystem II (PSII ) (F v /F m ) were relatively stable at low temperatures with the highest at 15.1°C for the macroscopic stage and at 16.5°C for the microscopic stage; but dropped at higher temperatures especially above 28°C. Continuous exposures (6 h) to 200 and 1000 μmol photons m?2 s?1 at 8, 16, and 28°C revealed greater depressions in effective quantum yields of PSII (Φ PSII ) of the microscopic stage at 8°C, as well as its F v /F m that barely increased after 6 h of dark acclimation. Whereas post‐dark acclimation F v /F m of both stages exposed to low PAR fairly recovered at 28°C, suggesting their photosynthetic tolerance to such high temperature. Under natural conditions, both heteromorphic stages of C. okamuranus may persist throughout the year in this region. Beyond its northern limit of distribution, the microscopic stage of this species may suffer from photodamage, as enhanced by low winter temperatures; hence, its restricted occurrence.  相似文献   

20.
The effect of the acclimation temperature on the temperature tolerance ofPorphyra leucosticta, and on the temperature requirements for growth and survival ofEnteromorpha linza was determined under laboratory conditions. Thalli ofP. leucosticta (blade or Conchocelis phases), acclimated to twenty-five degrees, survived up to 30°C, i.e. 2°C more than those acclimated to 15°C which survived up to 28°C. Lower temperature tolerance of bothPorphyra phases that were acclimated to 15°C was −1°C after an 8-week exposure time at the experimental temperatures. The upper temperature tolerance ofE. linza also increased by 2°C, i.e. from 31 to 33°C, when it was acclimated to 30°C instead of 15°C. The lower temperature tolerance increased from 1 to −1°C, when it was acclimated to 5°C instead of 15°C.E. linza thalli acclimated for 4 weeks to 5 or 10°C reached their maximum growth at 15°C, i.e. at a 5°C lower temperature than those acclimated to 15 or 30°C. These thalli achieved higher growth rates in percent of maximal growth at low temperatures than those acclimated to 15 or 30°C. Thalli acclimated for 1 week to 5°C reached their maximum growth rate at 20°C and achieved growth rates at low temperatures similar to those recorded for thalli acclimated to 15°C. Thalli ofE. linza acclimated for 4 weeks to 5°C lost this acclimation after being post-cultivated for the same period at 15°C. That was not the case with thalli acclimated for 8 weeks to 5°C and post-acclimated for 4 weeks to 15°C. These thalli displayed similar growth patterns at 10–25°C, while a decline of growth rate was observed at 5 or 30°C. The significance of the acclimation potential ofE. linza with regard to its seasonality in the Gulf of Thessaloniki, and its distribution in the N Atlantic, is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号