首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 637 毫秒
1.
Africanized honey bees (Apis mellifera, Hymenoptera: Apidae) in Brazil are tolerant of infestations with the exotic ectoparasitic mite, Varroa destructor (Mesostigmata: Varroidae), while the European honey bees used in apiculture throughout most of the world are severely affected. Africanized honey bees are normally kept in hives with both naturally built small width brood cells and with brood cells made from European-sized foundation, yet we know that comb cell size has an effect on varroa reproductive behavior. Three types (sizes) of brood combs were placed in each of six Africanized honey bee colonies: new (self-built) Africanized comb, new Italian comb (that the bees made from Italian-sized commercial foundation), and new Carniolan comb (built naturally by Carniolan bees). About 100 cells of each type were analyzed in each colony. The Africanized comb cells were significantly smaller in (inner) width (4.84 mm) than the European-sized comb cells (5.16 and 5.27 mm for Italian and Carniolan cells, respectively). The brood cell infestation rates (percentage cells infested) were significantly higher in the Carniolan-sized comb cells (19.3%) than in the Italian and Africanized cells (13.9 and 10.3%, respectively). The Carniolan-sized cells also had a significantly larger number of invading adult female mites per 100 brood cells (24.4) than did the Italian-sized cells (17.7) and the natural-sized Africanized worker brood cells (15.6). European-sized worker brood cells were always more infested than the Africanized worker brood cells in the same colony. There was a highly significant correlation (P<0.01) between cell width and the rate of infestation with varroa in four of the six colonies. The small width comb cells produced by Africanized honey bees may have a role in the ability of these bees to tolerate infestations by Varroa destructor, furthermore it appears that natural-sized comb cells are superior to over-sized comb cells for disease resistance.  相似文献   

2.
Since its first contact with Apis mellifera, the population dynamics of the parasitic mite Varroa destructor varies from one region to another. In many regions of the world, apiculture has come to depend on the use of acaricides, because of the extensive damage caused by varroa to bee colonies. At present, the mite is considered to contribute to the recent decline of honey bee colonies in North America and Europe. Because in tropical climates worker brood rearing and varroa reproduction occurs all year round, it could be expected that here the impact of the parasite will be even more devastating. Yet, this has not been the case in tropical areas of South America. In Brazil, varroa was introduced more than 30 years ago and got established at low levels of infestation, without causing apparent damage to apiculture with Africanized honey bees (AHB). The tolerance of AHB to varroa is apparently attributable, at least in part, to resistance in the bees. The low fertility of this parasite in Africanized worker brood and the grooming and hygienic behavior of the bees are referred as important factors in keeping mite infestation low in the colonies. It has also been suggested that the type of mite influences the level of tolerance in a honey bee population. The Korea haplotype is predominant in unbalanced host-parasite systems, as exist in Europe, whereas in stable systems, as in Brazil, the Japan haplotype used to predominate. However, the patterns of varroa genetic variation have changed in Brazil. All recently sampled mites were of the Korea haplotype, regardless whether the mites had reproduced or not. The fertile mites on AHB in Brazil significantly increased from 56% in the 1980s to 86% in recent years. Nevertheless, despite the increased fertility, no increase in mite infestation rates in the colonies has been detected so far. A comprehensive literature review of varroa reproduction data, focusing on fertility and production of viable female mites, was conducted to provide insight into the Africanized bee host-parasite relationship.  相似文献   

3.
Varroosis, a disease caused by the mite Varroa destructor Anderson and Treuman has killed hundreds of thousands of Apis mellifera L. colonies in various parts of the world. Nevertheless, the damage caused by this mite varies with the type of bee and climate conditions. Varroa causes little damage to Africanized bee colonies in Brazil, as the infestation rates are relatively stable and low. We evaluated the hygienic behavior (uncapping and removal of brood) of highly hygienic Africanized bees using combs with worker brood cells infested (naturally) and no infested with V. destructor. The daily uncapping rate, measured in eight colonies during six days, was 3.5 fold higher in the combs infested with varroa compared to no infested combs. The results show that the Africanized bees are able to recognise and remove brood cells naturally infested with V. destructor what is an important mechanism for tolerance against varroa.  相似文献   

4.
The objective of this study was to demonstrate genotypic variability and analyze the relationships between the infestation levels of the parasitic mite Varroa destructor in honey bee (Apis mellifera) colonies, the rate of damage of fallen mites, and the intensity with which bees of different genotypes groom themselves to remove mites from their bodies. Sets of paired genotypes that are presumably susceptible and resistant to the varroa mite were compared at the colony level for number of mites falling on sticky papers and for proportion of damaged mites. They were also compared at the individual level for intensity of grooming and mite removal success. Bees from the "resistant" colonies had lower mite population rates (up to 15 fold) and higher percentages of damaged mites (up to 9 fold) than bees from the "susceptible" genotypes. At the individual level, bees from the "resistant" genotypes performed significantly more instances of intense grooming (up to 4 fold), and a significantly higher number of mites were dislodged from the bees' bodies by intense grooming than by light grooming (up to 7 fold) in all genotypes. The odds of mite removal were high and significant for all "resistant" genotypes when compared with the "susceptible" genotypes. The results of this study strongly suggest that grooming behavior and the intensity with which bees perform it, is an important component in the resistance of some honey bee genotypes to the growth of varroa mite populations. The implications of these results are discussed.  相似文献   

5.
The utility of USDA-developed Russian and varroa sensitive hygiene (VSH) honey bees, Apis mellifera L. (Hymenoptera: Apidae), was compared with that of locally produced, commercial Italian bees during 2004-2006 in beekeeping operations in Alabama, USA. Infestations of varroa mites, Varroa destructor Anderson & Truman (Acari: Varroidae), were measured twice each year, and colonies that reached established economic treatment thresholds (one mite per 100 adult bees in late winter; 5-10 mites per 100 adult bees in late summer) were treated with acaricides. Infestations of tracheal mites, Acarapis woodi (Rennie) (Acari: Tarsonemidae), were measured autumn and compared with a treatment threshold of 20% mite prevalence. Honey production was measured in 2005 and 2006 for colonies that retained original test queens. Throughout the three seasons of measurement, resistant stocks required less treatment against parasitic mites than the Italian stock. The total percentages of colonies needing treatment against varroa mites were 12% of VSH, 24% of Russian, and 40% of Italian. The total percentages requiring treatment against tracheal mites were 1% of Russian, 8% of VSH and 12% of Italian. The average honey yield of Russian and VSH colonies was comparable with that of Italian colonies each year. Beekeepers did not report any significant behavioral problems with the resistant stocks. These stocks thus have good potential for use in nonmigratory beekeeping operations in the southeastern United States.  相似文献   

6.
We evaluated three concentrations of tebufenpyrad (17.5, 15 and 12.5%) in strip formulations for controlling varroa mites, Varroa destructor Anderson and Trueman (2000), in honey bee colonies. We also included colonies treated with Apistan, CheckMite+, and untreated colonies in our evaluation. The three concentrations we evaluated reduced varroa populations but also reduced the amount of brood and adult bees when compared with untreated colonies and colonies treated with Apistan or CheckMite+. Alternative delivery methods, lower concentrations of tebufenpyrad, and the evaluation of related compounds are logical next steps in evaluating the varroacidal potential of tebufenpyrad and related compounds.  相似文献   

7.
Reproduction and population growth of Varroa destructor was studied in ten naturally infested, Africanized honeybee (AHB) (Apis mellifera) colonies in Yucatan, Mexico. Between February 1997 and January 1998 monthly records of the amount of pollen, honey, sealed worker and drone brood were recorded. In addition, mite infestation levels of adult bees and worker brood and the fecundity of the mites reproducing in worker cells were determined. The mean number of sealed worker brood cells (10,070 ± 1,790) remained fairly constant over the experimental period in each colony. However, the presence and amount of sealed drone brood was very variable. One colony had drone brood for 10 months and another for only 1 month. Both the mean infestation level of worker brood (18.1 ± 8.4%) and adult bees (3.5 ± 1.3%) remained fairly constant over the study period and did not increase rapidly as is normally observed in European honey bees. In fact, the estimated mean number of mites fell from 3,500 in February 1997 to 2,380 in January 1998. In May 2000 the mean mite population in the study colonies was still only 1,821 mites. The fertility level of mites in this study was much higher (83–96%) than in AHB in Brazil(25–57%), and similar to that found in EHB (76–94%). Mite fertility remained high throughout the entire study and was not influenced by the amount of pollen, honey or worker brood in the colonies. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Earlier studies showed that Russian honey bees support slow growth of varroa mite population. We studied whether or not comb type influenced varroa reproduction in both Russian and Italian honey bees, and whether Russian bees produced comb which inhibited varroa reproduction. The major differences found in this study concerned honey bee type. Overall, the Russian honey bees had lower (2.44 ± 0.18%) levels of varroa infestation than Italian honey bees (7.20 ± 0.60%). This decreased infestation resulted in part from a reduced number of viable female offspring per foundress in the Russian (0.85 ± 0.04 female) compared to the Italian (1.23 ± 0.04 females) honey bee colonies. In addition, there was an effect by the comb built by the Russian honey bee colonies that reduced varroa reproduction. When comparing combs having Russian or Italian colony origins, Russian honey bee colonies had more non-reproducing foundress mites and fewer viable female offspring in Russian honey bee comb. This difference did not occur in Italian colonies. The age of comb in this study had mixed effects. Older comb produced similar responses for six of the seven varroa infestation parameters measured. In colonies of Italian honey bees, the older comb (2001 dark) had fewer (1.13 ± 0.07 females) viable female offspring per foundress than were found in the 2002 new (1.21 ± 0.06 females) and 1980s new (1.36 ± 0.08 females) combs. This difference did not occur with Russian honey bee colonies where the number of viable female offspring was low in all three types of combs. This study suggests that honey bee type largely influences growth of varroa mite population in a colony.  相似文献   

9.
Varroa destructor has been in Brazil for more than 30 years, but no mortality of honeybee colonies due to this mite has been recorded. Africanized bee infestation rates attained by varroa have been low, without causing measurable damage to Brazilian apiculture. The low reproductive ability of this parasite in Africanized bee worker brood cells has been considered an important factor for maintaining the host-parasite equilibrium. Nevertheless, the possible substitution of the haplotype of the mite Varroa destructor that has occurred recently in Brazil could affected the reproductive ability of the population of this parasite in Brazil. The reproductive ability of worker of the mite females was evaluated in over one thousand 17-18 day-old Africanized worker brood cells each of the two periods. The percentage of fertile mites increased from 56% in the 1980s to 86% in 2005-2006. The difference in the percentage of females that produced deutonymphs, female progeny that can reach the adult stage at bee emergence, was even greater. In 2005-2006, 72% of the females that invaded worker brood had left at the least one viable descendant, compared to 35% in 1986-1987.  相似文献   

10.
狄斯瓦螨Varroa destructor Anderson & Trueman是意大利蜜蜂Apis mellifera Spinola的主要外寄生螨。雌成螨在幼虫巢房封盖前不久侵入幼虫巢房,并开始繁殖为害。从雌成螨在一个很短的时间内进入蜜蜂幼虫巢房,以及雄蜂幼虫巢房蜂螨的寄生率明显高于工蜂幼虫巢房的现象,表明蜜蜂幼虫体表一些信息素(semiochemicals)可能起着重要的引诱作用。作者对与大蜂螨相关的19种气味物质进行筛选,并对封盖前工蜂幼虫和雄蜂幼虫表皮挥发物进行气谱及气-质联谱测定。结果表明:雄蜂6龄幼虫对大蜂螨的引诱作用显著高于丁香水等10种气味物质。工蜂和雄蜂末龄幼虫体表挥发物的共有组份是9-二十三烯(C23H46),但它在雄蜂幼虫中所占的比例要明显高于工蜂幼虫。工蜂幼虫的特有主要组分是十八烷(C18H38)和9-甲基十九烷(C19H40);而雄蜂幼虫的特有主要组分是二十五烷(C25H52)和二十三烷(C23H48)。  相似文献   

11.
The most economically important parasites of honey bee, Apis mellifera L. (Hymenoptera: Apidae), colonies are the parasitic mites Varroa destructor Anderson & Trueman and Acarapis woodi (Rennie). Research has shown that mite-tolerant stocks are effective means to reduce mite infestations within colonies, but it is unclear whether the stocks available commercially are viable means of mite control because they are likely to be genetic hybrids. We compared colonies of a standard commercial stock ("Italian") with those of a commercially purchased mite-tolerant stock ("Russian") for their levels of varroa and "tracheal" mites (A. woodi) over the course of 2 yr in three different geographic locations. We were unable to detect significant infestations of tracheal mites; thus, we were unable to adequately compare the stocks for their tolerance. In contrast, we found significant differences in the levels of varroa mites within and among colonies located across the three different study sites for both years. By the end of the first year, we found statistically significant differences between the stocks in varroa mite intensity (mites per adult bee), such that Russian-hybrid colonies tended to have a significantly lower proportion ofparasitized adult bees than Italian colonies. In the second year, we found statistically significant differences between the stocks in varroa mite load (daily mite drop), such that Russian-hybrid colonies tended to have lower total numbers of mites than Italian colonies. These findings suggest that beekeepers may benefit by incorporating commercially purchased mite-tolerant stocks into their existing integrated pest management programs.  相似文献   

12.
The effect of using acaricides to control varroa mites has long been a concern to the beekeeping industry due to unintended negative impacts on honey bee health. Irregular ontogenesis, suppression of immune defenses, and impairment of normal behavior have been linked to pesticide use. External stressors, including parasites and the pathogens they vector, can confound studies on the effects of pesticides on the metabolism of honey bees. This is the case of Varroa destructor, a mite that negatively affects honey bee health on many levels, from direct parasitism, which diminishes honey bee productivity, to vectoring and/or activating other pathogens, including many viruses. Here we present a gene expression profile comprising genes acting on diverse metabolic levels (detoxification, immunity, and development) in a honey bee population that lacks the influence of varroa mites. We present data for hives treated with five different acaricides; Apiguard (thymol), Apistan (tau-fluvalinate), Checkmite (coumaphos), Miteaway (formic acid) and ApiVar (amitraz). The results indicate that thymol, coumaphos and formic acid are able to alter some metabolic responses. These include detoxification gene expression pathways, components of the immune system responsible for cellular response and the c-Jun amino-terminal kinase (JNK) pathway, and developmental genes. These could potentially interfere with the health of individual honey bees and entire colonies.  相似文献   

13.
The combination of the concentration of formic acid and the duration of fumigation (CT product) during indoor treatments of honey bee, Apis mellifera L., colonies to control the varroa mite, Varroa destructor Anderson & Trueman, determines the efficacy of the treatment. Because high concentrations can cause queen mortality, we hypothesized that a high CT product given as a low concentration over a long exposure time rather than as a high concentration over a short exposure time would allow effective control of varroa mites without the detrimental effects on queens. The objective of this study was to assess different combinations of formic acid concentration and exposure time with similar CT products in controlling varroa mites while minimizing the effect on worker and queen honey bees. Treated colonies were exposed to a low, medium, or high concentration of formic acid until a mean CT product of 471 ppm*d in room air was realized. The treatments consisted of a long-term low concentration of 19 ppm for 27 d, a medium-term medium concentration of 42 ppm for 10 d, a short-term high concentration of 53 ppm for 9 d, and an untreated control. Both short-term high-concentration and medium-term medium-concentration fumigation with formic acid killed varroa mites, with averages of 93 and 83% mortality, respectively, but both treatments also were associated with an increase in mortality of worker bees, queen bees, or both. Long-term low-concentration fumigation had lower efficacy (60% varroa mite mortality), but it did not increase worker or queen bee mortality. This trend differed slightly in colonies from two different beekeepers. Varroa mite mean abundance was significantly decreased in all three acid treatments relative to the control. Daily worker mortality was significantly increased by the short-term high concentration treatment, which was reflected by a decrease in the size of the worker population, but not an increase in colony mortality. Queen mortality was significantly greater under the medium-term medium concentration and the short-term high concentration treatments than in controls.  相似文献   

14.
Varroa (Varroa destuctor Anderson and Trueman) populations in honey bee (Apis mellifera L.) colonies might be kept at low levels by well-timed miticide applications. HopGuard® (HG) that contains beta plant acids as the active ingredient was used to reduce mite populations. Schedules for applications of the miticide that could maintain low mite levels were tested in hives started from either package bees or splits of larger colonies. The schedules were developed based on defined parameters for efficacy of the miticide and predictions of varroa population growth generated from a mathematical model of honey bee colony–varroa population dynamics. Colonies started from package bees and treated with HG in the package only or with subsequent HG treatments in the summer had 1.2–2.1 mites per 100 bees in August. Untreated controls averaged significantly more mites than treated colonies (3.3 mites per 100 bees). By October, mite populations ranged from 6.3 to 15.0 mites per 100 bees with the lowest mite numbers in colonies treated with HG in August. HG applications in colonies started from splits in April reduced mite populations to 0.12 mites per 100 bees. In September, the treated colonies had significantly fewer mites than the untreated controls. Subsequent HG applications in September that lasted for 3 weeks reduced mite populations to levels in November that were significantly lower than in colonies that were untreated or had an HG treatment that lasted for 1 week. The model accurately predicted colony population growth and varroa levels until the fall when varroa populations measured in colonies established from package bees or splits were much greater than predicted. Possible explanations for the differences between actual and predicted mite populations are discussed.  相似文献   

15.
蜜蜂具有很高的生态价值和经济价值,对农业生产帮助巨大。然而,狄斯瓦螨Varroa destructor寄生给西方蜜蜂Apis mellifera蜂群造成重大损失,对蜜蜂健康构成严重威胁,因此,狄斯瓦螨的防治变得尤为紧要。虽然化学防治是防治狄斯瓦螨常用且有效措施,但仍存在许多缺点,如造成蜂产品污染、导致蜂螨产生抗药性等。另一方面,培育抗螨蜂种被证明是可持续的狄斯瓦螨防治方法。瓦螨敏感卫生行为(Varroa sensitive hygiene, VSH)是蜜蜂重要的抗螨性状之一。本文从狄斯瓦螨的生活周期、对蜜蜂的危害、蜜蜂抗螨行为、瓦螨敏感卫生行为调控和遗传育种等方面进行综述,为狄斯瓦螨防治和抗螨蜂种选育提供参考。  相似文献   

16.
The efficacy of drone brood removal for the management of Varroa destructor Anderson & Trueman in colonies of the honey bee, A. mellifera L., was evaluated. Colonies were treated with CheckMite+ in the fall of 2002. The following spring, quantities of bees and brood were equalized, but colonies were not retreated. The brood nest of each colony consisted of 18 full-depth worker combs and two full-depth drone combs. Each worker comb had <12.9 cm2 of drone cells. Standard management practices were used throughout the season. Colonies were randomly assigned to one of two groups. In the control group, drone combs remained in place throughout the season. In the treatment group, drone combs were removed on 16 June, 16 July, 16 August, and 16 September and replaced with empty drone combs (16 June) or with drone combs removed on the previous replacement date. In the early fall, the average mite-to-bee ratio in the control group was significantly greater than the corresponding ratio in the treatment group. Drone brood removal did not adversely affect colony health as measured by the size of the worker population or by honey production. Fall worker populations were similar in the two groups. Honey production in treatment colonies was greater than or similar to production in control colonies. These data demonstrate that drone brood removal can serve as a valuable component in an integrated pest management program for V. destructor and may reduce the need for other treatments on a colony-by-colony basis.  相似文献   

17.
Summary: The onset of foraging, proportion of pollen collectors, and weight of pollen loads were compared in individual honey bees (Apis mellifera) infested by zero, one (Acarapis woodi, the honey bee tracheal mite, or Varroa jacobsoni,varroa), or both species of parasitic mites. Phoretic varroa host choice also was compared between bees with and without tracheal mites, and tracheal mite infestation of hosts was compared between bees parasitized or not by varroa during development. The proportion of pollen collectors was not significantly different between treatments, but bees parasitized by both mites had significantly smaller pollen loads than uninfested bees. Mean onset of foraging was earliest for bees parasitized by varroa during development, 15.9 days. Bees with tracheal mites began foraging latest, at 20.5 days, and foraging ages were intermediate in bees with no mites and both, 17.6 and 18.0 days respectively. Phoretic varroa were found equally on bees with and without tracheal mite infestations, but bees parasitized by varroa during development were almost twice as likely to have tracheal mite infestations as bees with no varroa parasitism, 63.9 % and 35.5 %, respectively. These results indicate that these two parasites can have a biological interaction at the level of individual bees that is detrimental to their host colonies.  相似文献   

18.
Honey bee, Apis mellifera L. (Hymenoptera: Apidae), colonies infested by parasitic mites are more prone to suffer from a variety of stresses, including cold temperature. We evaluated the overwintering ability of candidate breeder lines of Russian honey bees, most of which are resistant to both Varroa destructor Anderson & Trueman and Acarapis woodi (Rennie), during 1999-2001. Our results indicate that Russian honey bee colonies (headed by original and supersedure queens) can successfully overwinter in the north, even during adverse weather conditions, owing to their frugal use of food stores and their resistance to tracheal mite infestations. In contrast, colonies of Italian honey bees consumed more food, had more mites, and lost more adult bees than Russian honey bees, even during unusually mild winter conditions.  相似文献   

19.
Varroa destructor continues to threaten colonies of European honey bees. General hygiene, and more specific Varroa Sensitive Hygiene (VSH), provide resistance towards the Varroa mite in a number of stocks. In this study, 32 Russian (RHB) and 14 Italian honey bee colonies were assessed for the VSH trait using two different assays. Firstly, colonies were assessed using the standard VSH behavioural assay of the change in infestation of a highly infested donor comb after a one-week exposure. Secondly, the same colonies were assessed using an “actual brood removal assay” that measured the removal of brood in a section created within the donor combs as a potential alternative measure of hygiene towards Varroa-infested brood. All colonies were then analysed for the recently discovered VSH quantitative trait locus (QTL) to determine whether the genetic mechanisms were similar across different stocks. Based on the two assays, RHB colonies were consistently more hygienic toward Varroa-infested brood than Italian honey bee colonies. The actual number of brood cells removed in the defined section was negatively correlated with the Varroa infestations of the colonies (r2 = 0.25). Only two (percentages of brood removed and reproductive foundress Varroa) out of nine phenotypic parameters showed significant associations with genotype distributions. However, the allele associated with each parameter was the opposite of that determined by VSH mapping. In this study, RHB colonies showed high levels of hygienic behaviour towards Varroa -infested brood. The genetic mechanisms are similar to those of the VSH stock, though the opposite allele associates in RHB, indicating a stable recombination event before the selection of the VSH stock. The measurement of brood removal is a simple, reliable alternative method of measuring hygienic behaviour towards Varroa mites, at least in RHB stock.  相似文献   

20.
Honey bee [Apis mellifera L. (Hymenoptera: Apidae)] genetic diversity may be the key to responding to novel health challenges faced by this important pollinator. In this study, we first compared colonies of four honey bee races, A. m. anatoliaca, A. mcarnica, A. m. caucasica, and A. msyriaca from Turkey, with respect to honey storage, bee population size, and defenses against varroa. The mite Varroa destructor Anderson & Trueman (Acari: Varroidae) is an important pest of honey bee colonies. There are genetic correlates with two main defenses of bees against this parasite: hygienic behavior, or removing infested brood, and grooming, which involves shaking and swiping off mites and biting them. In the second part of this study, we examined the relationship of these two types of defenses, hygiene and grooming, and their correlation with infestation rates in 32 genetically diverse colonies in a ‘common garden’ apiary. Mite biting was found to be negatively correlated with mite infestation levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号