首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Ubiquitin (Ub)–protein conjugates formed by purified ring‐finger or U‐box E3s with the E2, UbcH5, resist degradation and disassembly by 26S proteasomes. These chains contain multiple types of Ub forks in which two Ub's are linked to adjacent lysines on the proximal Ub. We tested whether cells contain factors that prevent formation of nondegradable conjugates and whether the forked chains prevent proteasomal degradation. S5a is a ubiquitin interacting motif (UIM) protein present in the cytosol and in the 26S proteasome. Addition of S5a or a GST‐fusion of S5a's UIM domains to a ubiquitination reaction containing 26S proteasomes, UbcH5, an E3 (MuRF1 or CHIP), and a protein substrate, dramatically stimulated its degradation, provided S5a was present during ubiquitination. Mass spectrometry showed that S5a and GST–UIM prevented the formation of Ub forks without affecting synthesis of standard isopeptide linkages. The forked Ub chains bind poorly to 26S proteasomes unlike those synthesized with S5a present or linked to Lys63 or Lys48 chains. Thus, S5a (and presumably certain other UIM proteins) function with certain E3/E2 pairs to ensure synthesis of efficiently degraded non‐forked Ub conjugates.  相似文献   

2.
The ubiquitin (Ub)/26S proteasome system (UPS) directs the turnover of numerous regulatory proteins, thereby exerting control over many aspects of plant growth, development, and survival. The UPS is directed in part by a group of Ub-like/Ub-associated (UBL/UBA) proteins that help shuttle ubiquitylated proteins to the 26S proteasome for breakdown. Here, we describe the collection of UBL/UBA proteins in Arabidopsis thaliana, including four isoforms that comprise the RADIATION SENSITIVE23 (RAD23) family. The nuclear-enriched RAD23 proteins bind Ub conjugates, especially those linked internally through Lys-48, via their UBA domains, and associate with the 26S proteasome Ub receptor RPN10 via their N-terminal UBL domains. Whereas homozygous mutants individually affecting the four RAD23 genes are without phenotypic consequences (rad23a, rad23c, and rad23d) or induce mild phyllotaxy and sterility defects (rad23b), higher-order mutant combinations generate severely dwarfed plants, with the quadruple mutant displaying reproductive lethality. Both the synergistic effects of a rad23b-1 rpn10-1 combination and the response of rad23b plants to mitomycin C suggest that RAD23b regulates cell division. Taken together, RAD23 proteins appear to play an essential role in the cell cycle, morphology, and fertility of plants through their delivery of UPS substrates to the 26S proteasome.  相似文献   

3.
Rad23 is a DNA repair protein that promotes the assembly of the nucleotide excision repair complex. Rad23 can interact with the 26S proteasome through an N-terminal ubiquitin-like domain, and inhibits the assembly of substrate-linked multi-ubiquitin (multi-Ub) chains in vitro and in vivo. Significantly, Rad23 can bind a proteolytic substrate that is conjugated to a few ubiquitin (Ub) moieties. We report here that two ubiquitin-associated (UBA) domains in Rad23 form non-covalent interactions with Ub. A mutant that lacked either UBA sequence was capable of blocking the assembly of substrate-linked multi-Ub chains, although a mutant that lacked both UBA domains was significantly impaired. These studies suggest that the interaction with Ub is required for Rad23 activity, and that other UBA-containing proteins may have a similar function.  相似文献   

4.
植物的生长和发育离不开短命调控蛋白的有选择性降解, 其中一种重要的降解方式就是泛素/26S蛋白酶体途径。在这个途径中, 泛素(ubiquitin)和26S蛋白酶体起着至关重要的作用, 需要被降解的蛋白会通过E1-E2-E3酶接合反应由Ub进行标记, 随后标记蛋白会被26S蛋白酶体识别并降解。自交不亲和反应也正是通过此途径实现的, ARC1(arm repeat containing 1)和SCFs (skp1-cul1-F-box-proteins)作为E3s分别在孢子体自交不亲和和配子体自交不亲和反应中起作用。本文综述了就泛素/26S蛋白酶体途径的组成及其在自交不亲和反应中的作用。  相似文献   

5.
泛素/26S蛋白酶体途径与显花植物自交不亲和反应   总被引:4,自引:0,他引:4  
植物的生长和发育离不开短命调控蛋白的有选择性降解,其中一种重要的降解方式就是泛素,26S蛋白酶体途径。在这个途径中,泛素(ubiquitin)和26S蛋白酶体起着至关重要的作用,需要被降解的蛋白会通过E1-E2-E3酶接合反应由Ub进行标记,随后标记蛋白会被26s蛋白酶体识别并降解。自交不亲和反应也正是通过此途径实现的,ARC1(arm repeat containing 1)和SCFs(skp1-cul1-F-box-proteins)作为E3s分别在孢子体自交不亲和和配子体自交不亲和反应中起作用。本文综述了就泛素/26S蛋白酶体途径的组成及其在自交不亲和反应中的作用。  相似文献   

6.
Ubiquitin (Ub)-mediated proteasome-dependent proteolysis is critical in regulating multiple biological processes including apoptosis. We show that the unstructured BH3-only protein, NOXA, is degraded by an Ub-independent mechanism requiring 19S regulatory particle (RP) subunits of the 26S proteasome, highlighting the possibility that other unstructured proteins reported to be degraded by 20S proteasomes in vitro may be bona fide 26S proteasome substrates in vivo. A lysine-less NOXA (NOXA-LL) mutant, which is not ubiquitinated, is degraded at a similar rate to wild-type NOXA. Myeloid cell leukemia 1, but not other anti-apoptotic BCL-2 family proteins, stabilizes NOXA by interaction with the NOXA BH3 domain. Depletion of 19S RP subunits, but not alternate proteasome activator REG subunits, increases NOXA half-life in vivo. A NOXA-LL mutant, which is not ubiquitinated, also requires an intact 26S proteasome for degradation. Depletion of the 19S non-ATPase subunit, PSMD1 induces NOXA-dependent apoptosis. Thus, disruption of 26S proteasome function by various mechanisms triggers the rapid accumulation of NOXA and subsequent cell death strongly implicating NOXA as a sensor of 26S proteasome integrity.  相似文献   

7.
In Huntington's disease (HD), as in the rest of CAG triplet-repeat disorders, the expanded polyglutamine (polyQ)-containing proteins form intraneuronal fibrillar aggregates that are gathered into inclusion bodies (IBs). Since IBs contain ubiquitin and proteasome subunits, it was proposed that inhibition of proteasome activity might underlie pathogenesis of polyQ disorders. Recent in vitro enzymatic studies revealed the inability of eukaryotic proteasomes to digest expanded polyQ, thus suggesting that occasional failure of polyQ to exit the proteasome may interfere with its proteolytic function. However, it has also recently been found that in vitro assembled aggregates made of synthetic polyQ fail to inhibit proteasome activity. Because synthetic polyQ aggregates lack the post-translational modifications found inside affected neurons, such as poly ubiquitylation, we decided to study the effect of mutant huntingtin (htt) aggregates isolated from the Tet/HD94 mouse model and from human HD brain tissue. Here, we show that isolated ubiquitylated filamentous htt aggregates, extracted from IBs by a previously reported method, selectively inhibited the in vitro peptidase activity of the 26S but not of the 20S proteasome in a non-competitive manner. In good agreement, immuno-electron microscopy revealed a direct interaction of htt filaments with the 19S ubiquitin-interacting regulatory caps of the 26S proteasome. Here, we also report a new method for isolation of IBs based on magnetic sorting. Interestingly, isolated IBs did not modify proteasome activity. Our results therefore show that mutant htt filamentous aggregates can inhibit proteasome activity, but only when not recruited into IBs, thus strengthening the notion that IB formation is protective by neutralizing toxicity of dispersed filamentous htt aggregates.  相似文献   

8.
The regulation of Ubiquitin (Ub) conjugates generated by the complex network of proteins that promote the mammalian DNA double‐strand break (DSB) response is not fully understood. We show here that the Ub protease POH1/rpn11/PSMD14 resident in the 19S proteasome regulatory particle is required for processing poly‐Ub formed in the DSB response. Proteasome activity is required to restrict tudor domain‐dependent 53BP1 accumulation at sites of DNA damage. This occurs both through antagonism of RNF8/RNF168‐mediated lysine 63‐linked poly‐Ub and through the promotion of JMJD2A retention on chromatin. Consistent with this role POH1 acts in opposition to RNF8/RNF168 to modulate end‐joining DNA repair. Additionally, POH1 acts independently of 53BP1 in homologous recombination repair to promote RAD51 loading. Accordingly, POH1‐deficient cells are sensitive to DNA damaging agents. These data demonstrate that proteasomal POH1 is a key de‐ubiquitinating enzyme that regulates ubiquitin conjugates generated in response to damage and that several aspects of the DSB response are regulated by the proteasome.  相似文献   

9.
The 26 S proteasome is implicated in the control of many major biological functions but a reliable method for the identification of its major substrates, i.e. polyubiquitin (Ub) conjugates, is still lacking. Based on the steps present in cells, i.e. recognition and deubiquitination, we developed an affinity matrix-based purification of polyUb conjugates suitable for any biological sample. Ub-conjugates were first purified from proteasome inhibitor-treated C2C12 cells using the Ub binding domains of the S5a proteasome subunit bound to an affinity matrix and then deubiquitinated by the catalytic domain of the USP2 enzyme. This two step purification of proteasome substrates involving both protein-protein interactions and enzyme-mediated release allowed highly specific isolation of polyUb 26 S proteasome substrates, which were then resolved on two-dimensional gels post-deubiquitination. To establish our method, we focused on a gel area where spots were best resolved. Surprisingly, spot analysis by mass spectrometry identified alpha2, alpha6, alpha7, beta2, beta3, beta4, and beta5 20 S proteasome subunits as potential substrates. Western blots using an anti-beta3 proteasome subunit antibody confirmed that high molecular weight forms of beta3 were present, particularly in proteasome inhibitor-treated cells. Sucrose gradients of cell lysates suggested that the proteasome was first disassembled before subunits were polyubiquitinated. Altogether, we provide a technique that enables large scale identification of 26 S proteasome substrates that should contribute to a better understanding of this proteolytic machinery in any living cell and/or organ/tissue. Furthermore, the data suggest that proteasome homeostasis involves an autoregulatory mechanism.  相似文献   

10.
Inclusion bodies (IBs) containing aggregated disease-associated proteins and polyubiquitin (poly-Ub) conjugates are universal histopathological features of neurodegenerative diseases. Ub has been proposed to target proteins to IBs for degradation via autophagy, but the mechanisms that govern recruitment of ubiquitylated proteins to IBs are not well understood. In this paper, we use conditionally destabilized reporters that undergo misfolding and ubiquitylation upon removal of a stabilizing ligand to examine the role of Ub conjugation in targeting proteins to IBs that are composed of an N-terminal fragment of mutant huntingtin, the causative protein of Huntington’s disease. We show that reporters are excluded from IBs in the presence of the stabilizing ligand but are recruited to IBs after ligand washout. However, we find that Ub conjugation is not necessary to target reporters to IBs. We also report that forced Ub conjugation by the Ub fusion degradation pathway is not sufficient for recruitment to IBs. Finally, we find that reporters and Ub conjugates are stable at IBs. These data indicate that compromised folding states, rather than conjugation to Ub, can specify recruitment to IBs.  相似文献   

11.
In the ubiquitin (Ub) pathway, proteins are ligated with polyUb chains and then are degraded by a 26 S protease complex. We describe an enzyme, called isopeptidase T, that acts on polyUb chains. It is a monomeric Ub-binding protein abundant in erythrocytes and reticulocytes. The activity of the isopeptidase is inhibited by iodoacetamide and Ub aldehyde. Treatment of the enzyme with Ub aldehyde increased its affinity for free Ub, indicating the existence of two different Ub-binding sites and cooperativity between the two sites. Isopeptidase T acts on polyUb-protein conjugates, but not on conjugates in which the formation of polyUb chains was prevented by the use of reductively methylated Ub or on abnormal polyUb chains formed with a mutant Ub that contains a Lys----Arg substitution at residue 48. The enzyme converts high molecular mass polyUb-protein conjugates to lower molecular mass forms with the release of free Ub, but not of free protein substrate. The lower molecular mass Ub-protein conjugate products are resistant to further action of the enzyme. Isopeptidase T stimulates protein degradation in a system reconstituted from purified enzyme components. The enzyme also stimulates the degradation of proteins ligated to polyUb chains by the 26 S protease complex. Preincubation of polyUb-protein conjugates with the isopeptidase did not much increase their susceptibility to proteolysis by the 26 S complex. On the other hand, preincubation of conjugates with the 26 S protease complex and ATP increased the release of free Ub upon further incubation with the isopeptidase. It thus seems that a role of this isopeptidase in protein breakdown is to remove polyUb chain remnants following the degradation of the protein substrate moiety by the 26 S complex.  相似文献   

12.
The 26 S proteasome possesses two distinct deubiquitinating activities. The ubiquitin (Ub) chain amputation activity removes the entire polyUb chain from the substrates. The Ub chain trimming activity progressively cleaves a polyUb chain from the distal end. The Ub chain amputation activity mediates degradation-coupled deubiquitination. The Ub chain trimming activity can play a supportive or an inhibitory role in degradation, likely depending on features of the substrates. How Ub chain trimming assists degradation is not clear. We find that inhibition of the chain trimming activity of the 26 S proteasome with Ub aldehyde significantly inhibits degradation of Ub4 (Lys-48)-UbcH10 and causes accumulation of free Ub4 (generated from chain amputation) that can be retained on the proteasome. Also, a non-trimmable Lys-48-mimic Ub4 efficiently targets UbcH10 to the 26 S proteasome, but it cannot support efficient degradation of UbcH10 compared with regular Lys-48 Ub4. These results indicate that polyUb chain trimming promotes proteasomal degradation of Lys-48-linked substrates. Mechanistically, we propose that Ub chain trimming cleaves the proteasome-bound Lys-48-linked polyUb chains, which vacates the Ub binding sites of the 26 S proteasome, thus allowing continuous substrate loading.  相似文献   

13.
14.
A C-terminally modified ubiquitin (Ub) derivative, ubiquitin vinyl sulfone (UbVS), was synthesized as an active site-directed probe that irreversibly modifies a subset of Ub C-terminal hydrolases (UCHs) and Ub-specific processing proteases (UBPs). Specificity of UbVS for deubiquitylating enzymes (DUBs) is demonstrated not only by inhibition of [(125)I]UbVS labeling with N-ethylmaleimide and Ub aldehyde, but also by genetic analysis. [(125)I]UbVS modifies six of the 17 known and putative yeast deubiquitylating enzymes (Yuh1p, Ubp1p, Ubp2p, Ubp6p, Ubp12p and Ubp15p), as revealed by analysis of corresponding mutant strains. In mammalian cells, greater numbers of polypeptides are labeled, most of which are likely to be DUBs. Using [(125)I]UbVS as a probe, we report the association of an additional DUB with the mammalian 26S proteasome. In addition to the 37 kDa enzyme reported to be part of the 19S cap, we identified USP14, a mammalian homolog of yeast Ubp6p, as being bound to the proteasome. Remarkably, labeling of 26S-associated USP14 with [(125)I]UbVS is increased when proteasome function is impaired, suggesting functional coupling between the activities of USP14 and the proteasome.  相似文献   

15.
16.
Accumulation of aggregation-prone human alpha 1 antitrypsin mutant Z (AT-Z) protein in PiZ mouse liver stimulates features of liver injury typical of human alpha 1 antitrypsin type ZZ deficiency, an autosomal recessive genetic disorder. Ubiquitin-mediated proteolysis by the 26S proteasome counteracts AT-Z accumulation and plays other roles that, when inhibited, could exacerbate the injury. However, it is unknown how the conditions of AT-Z mediated liver injury affect the 26S proteasome. To address this question, we developed a rapid extraction strategy that preserves polyubiquitin conjugates in the presence of catalytically active 26S proteasomes and allows their separation from deposits of insoluble AT-Z. Compared to WT, PiZ extracts had about 4-fold more polyubiquitin conjugates with no apparent change in the levels of the 26S and 20S proteasomes, and unassembled subunits. The polyubiquitin conjugates had similar affinities to ubiquitin-binding domain of Psmd4 and co-purified with similar amounts of catalytically active 26S complexes. These data show that polyubiquitin conjugates were accumulating despite normal recruitment to catalytically active 26S proteasomes that were available in excess, and suggest that a defect at the 26S proteasome other than compromised binding to polyubiquitin chain or peptidase activity played a role in the accumulation. In support of this idea, PiZ extracts were characterized by high molecular weight, reduction-sensitive forms of selected subunits, including ATPase subunits that unfold substrates and regulate access to proteolytic core. Older WT mice acquired similar alterations, implying that they result from common aspects of oxidative stress. The changes were most pronounced on unassembled subunits, but some subunits were altered even in the 26S proteasomes co-purified with polyubiquitin conjugates. Thus, AT-Z protein aggregates indirectly impair degradation of polyubiquitinated proteins at the level of the 26S proteasome, possibly by inducing oxidative stress-mediated modifications that compromise substrate delivery to proteolytic core.  相似文献   

17.
The COP9 signalosome (CSN) occurs in all eukaryotic cells. It is a regulatory particle of the ubiquitin (Ub)/26S proteasome system. The eight subunits of the CSN possess sequence homologies with the polypeptides of the 26S proteasome lid complex and just like the lid, the CSN consists of six subunits with PCI (proteasome, COP9 signalosome, initiation factor 3) domains and two components with MPN (Mpr-Pad1-N-terminal) domains. Here we show that the CSN directly interacts with the 26S proteasome and competes with the lid, which has consequences for the peptidase activity of the 26S proteasome in vitro. Flag-CSN2 was permanently expressed in mouse B8 fibroblasts and Flag pull-down experiments revealed the formation of an intact Flag-CSN complex, which is associated with the 26S proteasome. In addition, the Flag pull-downs also precipitated cullins indicating the existence of super-complexes consisting of the CSN, the 26S proteasome and cullin-based Ub ligases. Permanent expression of a chimerical subunit (Flag-CSN2-Rpn6) consisting of the N-terminal 343 amino acids of CSN2 and of the PCI domain of S9/Rpn6, the paralog of CSN2 in the lid complex, did not lead to the assembly of an intact complex showing that the PCI domain of CSN2 is important for complex formation. The consequence of permanent Flag-CSN2 overexpression was de-novo assembly of the CSN complex connected with an accelerated degradation of p53 and stabilization of c-Jun in B8 cells. The possible role of super-complexes composed of the CSN, the 26S proteasome and of Ub ligases in the regulation of protein stability is discussed.  相似文献   

18.
The 26S proteasome (26SP) is a multi-subunit, multi-catalytic protease that is responsible for most of the cytosolic and nuclear protein turnover. The 26SP is composed of two sub-particles, the 19S regulatory particle (RP) that binds and unfolds protein targets, and the 20S core particle (20SP) that degrades proteins into small peptides. Most 26SP targets are conjugated to a poly-ubiquitin (Ub) chain that serves as a degradation signal. However, some targets, such as oxidized proteins, do not require a poly-Ub tag for proteasomal degradation, and recent studies have shown that the main protease in this Ub-independent pathway is free 20SP. It is currently unknown how the ratio of 26SP- to 20SP-dependent proteolysis is controlled. Here we show that loss of function of the Arabidopsis RP subunits RPT2a, RPN10 and RPN12a leads to decreased 26SP accumulation, resulting in reduced rates of Ub-dependent proteolysis. In contrast, all three RP mutants have increased 20SP levels and thus enhanced Ub-independent protein degradation. As a consequence of this shift in proteolytic activity, mutant seedlings are hypersensitive to stresses that cause protein misfolding, and have increased tolerance to treatments that promote protein oxidation. Taken together, the data show that plant cells increase 20SP-dependent proteolysis when 26SP activity is impaired.  相似文献   

19.
The accumulation of aggregated alpha-synuclein is thought to contribute to the pathogenesis of Parkinson's disease. Recent studies indicate that aggregated alpha-synuclein binds to S6', a component of the 19 S subunit in the 26 S proteasome and inhibits 26 S proteasomal degradation, both ubiquitin-independent and ubiquitin-dependent. The IC(50) of aggregated alpha-synuclein for inhibition of the 26 S ubiquitin-independent proteasomal activity is approximately 1 nm. alpha-Synuclein has two close homologues, termed beta-synuclein and gamma-synuclein. In the present study we compared the effects of the three synuclein homologues on proteasomal activity. The proteasome exists as a 26 S and a 20 S species, with the 26 S proteasome containing the 20 S core and 19 S cap. Monomeric alpha- and beta-synucleins inhibited the 20 S and 26 S proteasomal activities only weakly, but monomeric gamma-synuclein strongly inhibited ubiquitin-independent proteolysis. The IC(50) of monomeric gamma-synuclein for the 20 S proteolysis was 400 nm. In monomeric form, none of the three synuclein proteins inhibited 26 S ubiquitin-dependent proteasomal activity. Although beta-synuclein had no direct effect on proteasomal activity, co-incubating monomeric beta-synuclein with aggregated alpha-synuclein antagonized the inhibition of the 26 S ubiquitin-independent proteasome by aggregated alpha-synuclein when added before the aggregated alpha-synuclein. Co-incubating beta-synuclein with gamma-synuclein had no effect on the inhibition of the 20 S proteasome by monomeric gamma-synuclein. Immunoprecipitation and pull-down experiments suggested that antagonism by beta-synuclein resulted from binding to alpha-synuclein rather than binding to S6'. Pull-down experiments demonstrated that recombinant monomeric beta-synuclein does not interact with the proteasomal subunit S6', unlike alpha-synuclein, but beta-synuclein does bind alpha-synuclein and competes with S6' for binding to alpha-synuclein. Based on these data, we hypothesize that the alpha- and gamma-synucleins regulate proteasomal function and that beta-synuclein acts as a negative regulator of alpha-synuclein.  相似文献   

20.
BACKGROUND: Huntington's disease (HD) is an inherited autosomal dominant neurodegenerative disease caused by the expansion of a CAG trinucleotide repeat in exon 1 of the huntingtin (htt) gene. Vector-mediated delivery of N-terminal fragments of mutant htt has been used to study htt function in vitro and to establish HD models in rats. Due to the large size of the htt cDNA vector-mediated delivery of full-length htt has not been achieved so far. METHODS: High-capacity adenoviral (HC-Ad) vectors were generated expressing mutant and wild-type versions of N-terminal truncated and full-length htt either in vitro in primary neuronal cells or in the striatum of mice. RESULTS: In vitro these vectors were used for transduction of primary neuronal cells isolated from E17 mouse embryos. Expression of mutant htt resulted in the formation of htt inclusions, a surrogate marker of the HD pathology. Kinetics of generation and localization of htt inclusions differed between truncated and full-length htt carrying identical mutations. Following injection into the striatum vector-mediated expression of mutant truncated htt led to prominent accumulation of htt inclusions in cell nuclei, while inclusions formed upon expression of mutant full-length htt localized to the cytoplasm. CONCLUSIONS: These results indicate that HC-Ad vector-mediated in vitro and in vivo delivery of truncated and full-length mutant htt results in prominent inclusion formation in neuronal cells but in different cell compartments. These vectors will be useful tools for studying HD and may be used to generate large animal HD models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号