首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Accurate and reliable quantification of the abundance of mitochondrial DNA (mtDNA) molecules, both wild-type and those harbouring pathogenic mutations, is important not only for understanding the progression of mtDNA disease but also for evaluating novel therapeutic approaches. A clear understanding of the sensitivity of mtDNA measurement assays under different experimental conditions is therefore critical, however it is routinely lacking for most published mtDNA quantification assays. Here, we comprehensively assess the variability of two quantitative Taqman real-time PCR assays, a widely-applied MT-ND1/MT-ND4 multiplex mtDNA deletion assay and a recently developed MT-ND1/B2M singleplex mtDNA copy number assay, across a range of DNA concentrations and mtDNA deletion/copy number levels. Uniquely, we provide a specific guide detailing necessary numbers of sample and real-time PCR plate replicates for accurately and consistently determining a given difference in mtDNA deletion levels and copy number in homogenate skeletal muscle DNA.  相似文献   

2.
An efficient and effective method for quantification of small amounts of nucleic acids contained within a sample specimen would be an important diagnostic tool for determining the content of mitochondrial DNA (mtDNA) in situations where the depletion thereof may be a contributing factor to the exhibited pathology phenotype. This study compares two quantification assays for calculating the total mtDNA molecule number per nanogram of total genomic DNA isolated from human blood, through the amplification of a 613-bp region on the mtDNA molecule. In one case, the mtDNA copy number was calculated by standard competitive polymerase chain reaction (PCR) technique that involves co-amplification of target DNA with various dilutions of a nonhomologous internal competitor that has the same primer binding sites as the target sequence, and subsequent determination of an equivalence point of target and competitor concentrations. In the second method, the calculation of copy number involved extrapolation from the fluorescence versus copy number standard curve generated by real-time PCR using various dilutions of the target amplicon sequence. While the mtDNA copy number was comparable using the two methods (4.92 +/- 1.01 x 10(4) molecules/ng total genomic DNA using competitive PCR vs 4.90 +/- 0.84 x 10(4) molecules/ng total genomic DNA using real-time PCR), both inter- and intraexperimental variance were significantly lower using the real-time PCR analysis. On the basis of reproducibility, assay complexity, and overall efficiency, including the time requirement and number of PCR reactions necessary for the analysis of a single sample, we recommend the real-time PCR quantification method described here, as its versatility and effectiveness will undoubtedly be of great use in various kinds of research related to mitochondrial DNA damage- and depletion-associated disorders.  相似文献   

3.
As a gold standard for quantification of starting amounts of nucleic acids, real-time PCR is increasingly used in quantitative analysis of mtDNA copy number in medical research. Using supercoiled plasmid DNA and mtDNA modified both in vitro and in cancer cells, we demonstrated that conformational changes in supercoiled DNA have profound influence on real-time PCR quantification. We showed that real-time PCR signal is a positive function of the relaxed forms (open circular and/or linear) rather than the supercoiled form of DNA, and that the conformation transitions mediated by DNA strand breaks are the main basis for sensitive detection of the relaxed DNA. This new finding was then used for sensitive detection of structure-mediated mtDNA damage and repair in stressed cancer cells, and for accurate quantification of total mtDNA copy number when all supercoiled DNA is converted into the relaxed forms using a prior heat-denaturation step. The new approach revealed a dynamic mtDNA response to oxidative stress in prostate cancer cells, which involves not only early structural damage and repair but also sustained copy number reduction induced by hydrogen peroxide. Finally, the supercoiling effect should raise caution in any DNA quantification using real-time PCR.  相似文献   

4.
Quantification of circulating nucleic acids in plasma and serum could be used as a non-invasive diagnostic tool for monitoring a wide variety of diseases and conditions. We describe here a rapid, simple and accurate multiplex real-time PCR method for direct synchronized analysis of circulating cell-free (ccf) mitochondrial (mtDNA) and nuclear (nDNA) DNA in plasma and serum samples. The method is based on one-step multiplex real-time PCR using a FAM-labeled MGB probe and primers to amplify the mtDNA sequence of the ATP 8 gene, and a VIC-labeled MGB probe and primers to amplify the nDNA sequence of the glycerinaldehyde-3-phosphate-dehydrogenase (GAPDH) gene, in plasma and serum samples simultaneously. The efficiencies of the multiplex assays were measured in serial dilutions. Based on the simulation of the PCR reaction kinetics, the relative quantities of ccf mtDNA were calculated using a very simple equation. Using our optimised real-time PCR conditions, close to 100% efficiency was obtained from the two assays. The two assays performed in the dilution series showed very good and reproducible correlation to each other. This optimised multiplex real-time PCR protocol can be widely used for synchronized quantification of mtDNA and nDNA in different samples, with a very high rate of efficiency.  相似文献   

5.
AIMS: The aim of this study was to develop a rapid, sensitive, specific tool for detection and quantification of Mycoplasma agalactiae DNA in sheep milk samples. METHODS AND RESULTS: A real-time polymerase chain reaction (PCR) assay targeting the membrane-protein 81 gene of M. agalactiae was developed. The assay specifically detected M. agalactiae DNA without cross-amplification of other mycoplasmas and common pathogens of small ruminants. The method was reproducible and highly sensitive, providing precise quantification of M. agalactiae DNA over a range of nine orders of magnitude. Compared with an established PCR assay, the real-time PCR was one-log more sensitive, detecting as few as 10(1) DNA copies per 10 microl of plasmid template and 6.5x10(0) colour changing units of reference strain Ba/2. CONCLUSIONS: The real-time PCR assay is a reliable method for the detection and quantification of M. agalactiae DNA in sheep milk samples. The assay is more sensitive than gel-based PCR protocols and provides quantification of the M. agalactiae DNA contained in milk samples. The assay is also quicker than traditional culture methods (2-3 h compared with at least 1 week). SIGNIFICANCE AND IMPACT OF THE STUDY: The established real-time PCR assay will help study the patterns of shedding of M. agalactiae in milk, aiding pathogenesis and vaccine efficacy studies.  相似文献   

6.
The human polyomavirus BK (BKV) is wide-spread pathogen, associated with urogenital tract disorders or even nephropathy in immunosuppressed patients. Nowadays molecular detection by real-time PCR (qPCR) is recognized as a method-of-choice for detecting human polyomaviruses in clinical samples. The aim of the study was development of real-time PCR assay for detection and quantification of polyomavirus BK DNA in clinical samples, using specific primers targeting a viral DNA VP3 gene and a TaqMan hydrolyzing probe. The analytical sensitivity of assay was tested using serial dilutions of BKV DNA in range between 13500 and 15 copies/ml. 27 urine samples and 23 plasma samples taken from a group of 22 adult recipients of allogeneic HSCT were tested for the presence of polyomavirus BK in the LightCycler system. Described in-house real-time PCR assay detected BKV DNA in 8 specimens (6 urine and 2 plasma). Detected average viral load was 170 copies/ml for plasma and 1250 copies/ml for urine samples, respectively. The results of this study show that developed TaqMan-based probe qPCR assay is very reliable and valuable for detection and quantification of BKV DNA, both in urine and plasma samples. These data, combined with its rapid turnaround time for results and decreased hands-on time, make the LightCycler PCR assay highly suitable for the rapid diagnostics of polyomavirus BK infections in the clinical laboratory.  相似文献   

7.

Key message

Here, we describe a new developed quantitative real-time PCR method for the detection and quantification of a new specific endogenous reference gene used in GMO analysis.

Abstract

The key requirement of this study was the identification of a new reference gene used for the differentiation of the four genomic sections of the sugar beet (Beta vulgaris L.) (Beta, Corrollinae, Nanae and Procumbentes) suitable for quantification of genetically modified sugar beet. A specific qualitative polymerase chain reaction (PCR) assay was designed to detect the sugar beet amplifying a region of the adenylate transporter (ant) gene only from the species of the genomic section I of the genus Beta (cultivated and wild relatives) and showing negative PCR results for 7 species of the 3 other sections, 8 related species and 20 non-sugar beet plants. The sensitivity of the assay was 15 haploid genome copies (HGC). A quantitative real-time polymerase chain reaction (QRT-PCR) assay was also performed, having high linearity (R 2 > 0.994) over sugar beet standard concentrations ranging from 20,000 to 10 HGC of the sugar beet DNA per PCR. The QRT-PCR assay described in this study was specific and more sensitive for sugar beet quantification compared to the validated test previously reported in the European Reference Laboratory. This assay is suitable for GMO quantification in routine analysis from a wide variety of matrices.  相似文献   

8.
Altered methylation patterns have been found to play a role in developmental disorders, cancer and aging. Increasingly, changes in DNA methylation are used as molecular markers of disease. Therefore, there is a need for reliable and easy to use techniques to detect and measure DNA methylation in research and routine diagnostics. We have established a novel quantitative analysis of methylated alleles (QAMA) which is essentially a major improvement over a previous method based on real-time PCR (MethyLight). This method is based on real-time PCR on bisulfite-treated DNA. A significant advantage over conventional MethyLight is gained by the use of TaqMan probes based on minor groove binder (MGB) technology. Their improved sequence specificity facilitates relative quantification of methylated and unmethylated alleles that are simultaneously amplified in single tube. This improvement allows precise measurement of the ratio of methylated versus unmethylated alleles and cuts down potential sources of inter-assay variation. Therefore, fewer control assays are required. We have used this novel technical approach to identify hypermethylation of the CpG island located in the promoter region of the retinoblastoma (RB1) gene and found that QAMA facilitates reliable and fast measurement of the relative quantity of methylated alleles and improves handling of diagnostic methylation analysis. Moreover, the simplified reaction setup and robustness inherent to the single tube assay facilitates high-throughput methylation analysis. Because the high sequence specificity inherent to the MGB technology is widely used to discriminate single nucleotide polymorphisms, QAMA potentially can be used to discriminate the methylation status of single CpG dinucleotides.  相似文献   

9.
Correct identification of the microsporidia, Nosema apis and Nosema ceranae, is key to the study and control of Nosema disease of honey bees (Apis mellifera). A rapid DNA extraction method combined with multiplex PCR to amplify the 16S rRNA gene with species-specific primers was compared with a previously published assay requiring spore-germination buffer and a DNA extraction kit. When the spore germination-extraction kit method was used, 10 or more bees were required to detect the pathogens, whereas the new extraction method made it possible to detect the pathogens in single bees. Approx. 4-8 times better detection of N. ceranae was found with the new method compared to the spore germination-extraction kit method. In addition, the time and cost required to process samples was lower with the proposed method compared to using a kit. Using the new DNA extraction method, a spore quantification procedure was developed using a triplex PCR involving co-amplifying the N. apis and N. ceranae 16S rRNA gene with the ribosomal protein gene, RpS5, from the honey bee. The accuracy of this semi-quantitative PCR was determined by comparing the relative band intensities to the number of spores per bee determined by microscopy for 23 samples, and a high correlation (R2 = 0.95) was observed. This method of Nosema spore quantification revealed that spore numbers as low as 100 spores/bee could be detected by PCR. The new semi-quantitative triplex PCR assay is more sensitive, economical, rapid, simple, and reliable than previously published standard PCR-based methods for detection of Nosema and will be useful in laboratories where real-time PCR is not available.  相似文献   

10.
Mitochondrial dysfunction has reported in several diseases including diabetes, cancer, skeletal muscle disorders and neurodegenerative diseases such as Wolfram syndrome. Several different methods have evolved to study mtDNA damage including Southern blotting, 8-oxoG damage, or a comprehensive scanning of the mitochondrial genome by RFLP or TTGE analyses. However these approaches require large amounts of DNA or are labor intensive. The use of polymerase amplification of long DNA products (LRPCR) has been described by several groups and more recently summarized by Van Houten’s group. The underlying basis use of DNA polymerases capable of generating long DNA products and the rationale is that any lesion (strand breaks, base modifications, apurinic sites) will stop a thermostable DNA polymerase. In this method, band density of the PCR product is quantified either by Southern blotting or binding of a fluorescent dye. Although the latter approach still has some limited use in the study gene expression, it is semi-quantitative and realtime PCR analysis has largely supplanted it. Direct application of real-time PCR to LRPCR has been made difficult because of low processivity and polymerization rates of the DNA polymerases used and SYBR green inhibition of DNA amplification. We have modified the LRPCR protocol to use the commercially available PfuUltra? II Fusion HS DNA Polymerase for real-time determination of mitochondrial DNA amplification as a means to simplify and improve of the accuracy for quantification of mtDNA damage.  相似文献   

11.
Real-time PCR in nuclear ribosomal DNA (nrDNA) is becoming a well-established tool for the quantification of arbuscular mycorrhizal (AM) fungi, but this genomic region does not allow the specific amplification of closely related genotypes. The large subunit of mitochondrial DNA (mtDNA) has a higher-resolution power, but mtDNA-based quantification has not been previously explored in AM fungi. We applied real-time PCR assays targeting the large subunit of mtDNA to monitor the DNA dynamics of two isolates of Glomus intraradices sensu lato coexisting in the roots of medic (Medicago sativa). The mtDNA-based quantification was compared to quantification in nrDNA. The ratio of copy numbers determined by the nrDNA- and mtDNA-based assays consistently differed between the two isolates. Within an isolate, copy numbers of the nuclear and the mitochondrial genes were closely correlated. The two quantification approaches revealed similar trends in the dynamics of both isolates, depending on whether they were inoculated alone or together. After 12 weeks of cultivation, competition between the two isolates was observed as a decrease in the mtDNA copy numbers of one of them. The coexistence of two closely related isolates, which cannot be discriminated by nrDNA-based assays, was thus identified as a factor influencing the dynamics of AM fungal DNA in roots. Taken together, the results of this study show that real-time PCR assays targeted to the large subunit of mtDNA may become useful tools for the study of coexisting AM fungi.  相似文献   

12.
The aims of this study were to determine the power of discrimination of the real-time PCR assay for monitoring fluctuations in microbial populations within activated sludge and to identify sample processing points where methodological changes are needed to minimize the variability in target quantification. DNA was extracted using a commercially available kit from mixed liquor samples taken from the aeration tank of four bench-scale activated-sludge reactors operating at 2-, 5-, 10-, and 20-day solid retention times, with mixed-liquor volatile suspended solid (MLVSS) values ranging from 260 to 2,610 mg/liter. Real-time PCR assays for bacterial and Nitrospira 16S rRNA genes were chosen because they represent, respectively, a highly abundant and a less-abundant bacterial target subject to clustering within the activated sludge matrix. The mean coefficient of variation in DNA yields (measured as microgram of DNA per milligram of MLVSS) in triplicate extractions of 12 different samples was 12.2%. Based on power analyses, the variability associated with DNA extraction had a small impact on the overall variability of the real-time PCR assay. Instead, a larger variability was associated with the PCR assay. The less-abundant target (Nitrospira 16S rRNA gene) had more variability than the highly abundant target (bacterial 16S rRNA gene), and samples from the lower-biomass reactors had more variability than samples from the higher-biomass reactors. Power analysis of real-time PCR assays indicated that three to five samples were necessary to detect a twofold increase in bacterial 16S rRNA genes, whereas three to five samples were required to detect a fivefold increase in Nitrospira 16S rRNA genes.  相似文献   

13.
Real-time PCR (qPCR) is the method of choice for quantification of mitochondrial DNA (mtDNA) by relative comparison of a nuclear to a mitochondrial locus. Quantitative abnormal mtDNA content is indicative of mitochondrial disorders and mostly confines in a tissue-specific manner. Thus handling of degradation-prone bioptic material is inevitable. We established a serial qPCR assay based on increasing amplicon size to measure degradation status of any DNA sample. Using this approach we can exclude erroneous mtDNA quantification due to degraded samples (e.g. long post-exicision time, autolytic processus, freeze-thaw cycles) and ensure abnormal DNA content measurements (e.g. depletion) in non-degraded patient material. By preparation of degraded DNA under controlled conditions using sonification and DNaseI digestion we show that erroneous quantification is due to the different preservation qualities of the nuclear and the mitochondrial genome. This disparate degradation of the two genomes results in over- or underestimation of mtDNA copy number in degraded samples. Moreover, as analysis of defined archival tissue would allow to precise the molecular pathomechanism of mitochondrial disorders presenting with abnormal mtDNA content, we compared fresh frozen (FF) with formalin-fixed paraffin-embedded (FFPE) skeletal muscle tissue of the same sample. By extrapolation of measured decay constants for nuclear DNA (λnDNA) and mtDNA (λmtDNA) we present an approach to possibly correct measurements in degraded samples in the future. To our knowledge this is the first time different degradation impact of the two genomes is demonstrated and which evaluates systematically the impact of DNA degradation on quantification of mtDNA copy number.  相似文献   

14.
The rapid and direct quantification of Campylobacter spp. in complex substrates like feces or environmental samples is crucial to facilitate epidemiological studies on Campylobacter in pig production systems. We developed a real-time PCR assay for detecting and quantifying Campylobacter spp. directly in pig feces with the use of an internal control. Campylobacter spp. and Yersinia ruckeri primers-probes sets were designed and checked for specificity with diverse Campylobacter, related organisms, and other bacterial pathogens before being used in field samples. The quantification of Campylobacter spp. by the real-time PCR then was realized on 531 fecal samples obtained from experimentally and naturally infected pigs; the numeration of Campylobacter on Karmali plate was done in parallel. Yersinia ruckeri, used as bacterial internal control, was added to the samples before DNA extraction to control DNA-extraction and PCR-amplification. The sensitivity of the PCR assay was 10 genome copies. The established Campylobacter real-time PCR assay showed a 7-log-wide linear dynamic range of quantification (R2 = 0.99) with a detection limit of 200 Colony Forming Units of Campylobacter per gram of feces. A high correlation was found between the results obtained by real-time PCR and those by culture at both qualitative and quantitative levels. Moreover, DNA extraction followed by real-time PCR reduced the time needed for analysis to a few hours (within a working day). In conclusion, the real-time PCR developed in this study provides new tools for further epidemiological surveys to investigate the carriage and excretion of Campylobacter by pigs.  相似文献   

15.
A multiplex real-time PCR assay was developed to monitor the dynamics of the Picea abies-Heterobasidion annosum pathosystem. Tissue cultures and 32-year-old trees with low or high resistance to this pathogen were used as the host material. Probes and primers were based on a laccase gene for the pathogen and a polyubiquitin gene for the host. The real-time PCR procedure was compared to an ergosterol-based quantification method in a tissue culture experiment, and there was a strong correlation (product moment correlation coefficient, 0.908) between the data sets. The multiplex real-time PCR procedure had higher resolution and sensitivity during the early stages of colonization and also could be used to monitor the host. In the tissue culture experiment, host DNA was degraded more rapidly in the clone with low resistance than in the clone with high resistance. In the field experiment, the lesions elicited were not strictly proportional to the area colonized by the pathogen. Fungal colonization was more restricted and localized in the lesion in the clone with high resistance, whereas in the clone with low resistance, the fungus could be detected until the visible end of the lesion. Thus, the real-time PCR assay gives better resolution than does the traditionally used lesion length measurement when screening host clones for resistance.  相似文献   

16.

Background

Real-time PCR is increasingly being adopted for RNA quantification and genetic analysis. At present the most popular real-time PCR assay is based on the hybridisation of a dual-labelled probe to the PCR product, and the development of a signal by loss of fluorescence quenching as PCR degrades the probe. Though this so-called 'TaqMan' approach has proved easy to optimise in practice, the dual-labelled probes are relatively expensive.

Results

We have designed a new assay based on SYBR-Green I binding that is quick, reliable, easily optimised and compares well with the published assay. Here we demonstrate its general applicability by measuring copy number in three different genetic contexts; the quantification of a gene rearrangement (T-cell receptor excision circles (TREC) in peripheral blood mononuclear cells); the detection and quantification of GLI, MYC-C and MYC-N gene amplification in cell lines and cancer biopsies; and detection of deletions in the OPA1 gene in dominant optic atrophy.

Conclusion

Our assay has important clinical applications, providing accurate diagnostic results in less time, from less biopsy material and at less cost than assays currently employed such as FISH or Southern blotting.  相似文献   

17.
A new real-time PCR based method was developed for the species-specific detection, identification and quantification of Fusarium graminearum in planta. It utilizes a TaqMan hybridisation probe targeting the beta-tubulin gene and a plasmid standard. The assay is highly specific giving no product with DNA of closely related species. It is very sensitive, detecting down to five gene copies per reaction, and is able to produce reliable quantitative data over a range of six orders of magnitude.  相似文献   

18.

Background

For large scale studies aiming at a better understanding of mitochondrial DNA (mtDNA), sequence variation in particular mt haplogroups (hgs) and population structure, reliable low-cost high-throughput genotyping assays are needed. Furthermore, methods facilitating sensitive mixture detection and relative quantification of allele proportions are indispensable for the study of heteroplasmy, mitochondrial sequence evolution, and mitochondrial disorders. Here the properties of a homogeneous competitive duplex allele specific PCR (ARMS) assay were scrutinized in the light of these requirements.

Methodology/Principal Findings

A duplex ARMS assay amplifying either the ancestral mtDNA 2706G allele (non-hg H samples) or the derived 7028C allele (hg H samples) in the presence of SYBR Green fluorescent reporter dye was developed and characterized. Product detection, allele calling, and hg inference were based on the amplicon-characteristic melting-point temperatures obtained with on-line post-PCR fluorescent dissociation curve analysis (DCA). The analytical window of the assay covered at least 5 orders of magnitude of template DNA input with a detection limit in the low picogram range of genomic DNA. A set of forensically relevant test specimens was analyzed successfully. The presence of mtDNA mixtures was detected over a broad range of input DNA amounts and mixture ratios, and the estimation of allele proportions in samples with known total mtDNA content was feasible with limitations. A qualified DNA analyst successfully analyzed ∼2,200 DNA extracts within three regular working days, without using robotic lab-equipment. By performing the amplification on-line, the assay also facilitated absolute mtDNA quantification.

Conclusions

Although this assay was developed just for a particular purpose, the approach is general in that it is potentially suitable in a broad variety of assay-layouts for many other applications, including the analysis of mixtures. Homogeneous ARMS-DCA is a valuable tool for large-volume studies targeting small numbers of single nucleotide polymorphisms (SNPs).  相似文献   

19.
A quantitative detection assay for analysis of platelet glycoprotein GPIIIa gene expression is presented. The assay uses two fluorescently labeled TaqMan MGB probes to detect the polymorphic site in GPIIIa nucleotide sequence, leading to antigens HPA-1a and HPA-1b. In order to avoid the influence of DNA contamination on RNA quantification, a forward primer was constructed to span an exon-exon junction. The assay is therefore applicable to expression studies also in samples containing only a small amount of contaminating DNA. To standardize the amount of sample cDNA added to the reaction, amplification of endogenous control 18SrRNA was included in a separate well. The amplification validation experiment showed a high real-time PCR efficiency for HPA-1a, HPA-1b and 18SrRNA. Relative quantification was therefore performed using the comparative C(T) method. The assay was optimized on a reversely transcribed total RNA from platelets, and the specificity rate was determined by sequencing. The amount of cDNA at which amplification was still clearly detectable was 5 ng. This newly developed real-time quantitative PCR assay is a sensitive, reproducible and reliable method. It is suitable for studying different stages of megakaryopoiesis, monitoring molecular alteration in defective platelets and determining differences in the GPIIIa expression level between normal and pathological megakaryocytic differentiation pathways.  相似文献   

20.
A procedure for simultaneous quantification of DNA methylation of several genes in minute amounts of sample material was developed and applied to microdissected formalin-fixed and paraffin-embedded breast tissues. The procedure is comprised of an optimized bisulfite treatment protocol suitable for samples containing only few cells, a multiplex preamplification and subsequent locus specific reamplification, and a novel quantitative bisulfite sequencing method based on the incorporation of a normalization domain into the PCR product. A real-time PCR assay amplifying repetitive elements was established to quantify low amounts of bisulfite-treated DNA. Ten prognostic and diagnostic epigenetic breast cancer biomarkers (PITX2, RASSF1A, PLAU, LHX3, PITX3, LIMK1, SLITRK1, SLIT2, HS3ST2, and TFF1) were analyzed in tissue samples obtained from two patients with invasive ductal carcinoma of the breast. The microdissected samples were obtained from several areas within the tumor tissue, including intraductal and invasive carcinoma, adenosis, and normal ductal epithelia of adjacent normal tissue, as well as stroma, tumor infiltrating lymphocytes, and adipose tissue. Overall, reliable quantification was possible for all genes. For most genes, increased DNA methylation in invasive and intraductal carcinoma cells compared with other tissue components was observed. For TFF1, decreased methylation levels were observed in tumor cells. (J Histochem Cytochem 57:477–489, 2009)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号