首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Male-killing phenotypes are found in a variety of insects and are often associated with maternally inherited endosymbiotic bacteria. In several species of Drosophila, male-killing endosymbionts of the genus Spiroplasma have been found at low frequencies (0.1 to 3%). In this study, spiroplasma infection without causing male-killing was shown to be prevalent (23 to 66%) in Japanese populations of Drosophila hydei. Molecular phylogenetic analyses showed that D. hydei was infected with a single strain of spiroplasma, which was closely related to male-killing spiroplasmas from other Drosophila species. Artificial-transfer experiments suggested that the spiroplasma genotype rather than the host genotype was responsible for the absence of the male-killing phenotype. Infection densities of the spiroplasma in the natural host, D. hydei, and in the artificial host, Drosophila melanogaster, were significantly lower than those of the male-killing spiroplasma NSRO, which was in accordance with the hypothesis that a threshold infection density is needed for the spiroplasma-induced male-killing expression.  相似文献   

2.
A maternally-inherited spiroplasma endosymbiont of Drosophila hydei does not exert apparent phenotypes on both sexes of its host and is prevalent in natural populations of D. hydei. Our previous experiments using a laboratory stock of D. hydei revealed that low temperatures (such as 15°C and 18°C) dramatically lower the vertical transmission rates of this spiroplasma. Therefore, we hypothesized that, in temperate regions, the infection frequencies may decrease in cool seasons but increase in the summer season. To clarify the temporal population dynamics of the spiroplasma infection, D. hydei were collected from two Japanese populations in 2006–2008 from May to early August, representing the only period when a number of D. hydei are collectable in Japan, and examined for spiroplasma infection. Within each year, the frequency of spiroplasma infection fluctuated considerably in both populations. Consistent with our hypothesis, the infection frequency showed an increasing trend in both populations in 2007. However, the data in 2006 and 2008 did not show consistent patterns of increase. The population dynamics of spiroplasma infection may be affected but not critically determined by temperature. Moreover, despite the fluctuation within each year, the infection frequencies seemed to be stable across the years. The frequencies of spiroplasma infection in D. hydei populations may be stabilized by multiple factors. One of these factors may involve a context-dependent positive effect of spiroplasma on the fitness of D. hydei, as was recently observed in laboratory experiments.  相似文献   

3.
We investigated the vertical transmission, reproductive phenotype, and infection density of a male-killing Spiroplasma symbiont in two Drosophila species under physiological high and low temperatures through successive host generations. In both the native host Drosophila nebulosa and the nonnative host Drosophila melanogaster, the symbiont infection and the male-killing phenotype were stably maintained at 25 degrees C, rapidly lost at 18 degrees C, and gradually lost at 28 degrees C. In the nonnative host, both the high and low temperatures significantly suppressed the infection density of the spiroplasma. In the native host, by contrast, the low temperature suppressed the infection density of the spiroplasma whereas the high temperature had little effect on the infection density. These results suggested that the low temperature suppresses both the infection density and the vertical transmission of the spiroplasma whereas the high temperature suppresses the vertical transmission preferentially. The spiroplasma density was consistently higher in the native host than in the nonnative host, suggesting that the host genotype may affect the infection density of the symbiont. The temperature- and genotype-dependent instability of the symbiont infection highlights a complex genotype-by-genotype-by-environment interaction and may be relevant to the low infection frequencies of the male-killing spiroplasmas in natural Drosophila populations.  相似文献   

4.
Spiroplasma is widespread as a heritable bacterial symbiont in insects and some other invertebrates, in which it sometimes acts as a male-killer and causes female-biased sex ratios in hosts. Besides Wolbachia, it is the only heritable bacterium known from Drosophila, having been found in 16 of over 200 Drosophila species screened, based on samples of one or few individuals per species. To assess the extent to which Spiroplasma infection varies within and among species of Drosophila, intensive sampling consisting of 50–281 individuals per species was conducted for natural populations of 19 Drosophila species. Infection rates varied among species and among populations of the same species, and 12 of 19 species tested negative for all individuals. Spiroplasma infection never was fixed, and the highest infection rates were 60% in certain populations of D. hydei and 85% in certain populations of D. mojavensis. In infected species, infection rates were similar for males and females, indicating that these Spiroplasma infections do not confer a strong male-killing effect. These findings suggest that Spiroplasma has other effects on hosts that allow it to persist, and that environmental or host variation affects transmission or persistence leading to differences among populations in infection frequencies.  相似文献   

5.
Maternally transmitted endosymbiotic bacteria of the genus Spiroplasma associate with numerous insect species, including the genus Drosophila. Among the Spiroplasma strains associated with Drosophila, several manipulate their host??s reproduction by killing the male offspring of the infected females. Although the male-killing mechanism is not well understood, previous studies of non-native strains transferred to D. melanogaster (strain Oregon-R) indicate that the male-killing strain achieves higher densities than two non-male-killing strains. Whether this pattern of higher male-killing strain densities occurs in other host-symbiont strain combinations is not known. Herein, we used quantitative PCR to examine infection densities of one non-male-killing strain native to D. hydei (Hyd1), and two male-killing strains; one native to D. nebulosa (NSRO), and one native to D. melanogaster (MSRO; recently discovered), upon artificial transfer to D. melanogaster (strain Canton-S). Infection densities were examined at four weekly intervals in adult flies, across three consecutive generations following artificial transfer. Infection densities of the non-male-killing strain were significantly lower than those of the two male killers immediately after adult emergence. At later time points, however, the non-male-killing strain (Hyd1) is capable of proliferating to densities similar to those of the two male-killing strains (NSRO and MSRO) in D. melanogaster (Canton-S). We also examined the effect of co-infection by the heritable bacterium Wolbachia, on Spiroplasma densities and male-killing ability. Wolbachia had little to no effect of Spiroplasma densities, but the male-killing ability of MSRO was lower in the presence of Wolbachia. Generation post-infection had little effect on Spiroplasma densities, but affected the male-killing ability.  相似文献   

6.
Interspecific transmission of endosymbiotic Spiroplasma by mites   总被引:1,自引:0,他引:1       下载免费PDF全文
The occurrence of closely related strains of maternally transmitted endosymbionts in distantly related insect species indicates that these infections can colonize new host species by lateral transfer, although the mechanisms by which this occurs are unknown. We investigated whether ectoparasitic mites, which feed on insect haemolymph, can serve as interspecific vectors of Spiroplasma poulsonii, a male-killing endosymbiont of Drosophila. Using Spiroplasma-specific primers for PCR, we found that mites can pick up Spiroplasma from infected Drosophila nebulosa females and subsequently transfer the infection to Drosophila willistoni. Some of the progeny of the recipient D. willistoni were infected, indicating successful maternal transmission of the Spiroplasma within the new host species. However, the transmission rate of the infection from recipient flies to their offspring was low, perhaps due to low Spiroplasma density in the recipient flies.  相似文献   

7.
Maternally transmitted endosymbionts of the genus Spiroplasma infecting several species of Drosophila are known to cause selective death of male offspring (male killing). The male-killing trait is considered to be advantageous for maternally transmitted endosymbionts. However, a non-male-killing spiroplasma is present in Japanese populations of Drosophila hydei at high frequencies (23-66%). This spiroplasma is phylogenetically closely related to the male-killing spiroplasma infecting other Drosophila species. It is unknown why this spiroplasma is maintained in its host populations despite its inability to cause male killing. We examined the susceptibilities of the spiroplasma in D. hydei to four different temperatures (28, 25, 18, and 15 degrees C). Diagnostic PCR revealed that vertical transmission of the spiroplasma was nearly perfect at 28 and 25 degrees C, partially suppressed at 18 degrees C, and completely blocked at 15 degrees C. Furthermore, quantitative PCR demonstrated that offspring treated at 18 degrees C exhibited dramatically lower densities of spiroplasma (i.e., approximately one-tenth) compared to offspring treated at 28 and 25 degrees C. Considering the low temperatures during winter in Japan, some unknown advantageous effects of the spiroplasma that compensate for the failure of vertical transmission are suggested to act in natural populations of D. hydei.  相似文献   

8.
Drosophila hydei mating system characteristics were studied and compared to what has been observed for two other Drosophila species. Hydei females will copulate when they are 3 days old, while males do not exhibit courtship behaviour until they are 9 days old. Unlike any other Drosophila, D. hydei females will re-mate as often as four times in one morning. However, re-mating in the same morning does not increase the number of progeny a female produces. Male D. hydei appear to deal with the continual receptivity of females and the pressures of sperm competition by passing less material to any given female but maintaining a constant level of fertility across numerous successive copulations. D. hydei is a cosmopolitan species which utilizes a wide variety of resources. As in D. melanogaster, another cosmopolitan species which is not closely related to it, male success appears to be dependent upon genetic quality only. This pattern differs from that observed in its relative D. mojavensis, a cactiphilic species endomic to the Sonoran desert, in which males contribute material benefits to females in their ejaculate.  相似文献   

9.
Transovarially transmitted SR spiroplasmas inDrosophila cause an abnormal sex ratio (SR condition: male-specific killing) in the host fly progenies. A reaction known as clumping takes place between different SR spiroplasma strains in which spiroplasmas instantly form aggregates upon mixing of the two strains. Each strain of SR spiroplasma carries an associated virus that is lytic to certain other strains. When the virus, HIV, from the recently discovered non-male-killingDrosophila hydei spiroplasma (HIS) is injected into host flies carrying the SR spiroplasma ofD. nebulosa (NSR), the latter spiroplasmas either undergo complete lysis and disappear, or survive with decreased numbers and with an abnormal morphology, and are transmissible from generation to generation in host flies. The surviving spiroplasmas possess two viruses, the endogenous virus of thenebulosa spiroplasma, spv-1, and the newly introduced superinfecting virus, HIV. This combination leads to a change in the surface properties of the superinfected spiroplasmas that is manifested in their ability to form clumps with normalnebulosa spiroplasmas, but does not interfere with male killing. This change in spiroplasma phenotype is discussed in terms of host-phenotype modification by infecting viruses.  相似文献   

10.
Facultative heritable bacterial endosymbionts can have dramatic effects on their hosts, ranging from mutualistic to parasitic. Within-host bacterial endosymbiont density plays a critical role in maintenance of a symbiotic relationship, as it can affect levels of vertical transmission and expression of phenotypic effects, both of which influence the infection prevalence in host populations. Species of genus Drosophila are infected with Spiroplasma, whose characterized phenotypic effects range from that of a male-killing reproductive parasite to beneficial defensive endosymbiont. For many strains of Spiroplasma infecting at least 17 species of Drosophila, however, the phenotypic effects are obscure. The infection prevalence of these Spiroplasma vary within and among Drosophila species, and little is known about the within-host density dynamics of these diverse strains. To characterize the patterns of Spiroplasma density variation among Drosophila we used quantitative PCR to assess bacterial titer at various life stages of three species of Drosophila naturally-infected with two different types of Spiroplasma. For naturally infected Drosophila species we found that non-male-killing infections had consistently lower densities than the male-killing infection. The patterns of Spiroplasma titer change during aging varied among Drosophila species infected with different Spiroplasma strains. Bacterial density varied within and among populations of Drosophila, with individuals from the population with the highest prevalence of infection having the highest density. This density variation underscores the complex interaction of Spiroplasma strain and host genetic background in determining endosymbiont density.  相似文献   

11.
Spiroplasma endosymbionts are maternally inherited microorganisms which infect many arthropod species. In some Drosophila species, it acts as a reproductive manipulator, spreading in populations by killing the sons of infected mothers. Distinct Drosophila melanogaster populations from Brazil exhibit variable male-killing Spiroplasma prevalences. In this study, we investigated the presence of variability for the male-killing phenotype among Drosophila and/or Spiroplasma strains and verified if it correlates with the endosymbiont prevalence in natural populations. For that, we analyzed the male-killing expression when Spiroplasma strains from different populations were transferred to a standard D. melanogaster line (Canton-S) and when a common Spiroplasma strain was transferred to different wild-caught D. melanogaster lines, both at optimal and challenging temperatures for the bacteria. No variation was observed in the male-killing phenotype induced by different Spiroplasma strains. No phenotypic variability among fly lines was detected at optimal temperature (23 °C), as well. Conversely, significant variation in the male-killing expression was revealed among D. melanogaster lines at 18.5 °C, probably caused by imperfect transmission of the endosymbiont. Distinct lines differed in their average sex ratios as well as in the pattern of male-killing expression as the infected females aged. Greater variation occurred among lines from one locality, although there was no clear correlation between the male-killing intensity and the endosymbiont prevalence in each population. Imperfect transmission or male killing may also occur in the field, thus helping to explain the low or intermediate prevalences reported in nature. We discuss the implications of our results for the dynamics of male-killing Spiroplasma in natural populations.  相似文献   

12.
13.
Summary Imaginal discs and larval brains of wildtype andlethal (3) giant larvae ofDrosophila hydei were transplanted into adult foreign hosts and examined after about 2 weeks. The transplants behaved very differently in different host species, viz. 6 species ofDrosophila, 5 other species of Diptera, and 3 species belonging to the Coleoptera or Dictyoptera, whereby the degree of incompatibility was more or less correlated with taxonomic distances. One notable exception was found in the cheese skipper,Piophila casei, an entirely compatible host.  相似文献   

14.
Only two parasite interactions are known for Drosophila to date: Allantonematid nematodes associated with mycophagous Drosophilids and the ectoparasitic mite Macrocheles subbadius with the Sonoran Desert endemic Drosophila nigrospiracula. Unlike the nematode-Drosophila association, breadth of mite parasitism on Drosophila species is unknown. As M. subbadius is a generalist, parasitism of additional Drosophilids is expected. We determined the extent and distribution of mite parasitism in nature Drosophilids collected in Mexico and southern California. Thirteen additional species of Drosophilids were infested. Interestingly, 10 belong to the repleta species group of the subgenus Drosophila, despite the fact that the majority of flies collected were of the subgenus Sophophora. In all cases but 2, the associated mites were M. subbadius. Drosophila hexastigma was found to have not only M. subbadius, but another Mesostigmatid mite, Paragarmania bakeri, as well. One D. hydei was also found to have a mite from genus Lasioseius attached. In both choice and no-choice experiments, mites were more attracted to repleta group species than to Sophophoran. The extent of mite parasitism clearly is much broader than previously reported and suggests a host bias mediated either by mite preference and/or some mechanism of resistance in particular Drosophilid lineages.  相似文献   

15.
The oviposition pattern over two continuous days under constant light (LL) and light-and-dark (LD) conditions was studied by means of a special apparatus; four Drosophila species (D. lutescens, D. melanogaster, D. hydei, and D. virilis) were used. The results showed that: (1) Under the LL condition, the oviposition pattern was characteristic for each species. The number of eggs laid by D. lutescens was smaller than that laid by the other species, and the oviposition pattern of this species was rhythmical. Females of D. melanogaster laid eggs continuously, but at a low rate. In contrast, D. hydei and D. virilis laid eggs in clusters, the total numbers of eggs being larger than those of D. lutescens and D. melanogaster. (2) Females of three species (D. lutescens, D. melanogaster, and D. virilis) laid more eggs in the light phase than in the dark phase under the LD condition. However, no consistent trend was obtained with D. hydei, suggesting that the oviposition pattern of this species is indifferent to the light condition (i.e., it is independent of it). (3) No effects of pre-experimental light condition on the oviposition were found for any of the species. The light-dependency of the oviposition pattern is discussed from the viewpoint of adaptation.  相似文献   

16.

Background

Inherited bacteria that kill male offspring, male-killers, are known to be common in insects, but little is understood about the mechanisms used by male-killing bacteria to kill males. In this paper we describe the tempo and changes that occur during male-killing by Spiroplasma bacteria in the host Drosophila nebulosa.

Results

Spiroplasma infected D. nebulosa males were developmentally retarded from 6–8 h into embryonic development at 25°C, and arrested at between stages 12 and 13 of embryogenesis (10–12 h). Dying males were characterized by a failure to form segments, and ultimately disintegration of the normal oval embryonic shape. Prior to death, dying males exhibited widespread apoptosis, as testified by TUNEL staining.

Conclusion

The Spiroplasma kills male Drosophila in a narrow developmental period, shortly after the formation of the host dosage compensation complex that is required for male-killing. Male death is preceded by widespread apoptosis, but it is uncertain if this is primary or secondary apoptosis.  相似文献   

17.
Drosophilidae (Diptera) are well known for tremendous variability in sperm length as great as that found among vertebrates and invertebrates together. Paradoxically, the great length (> 1 mm) of Drosophila sperm creates difficulties for measuring them. Evidence is provided that the length of giant sperm can be indirectly, albeit reliably, estimated using the regression lines between sperm and testis or receptacle lengths, established from 26 species with short- and mid-length sperm. Using this method, the sperm length in Drosophila hydei was estimated to be about 17 mm, which would be the longest in the animal kingdom. The phylogenetic relationships between species are discussed.  相似文献   

18.
The male-killing spiroplasma strain NSRO causes an extremely female-biased sex ratio of the host, Drosophila melanogaster, as a result of selective death of male offspring during embryogenesis. The spiroplasma strain NSRO-A, a variant of NSRO, does not cause such symptoms. In an attempt to gain insights into the mechanism underlying the symbiont-induced reproductive phenotype, infection densities of the spiroplasmas in different tissues were monitored during host aging using a quantitative PCR technique. The density dynamics in the hemolymph were reminiscent of those in the whole body, whereas the density dynamics in the fat body, intestine and ovary were not. These results suggest that the majority of the spiroplasmas colonize and proliferate in the hemolymph of the host. In the hemolymph and whole body, the infection densities of NSRO were generally higher than those of NSRO-A, which may be related to the different reproductive phenotypes caused by the spiroplasmas.  相似文献   

19.
Background and Aims The first documented observation of pollination in Pleurothallidinae was that of Endrés, who noticed that the ‘viscid sepals’ of Specklinia endotrachys were visited by a ‘small fly’. Chase would later identify the visiting flies as being members of the genus Drosophila. This study documents and describes how species of the S. endotrachys complex are pollinated by different Drosophila species.Methods Specimens of Specklinia and Drosophila were collected in the field in Costa Rica and preserved in the JBL and L herbaria. Flies were photographed, filmed and observed for several days during a 2-year period and were identified by a combination of non-invasive DNA barcoding and anatomical surveys. Tissue samples of the sepals, petals and labellum of Specklinia species were observed and documented by SEM, LM and TEM. Electroantennogram experiments were carried out on Drosophila hydei using the known aggregation pheromones ethyl tiglate, methyl tiglate and isopropyl tiglate. Floral compounds were analysed by gas chromatography–mass spectometry using those same pheromones as standards.Key Results Flowers of S. endotrachys, S. pfavii, S. remotiflora and S. spectabilis are visited and pollinated by several different but closely related Drosophila species. The flies are arrested by aggregation pheromones, including ethyl tiglate, methyl tiglate and isopropyl tiglate, released by the flowers, and to which at least D. hydei is very sensitive. Visible nectar drops on the adaxial surface of sepals are secreted by nectar-secreting stomata, encouraging male and female Drosophila to linger on the flowers for several hours at a time. The flies frequently show courtship behaviour, occasionally copulating. Several different Drosophila species can be found on a single Specklinia species.Conclusions Species of the S. endotrachys group share a similar pollination syndrome. There seem to be no species-specific relationships between the orchids and the flies. It is not expected that Specklinia species will hybridize naturally as their populations do not overlap geographically. The combination of pheromone attraction and nectar feeding is likely to be a generalized pollination syndrome in Pleurothallidinae.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号