首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
HIV persists in cellular and anatomical reservoirs during Highly Active Antiretroviral Therapy (HAART). In vitro studies as well as in vivo observations have identified cytokines as important factors regulating the immunological and virological mechanisms involved in HIV persistence. Immunosuppressive cytokines might contribute to the establishment of viral latency by dampening T cell activation and HIV production, thereby creating the necessary immuno-virological condition for the establishment of a pool of latently infected cells. Other cytokines that are involved in the maintenance of memory CD4(+) T cells promote the persistence of these cells during HAART. Conversely, proinflammatory cytokines may favor HIV persistence by exacerbating low levels of ongoing viral replication in lymphoid tissues even after prolonged therapy. The ability of several cytokines to interfere with the molecular mechanisms responsible for HIV latency makes them attractive candidates for therapeutic strategies aimed at reducing the pool of latently infected cells. In this article, we review the role of cytokines in HIV persistence during HAART and discuss their role as potential eradicating agents.  相似文献   

2.
3.
HAART has succeeded in reducing morbidity and mortality rates in patients infected with HIV. However, a small amount of replication-competent HIV can persist during HAART, allowing the virus to re-emerge if therapy is ceased. One significant source of this persistent virus is a pool of long-lived, latently infected CD4(+) T cells. This article outlines what is known about how this reservoir is established and maintained, and describes the model systems that have provided insights into the molecular mechanisms governing HIV latency. The therapeutic approaches for eliminating latent cells that have been attempted are also discussed, including how improvements in understanding of these persistent HIV reservoirs are being used to develop enhanced methods for their depletion.  相似文献   

4.
Highly active antiretroviral therapy (HAART) suppresses human immunodeficiency virus (HIV) replication to undetectable levels but cannot fully eradicate the virus because a small reservoir of CD4+ T cells remains latently infected. Since HIV efficiently infects only activated CD4+ T cells and since latent HIV primarily resides in resting CD4+ T cells, it is generally assumed that latency is established when a productively infected cell recycles to a resting state, trapping the virus in a latent state. In this study, we use a dual reporter virus—HIV Duo-Fluo I, which identifies latently infected cells immediately after infection—to investigate how T cell activation affects the estab-lishment of HIV latency. We show that HIV latency can arise from the direct infection of both resting and activated CD4+ T cells. Importantly, returning productively infected cells to a resting state is not associated with a significant silencing of the integrated HIV. We further show that resting CD4+ T cells from human lymphoid tissue (tonsil, spleen) show increased latency after infection when compared to peripheral blood. Our findings raise significant questions regarding the most commonly accepted model for the establishment of latent HIV and suggest that infection of both resting and activated primary CD4+ T cells produce latency.  相似文献   

5.
We examined the pathogenic significance of the latent viral reservoir in the resting CD4+ T cell compartment of HIV-1-infected individuals as well as its involvement in the rebound of plasma viremia after discontinuation of highly active anti-retroviral therapy (HAART). Using heteroduplex mobility and tracking assays, we show that the detectable pool of latently infected, resting CD4+ T cells does not account entirely for the early rebounding plasma HIV in infected individuals in whom HAART has been discontinued. In the majority of patients examined, the rebounding plasma virus was genetically distinct from both the cell-associated HIV RNA and the replication-competent virus within the detectable pool of latently infected, resting CD4 + T cells. These results indicate the existence of other persistent HIV reservoirs that could prompt rapid emergence of plasma viremia after cessation of HAART and underscore the necessity to develop therapies directed toward such populations of infected cells.  相似文献   

6.
7.
In the highly active antiretroviral therapy (HAART) era, hepatocellular carcinoma (HCC) is arising as a common late complication of human immunodeficiency virus (HIV) infection, with a great impact on morbidity and mortality. Though HIV infection alone may not be sufficient to promote hepatocarcinogenesis, the complex interaction of HIV with hepatitis is a main aspect influencing HCC morbidity and mortality.Data about sorafenib effectiveness and safety in HIV-infected patients are limited, particularly for patients who are on HAART. However, in properly selected subgroups, outcomes may be comparable to those of HIV-uninfected patients. Scarce data are available for those other systemic treatments, either tyrosine kinase inhibitors, as well as immune checkpoint inhibitors (ICIs), which have been added to our therapeutic armamentarium. This review examines the influence of HIV infection on HCC development and natural history, summarizes main data on systemic therapies, offers some insight into possible mechanisms of T cell exhaustion and reversal of HIV latency with ICIs and issues about clinical trials enrollment. Nowadays, routine exclusion of HIV-infected patients from clinical trial participation is totally inappropriate, since it leaves a number of patients deprived of life-prolonging therapies.  相似文献   

8.
Modeling HIV persistence, the latent reservoir, and viral blips   总被引:1,自引:0,他引:1  
HIV-1 eradication from infected individuals has not been achieved with the prolonged use of highly active antiretroviral therapy (HAART). The cellular reservoir for HIV-1 in resting memory CD4+ T cells remains a major obstacle to viral elimination. The reservoir does not decay significantly over long periods of time but is able to release replication-competent HIV-1 upon cell activation. Residual ongoing viral replication may likely occur in many patients because low levels of virus can be detected in plasma by sensitive assays and transient episodes of viremia, or HIV-1 blips, are often observed in patients even with successful viral suppression for many years. Here we review our current knowledge of the factors contributing to viral persistence, the latent reservoir, and blips, and mathematical models developed to explore them and their relationships. We show how mathematical modeling has helped improve our understanding of HIV-1 dynamics in patients on HAART and of the quantitative events underlying HIV-1 latency, reservoir stability, low-level viremic persistence, and emergence of intermittent viral blips. We also discuss treatment implications related to these studies.  相似文献   

9.
Much attention has been paid to the emerging complications of HIV infection in patients receiving HAART. Recently, there emerged a potentially increased risk of bone problems like osteopenia, osteoporosis and osteonecrosis as patients live longer. It could be a drug side effect, a consequence of prolonged exposure to HIV and/or activated immune cells characteristic of HIV infection, or a consequence of immune system changes that accompany suppression of virus by the drugs. Future research should focus on the etiologic mechanisms, define the incidence and prevalence prospectively, determine the relationship with HAART (especially the rule of protease inhibitors), and help to guide management. Only when the mechanism for HIV-related versus HAART-related changes can be defined, will we be much closer to designing specific interventions.  相似文献   

10.
Elite suppressors (ES) are a rare population of HIV-infected individuals that are capable of naturally controlling the infection without the use of highly active anti-retroviral therapy (HAART). Patients on HAART often achieve viral control to similar (undetectable) levels. Accurate and sensitive methods to measure viral burden are needed to elucidate important differences between these two patient populations in order to better understand their mechanisms of control. Viral burden quantification in ES patients has been limited to measurements of total DNA in PBMC, and estimates of Infectious Units per Million cells (IUPM). There appears to be no significant difference in the level of total HIV DNA between cells from ES patients and patients on HAART. However, recovering infectious virus from ES patient samples is much more difficult, suggesting their reservoir size should be much smaller than that in patients on HAART. Here we find that there is a significant difference in the level of integrated HIV DNA in ES patients compared to patients on HAART, providing an explanation for the previous results. When comparing the level of total to integrated HIV DNA in these samples we find ES patients have large excesses of unintegrated HIV DNA. To determine the composition of unintegrated HIV DNA in these samples, we measured circular 2-LTR HIV DNA forms and found ES patients frequently have high levels of 2-LTR circles in PBMC. We further show that these high levels of 2-LTR circles are not the result of inefficient integration in ES cells, since HIV integrates with similar efficiency in ES and normal donor cells. Our findings suggest that measuring integration provides a better surrogate of viral burden than total HIV DNA in ES patients. Moreover, they add significantly to our understanding of the mechanisms that allow viral control and reservoir maintenance in this unique patient population.  相似文献   

11.
Even after extended treatment with powerful antiretroviral drugs, HIV is not completely eliminated from infected individuals. Latently infected CD4(+) T cells constitute one reservoir of replication-competent HIV that needs to be eliminated to completely purge virus from antiretroviral drug-treated patients. However, a major limitation in the development of therapies to eliminate this latent reservoir is the lack of relevant in vivo models that can be used to test purging strategies. Here, we show that the humanized BLT (bone marrow-liver-thymus) mouse can be used as both an abundant source of primary latently infected cells for ex vivo latency analysis and also as an in vivo system for the study of latency. We demonstrate that over 2% of human cells recovered from the spleens of HIV-infected BLT mice can be latently infected and that this virus is integrated, activation inducible, and replication competent. The non-tumor-inducing phorbol esters prostratin and 12-deoxyphorbol-13-phenylacetate can each induce HIV ex vivo from these latently infected cells, indicating that this model can be used as a source of primary cells for testing latency activators. Finally, we show activation-inducible virus is still present following suppression of plasma viral loads to undetectable levels by using the antiretroviral drugs zidovudine, indinavir sulfate, and didanosine, demonstrating that this model can also be used to assess the in vivo efficacy of latency-purging strategies. Therefore, the HIV-infected BLT mouse should provide a useful model for assessment of HIV latency activators and approaches to eliminate persistent in vivo HIV reservoirs.  相似文献   

12.
13.
Antiretroviral therapy is currently only capable of controlling HIV replication rather than completely eradicating virus from patients. This is due in part to the establishment of a latent virus reservoir in resting CD4+ T cells, which persists even in the presence of HAART. It is thought that forced activation of latently infected cells could induce virus production, allowing targeting of the cell by the immune response. A variety of molecules are able to stimulate HIV from latency. However no tested purging strategy has proven capable of eliminating the infection completely or preventing viral rebound if therapy is stopped. Hence novel latency activation approaches are required. Nanoparticles can offer several advantages over more traditional drug delivery methods, including improved drug solubility, stability, and the ability to simultaneously target multiple different molecules to particular cell or tissue types. Here we describe the development of a novel lipid nanoparticle with the protein kinase C activator bryostatin-2 incorporated (LNP-Bry). These particles can target and activate primary human CD4+ T-cells and stimulate latent virus production from human T-cell lines in vitro and from latently infected cells in a humanized mouse model ex vivo. This activation was synergistically enhanced by the HDAC inhibitor sodium butyrate. Furthermore, LNP-Bry can also be loaded with the protease inhibitor nelfinavir (LNP-Bry-Nel), producing a particle capable of both activating latent virus and inhibiting viral spread. Taken together these data demonstrate the ability of nanotechnological approaches to provide improved methods for activating latent HIV and provide key proof-of-principle experiments showing how novel delivery systems may enhance future HIV therapy.  相似文献   

14.
Human immunodeficiency virus infection (HIV) has been considered until recently as a contraindication for liver transplantation. This was due to the poor spontaneous prognosis of HIV infection. The advent of highly active antiretroviral drugs (HAART) was a therapeutic breakthrough, and the prognosis has been dramatically improved. 30 % and 10 % of HIV infected patients are coinfected with hepatitis C virus (HCV) and with hepatitis B virus (HBV), respectively. The progression of chronic hepatitis B and C seems more rapid in coinfected patients, and a high number of patients will develop life-threatening liver cirrhosis. There are numerous potential problems raised by liver transplantation in HIV infected patients: (1) the potential risk of needlestick injury during this type of hemorrhagic surgery at high risk of bleeding; (2) the timing for liver transplantation; (3) the risk of interference between HAART and calcineurin inhibitors; (4) The risk of HBV and HCV recurrence post-transplant. Since 1999, a program of liver transplantation has been started in patients coinfected with HIV and HBV or HCV with the support of the Agence Nationale de Recherche contre le Sida et les Hépatites virales (ANRS). The first results showed that liver transplantation in HIV-HCV and HIV-HBV infected patients is feasible, achieving 2-year survival of 70 % and 100 %, respectively. There was no acceleration of HIV disease after transplantation. HBV recurrence was well prevented by the combination of anti-HBs immunoglobulins plus nucleoside and nucleotide analogues effective against HBV. The main problem is HCV recurrence, which is more rapid and more severe in HIV coinfected patients than in HCV monoinfected patients. Understanding HCV recurrence mechanisms, and preventing and treating of HCV recurrence are major future challenges.  相似文献   

15.
Highly active antiretroviral therapy has succeeded in many cases in suppressing virus production in patients infected with human immunodeficiency virus (HIV); however, once treatment is discontinued, virus replication is rekindled. One reservoir capable of harboring HIV in a latent state and igniting renewed infection once therapy is terminated is a resting T cell. Due to the sparsity of T cells latently infected with HIV in vivo, it has been difficult to study viral and cellular interactions during latency. The SCID-hu (Thy/Liv) mouse model of HIV latency, however, provides high percentages of latently infected cells, allowing a detailed analysis of phenotype. Herein we show that latently infected cells appear phenotypically normal. Following cellular stimulation, the virus completes its life cycle and induces phenotypic changes, such as CD4 and major histocompatibility complex class I down-regulation, in the infected cell. In addition, HIV expression following activation did not correlate with expression of the cellular activation marker CD25. The apparently normal phenotype and lack of HIV expression in latently infected cells could prevent recognition by the immune response and contribute to the long-lived nature of this reservoir.  相似文献   

16.
17.
The latency of human immunodeficiency virus type 1 (HIV-1) in resting primary CD4+ T cells is the major barrier for the eradication of the virus in patients on suppressive highly active antiretroviral therapy (HAART). Even with optimal HAART treatment, replication-competent HIV-1 still exists in resting primary CD4+ T cells. Multiple restriction factors that act upon various steps of the viral life cycle could contribute to viral latency. Here we show that cellular microRNAs (miRNAs) potently inhibit HIV-1 production in resting primary CD4+ T cells. We have found that the 3' ends of HIV-1 messenger RNAs are targeted by a cluster of cellular miRNAs including miR-28, miR-125b, miR-150, miR-223 and miR-382, which are enriched in resting CD4+ T cells as compared to activated CD4+ T cells. Specific inhibitors of these miRNAs substantially counteracted their effects on the target mRNAs, measured either as HIV-1 protein translation in resting CD4+ T cells transfected with HIV-1 infectious clones, or as HIV-1 virus production from resting CD4+ T cells isolated from HIV-1-infected individuals on suppressive HAART. Our data indicate that cellular miRNAs are pivotal in HIV-1 latency and suggest that manipulation of cellular miRNAs could be a novel approach for purging the HIV-1 reservoir.  相似文献   

18.
The major pathway for HIV internalization in CD4+ T cells has been thought to be the direct fusion of virus and cell membranes, because the cell surface is the point of entry of infectious particles. However, the exact contribution of endocytic pathways to the infection of CD4+ T lymphocytes is unknown, and the mechanisms involved in endocytosis of HIV particles are unclear. Recent evidence suggests that endocytosis of cell-free and cell-associated virus particles could lead to effective virus entry and productive infections. Such observations have, in turn, spurred a debate on the relevance of endosomal entry as a mechanism of escape from the immune system and HIV entry inhibitors. In this paper, we review the endocytosis of HIV and discuss its role in HIV infection and pathogenesis.  相似文献   

19.
Lu W  Andrieu JM 《Journal of virology》2001,75(19):8949-8956
Despite significant immune recovery with potent highly active antiretroviral therapy (HAART), eradication of human immunodeficiency virus (HIV) from the bodies of infected individuals represents a challenge. We hypothesized that an inadequate or inappropriate signal in virus-specific antigen presentation might contribute to the persistent failure to mount efficient anti-HIV immunity in most HIV-infected individuals. Here, we conducted an in vitro study with untreated (n = 10) and HAART-treated (n = 20) HIV type 1 (HIV-1) patients which showed that pulsing of monocyte-derived dendritic cells (DC) with aldrithiol-2-inactivated autologous virus resulted in the expansion of virus-specific CD8(+) T cells which were capable of killing HIV-1-infected cells and eradicating the virus from cultured patient peripheral blood mononuclear cells independently of the disease stages and HAART response statuses of the patients. This in vitro anti-HIV effect was further enhanced by the HIV protease inhibitor indinavir (at a nonantiviral concentration), which has been shown previously to be able to up-regulate directly patient T-cell proliferation following immune stimulation. However, following a 2-day treatment with culture supernatant derived from immune-activated T cells (which mimics an in vivo environment of HIV-disseminated and immune-activated lymphoid tissues), DC lost their capacity to present de novo inactivated-virus-derived antigens. These findings provide important information for understanding the establishment of chronic HIV infection and indicate a perspective for clinical use of DC-based therapeutic vaccines against HIV.  相似文献   

20.

Background

In HIV-infected patients on long-term HAART, virus persistence in resting long-lived CD4 T cells is a major barrier to curing the infection. Cell quiescence, by favouring HIV latency, reduces the risk of recognition and cell destruction by cytotoxic lymphocytes. Several cell-activation-based approaches have been proposed to disrupt cell quiescence and then virus latency, but these approaches have not eradicated the virus. CD4+CD25+ regulatory T cells (Tregs) are a CD4+ T-cell subset with particular activation properties. We investigated the role of these cells in virus persistence in patients on long-term HAART.

Methodology/Principal Findings

We found evidence of infection of resting Tregs (HLADRCD69CD25hiFoxP3+CD4+ T cells) purified from patients on prolonged HAART. HIV DNA harbouring cells appear more abundant in the Treg subset than in non-Tregs. The half-life of the Treg reservoir was estimated at 20 months. Since Tregs from patients on prolonged HAART showed hyporesponsiveness to cell activation and inhibition of HIV-specific cytotoxic T lymphocyte-related functions upon activation, therapeutics targeting cell quiescence to induce virus expression may not be appropriate for purging the Treg reservoir.

Conclusions

Our results identify Tregs as a particular compartment within the latent reservoir that may require a specific approach for its purging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号