首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Unlike ribonucleoprotein complexes that have a highly ordered overall architecture, such as the ribosome, yeast telomerase appears to be much more loosely constrained. Here, we investigate the importance of positioning of the Ku subunit within the 1157-nt yeast telomerase RNA (TLC1). Deletion of the 48-nt Ku-binding hairpin in TLC1 RNA (tlc1Δ48) reduces telomere length, survival of cells with gross chromosomal rearrangements, and de novo telomere addition at a broken chromosome end. To test the function of Ku at novel positions in the telomerase RNP, we reintroduced its binding site into tlc1Δ48 RNA at position 446 or 1029. We found that Ku bound to these repositioned sites in vivo and telomere length increased slightly, but statistically significantly. The ability of telomerase to promote survival of cells with gross chromosomal rearrangements by healing damaged chromosome arms was also partially restored, whereas the kinetics of DNA addition to a specific chromosome break was delayed. Having two Ku sites in TLC1 caused progressive hyperelongation of a variable subset of telomeres, consistent with Ku's role in telomerase recruitment to chromosome ends. The number of Ku-binding sites in TLC1 contributed to telomerase RNA abundance in vivo but was only partially responsible for telomere length phenotypes. Thus, telomerase RNA levels and telomere length regulation can be modulated by the number of Ku sites in telomerase RNA. Furthermore, there is substantial flexibility in the relative positioning of Ku in the telomerase RNP for native telomere length maintenance, although not as much flexibility as for the essential Est1p subunit.  相似文献   

5.
6.
In diverse organisms, the Mre11 complex and phosphoinositide 3-kinase-related kinases (PIKKs), such as Tel1p and Mec1p from S. cerevisiae, are key mediators of DNA repair and DNA damage checkpoints that also function at telomeres. Here, we use chromatin immunoprecipitation (ChIP) to determine if Mre11p, Tel1p, or Mec1p affects telomere maintenance by promoting recruitment of telomerase subunits to S. cerevisiae telomeres. We find that recruitment of Est2p, the catalytic subunit of telomerase, and Est1p, a telomerase accessory protein, was severely reduced in mre11Delta and tel1Delta cells. In contrast, the levels of Est2p and Est1p binding in late S/G2 phase, the period in the cell cycle when yeast telomerase lengthens telomeres, were indistinguishable in wild-type (WT) and mec1Delta cells. These data argue that Mre11p and Tel1p affect telomere length by promoting telomerase recruitment to telomeres, whereas Mec1p has only a minor role in telomerase recruitment in a TEL1 cell.  相似文献   

7.
8.
Arnerić M  Lingner J 《EMBO reports》2007,8(11):1080-1085
Telomerase enables telomere length homeostasis, exhibiting increasing preference for telomeres as their lengths decline. This regulation involves telomere repeat-bound Rap1, which provides a length-dependent negative feedback mechanism, and the Tel1 and Mec1 kinases, which are positive regulators of telomere length. By analysing telomere elongation of wild-type chromosome ends at single-molecule resolution, we show that in tel1Delta cells the overall frequency of elongation decreases considerably, explaining their short telomere phenotype. At an artificial telomere lacking a subtelomeric region, telomere elongation no longer increases with telomere shortening in tel1Delta cells. By contrast, a natural telomere, containing subtelomeric sequence, retains a preference for the elongation of short telomeres. Tethering of the subtelomere binding protein Tbf1 to the artificial telomere in tel1Delta cells restored preferential telomerase action at short telomeres; thus, Tbf1 might function in parallel to Tel1, which has a crucial role in a TG-repeat-controlled pathway for the activation of telomerase at short telomeres.  相似文献   

9.
Evans SK  Lundblad V 《Genetics》2002,162(3):1101-1115
The telomerase-associated Est1 protein of Saccharomyces cerevisiae mediates enzyme access by bridging the interaction between the catalytic core of telomerase and the telomere-binding protein Cdc13. In addition to recruiting telomerase, Est1 may act as a positive regulator of telomerase once the enzyme has been brought to the telomere, as previously suggested by the inability of a Cdc13-Est2 fusion protein to promote extensive telomere elongation in an est1-Delta strain. We report here three classes of mutant Est1 proteins that retain association with the telomerase enzyme but confer different in vivo consequences. Class 1 mutants display a telomere replication defect but are capable of promoting extensive telomere elongation in the presence of a Cdc13-Est2 fusion protein, consistent with a defect in telomerase recruitment. Class 2 mutants fail to elongate telomeres even in the presence of the Cdc13-Est2 fusion, which is the phenotype predicted for a defect in the proposed second regulatory function of EST1. A third class of mutants impairs an activity of Est1 that is potentially required for the Ku-mediated pathway of telomere length maintenance. The isolation of mutations that perturb separate functions of Est1 demonstrates that a telomerase holoenzyme subunit can contribute multiple regulatory roles to telomere length maintenance.  相似文献   

10.
In bakers' yeast, in vivo telomerase activity requires a ribonucleoprotein (RNP) complex with at least four associated proteins (Est2p, Est1p, Est3p, and Cdc13p) and one RNA species (Tlc1). The function of telomerase in maintaining chromosome ends, called telomeres, is tightly regulated and linked to the cell cycle. However, the mechanisms that regulate the expression of individual components of telomerase are poorly understood. Here we report that yeast RNase III (Rnt1p), a double-stranded RNA-specific endoribonuclease, regulates the expression of telomerase subunits and is required for maintaining normal telomere length. Deletion or inactivation of RNT1 induced the expression of Est1, Est2, Est3, and Tlc1 RNAs and increased telomerase activity, leading to elongation of telomeric repeat tracts. In silico analysis of the different RNAs coding for the telomerase subunits revealed a canonical Rnt1p cleavage site near the 3' end of Est1 mRNA. This predicted structure was cleaved by Rnt1p and its disruption abolished cleavage in vitro. Mutation of the Rnt1p cleavage signal in vivo impaired the cell cycle-dependent degradation of Est1 mRNA without affecting its steady-state level. These results reveal a new mechanism that influences telomeres length by controlling the expression of the telomerase subunits.  相似文献   

11.
In Saccharomyces cerevisiae, the telomerase complex binds to chromosome ends and is activated in late S-phase through a process coupled to the progression of the replication fork. Here, we show that the single-stranded DNA-binding protein RPA (replication protein A) binds to the two daughter telomeres during telomere replication but only its binding to the leading-strand telomere depends on the Mre11/Rad50/Xrs2 (MRX) complex. We further demonstrate that RPA specifically co-precipitates with yKu, Cdc13 and telomerase. The interaction of RPA with telomerase appears to be mediated by both yKu and the telomerase subunit Est1. Moreover, a mutation in Rfa1 that affects both the interaction with yKu and telomerase reduces the dramatic increase in telomere length of a rif1Δ, rif2Δ double mutant. Finally, we show that the RPA/telomerase association and function are conserved in Schizosaccharomyces pombe. Our results indicate that in both yeasts, RPA directly facilitates telomerase activity at chromosome ends.  相似文献   

12.
13.
Telomerase is a multisubunit enzyme that maintains genome stability through its role in telomere replication. Although the Est3 protein is long recognized as an essential telomerase component, how it associates with and functions in the telomerase complex has remained enigmatic. Here we provide the first evidence of a direct interaction between Saccharomyces cerevisiae Est3p and the catalytic protein subunit (Est2p) by demonstrating that recombinant Est3p binds the purified telomerase essential N-terminal (TEN) domain of Est2p in vitro. Mutations in a small cluster of amino acids predicted to lie on the surface of Est3p disrupt this interaction with Est2p, reduce assembly of Est3p with telomerase in vivo, and cause telomere shortening and senescence. We also show that recombinant Est3p stimulates telomerase activity above basal levels in vitro in a manner dependent on the Est2p TEN domain interaction. Together, these results define a direct binding interaction between Est3p and Est2p and reconcile the effect of S. cerevisiae Est3p with previous experiments showing that Est3p homologs in related yeast species influence telomerase activity. Additionally, it contributes functional support to the idea that Est3p is structurally related to the mammalian shelterin protein, TPP1, which also influences telomerase activity through interaction with the Est2p homolog, TERT.  相似文献   

14.
15.
Chan A  Boulé JB  Zakian VA 《PLoS genetics》2008,4(10):e1000236
The catalytic subunit of yeast telomerase, Est2p, is a telomere associated throughout most of the cell cycle, while the Est1p subunit binds only in late S/G2 phase, the time of telomerase action. Est2p binding in G1/early S phase requires a specific interaction between telomerase RNA (TLC1) and Ku80p. Here, we show that in four telomerase-deficient strains (cdc13-2, est1Ä, tlc1-SD, and tlc1-BD), Est2p telomere binding was normal in G1/early S phase but reduced to about 40–50% of wild type levels in late S/G2 phase. Est1p telomere association was low in all four strains. Wild type levels of Est2p telomere binding in late S/G2 phase was Est1p-dependent and required that Est1p be both telomere-bound and associated with a stem-bulge region in TLC1 RNA. In three telomerase-deficient strains in which Est1p is not Est2p-associated (tlc1-SD, tlc1-BD, and est2Ä), Est1p was present at normal levels but its telomere binding was very low. When the G1/early S phase and the late S/G2 phase telomerase recruitment pathways were both disrupted, neither Est2p nor Est1p was telomere-associated. We conclude that reduced levels of Est2p and low Est1p telomere binding in late S/G2 phase correlated with an est phenotype, while a WT level of Est2p binding in G1 was not sufficient to maintain telomeres. In addition, even though Cdc13p and Est1p interact by two hybrid, biochemical and genetic criteria, this interaction did not occur unless Est1p was Est2p-associated, suggesting that Est1p comes to the telomere only as part of the holoenzyme. Finally, the G1 and late S/G2 phase pathways for telomerase recruitment are distinct and are likely the only ones that bring telomerase to telomeres in wild-type cells.  相似文献   

16.
17.
In Saccharomyces cerevisiae at least five genes, EST1, EST2, EST3, TLC1 and CDC13, are required for telomerase activity in vivo. The telomerase catalytic subunit Est2p and telomerase RNA subunit Tlc1 constitute the telomerase core enzyme. Est1p and Est3p are the other subunits of telomerase holoenzyme. In order to dissect the function of Est3p in telomere replication, we over-expressed and purified recombinant wild-type and mutant Est3 proteins. The wild-type protein, as well as the K71A, E104A and T115A mutants were able to dimerize in vitro, while the Est3p-D49A, -K68A or -D166A mutant showed reduced ability to dimerize. Mutations in Est3p that decreased dimerization also appeared to cause telomere shortening in vivo. Double point mutation of Est3p-D49A-K68A and single point mutation of Est3p-K68A showed similar telomere shortening, suggesting that the K68 residue might be more important for telomerase activity. The ectopic co-expression of K71A or T115A mutant with wild-type Est3p using centromere plasmids caused telomere shortening, while co-expression of the D49A, K68A, D86A or F103A mutants with wild-type Est3p had no effect on telomere length regulation. These data suggested that dimerization is important for Est3p function in vivo.  相似文献   

18.
Est1 is a component of yeast telomerase, and est1 mutants have senescence and telomere loss phenotypes. The exact function of Est1 is not known, and it is not homologous to components of other telomerases. We previously showed that Est1 protein coimmunoprecipitates with Tlc1 (the telomerase RNA) as well as with telomerase activity. Est1 has homology to Ebs1, an uncharacterized yeast open reading frame product, including homology to a putative RNA recognition motif (RRM) of Ebs1. Deletion of EBS1 results in short telomeres. We created point mutations in a putative RRM of Est1. One mutant was unable to complement either the senescence or the telomere loss phenotype of est1 mutants. Furthermore, the mutant protein no longer coprecipitated with the Tlc1 telomerase RNA. Mutants defective in the binding of Tlc1 RNA were nevertheless capable of binding single-stranded TG-rich DNA. Our data suggest that an important role of Est1 in the telomerase complex is to bind to the Tlc1 telomerase RNA via an RRM. Since Est1 can also bind telomeric DNA, Est1 may tether telomerase to the telomere.  相似文献   

19.
20.
Two roles for the Saccharomyces cerevisiae Cdc13 protein at the telomere have previously been characterized: it recruits telomerase to the telomere and protects chromosome ends from degradation. In a synthetic lethality screen with YKU70, the 70-kDa subunit of the telomere-associated Yku heterodimer, we identified a new mutation in CDC13, cdc13-4, that points toward an additional regulatory function of CDC13. Although CDC13 is an essential telomerase component in vivo, no replicative senescence can be observed in cdc13-4 cells. Telomeres of cdc13-4 mutants shorten for about 150 generations until they reach a stable level. Thus, in cdc13-4 mutants, telomerase seems to be inhibited at normal telomere length but fully active at short telomeres. Furthermore, chromosome end structure remains protected in cdc13-4 mutants. Progressive telomere shortening to a steady-state level has also been described for mutants of the positive telomere length regulator TEL1. Strikingly, cdc13-4/tel1Delta double mutants display shorter telomeres than either single mutant after 125 generations and a significant amplification of Y' elements after 225 generations. Therefore CDC13, TEL1, and the Yku heterodimer seem to represent distinct pathways in telomere length maintenance. Whereas several CDC13 mutants have been reported to display elongated telomeres indicating that Cdc13p functions in negative telomere length control, we report a new mutation leading to shortened and eventually stable telomeres. Therefore we discuss a key role of CDC13 not only in telomerase recruitment but also in regulating telomerase access, which might be modulated by protein-protein interactions acting as inhibitors or activators of telomerase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号