首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Ya Ha  Norma M. Allewell 《Proteins》1998,33(3):430-443
Tyr 165 in the catalytic subunit of Escherichia coli aspartate transcarbamoylase (ATCase, EC 2.1.3.2) forms an intersubunit hydrogen bond in the T state with Glu 239 in the 240s loop of a second catalytic subunit, which is broken in the T to R transition. Substitution of Tyr 165 by Phe lowers substrate affinity by approximately an order of magnitude and alters the pH profile for enzyme function. We have determined the crystal structure of Y165F at 2.4 Å resolution by molecular replacement, using a wild-type T state structure as the probe, and refined it to an R value of 25.2%. The Y165F mutation induces a global conformational change that is in the opposite direction to the T to R transition and therefore results in an extreme T state. The two catalytic trimers move closer by ∼0.14 Å and rotate by ∼0.2°, in the opposite direction to the T→R rotation; the two domains of each catalytic chain rotate by ∼2.1°, also in the opposite direction to the T→R transition; and the 240s loop adopts a new conformation. Residues 229 to 236 shift by ∼2.4 Å so that the active site is more open. Residues 237 to 244 rotate by ∼24.1°, altering interactions within the 240s loop and at the C1-C4 and C1-R4 interfaces. Arg 167, a key residue in domain closure and interactions with L-Asp, swings out from the active site to interact with Tyr 197. This crystal structure is consistent with the functional properties of Y165F, expands our knowledge of the conformational repertoire of ATCase, and indicates that the canonical T state does not represent an extreme. Proteins 33:430–443, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
The effect of a series of physostigmine analogs on acetylcholinesterase activity was investigated. The second-order rate constant k(on) of the enzyme-inhibitor complex correlates with the conformational positioning of aromatic residues, especially Trp84, in the transition state complex. The van der Waals interactions are an important structural element of this conformational change. A transient mobility of the cysteine loop (Cys67-Cys94) was confined only to the presence of a significant steric effect. Even with this limitation, however, the steric effect seems to be an appropriate model for future tests on the "back door" hypothesis involving facilitated opening for faster product clearance.  相似文献   

3.
Conformational transition is fundamental to the mechanism of functional regulation in proteins, and serpins (serine protease inhibitors) can provide insight into this process. Serpins are metastable in their native forms, and they ordinarily undergo conformational transition to a stable state only when they form a tight complex with target proteases. The metastable native form is thus considered to be a kinetically trapped folding intermediate. We sought to understand the nature of the serpin kinetic trap as a step toward discovering how conformational transition is regulated. We found that mutations of the B/C beta-barrel of native alpha(1)-antitrypsin, a prototypical serpin, allowed conversion of the molecule into a more stable state. A 2.2 A resolution crystal structure of the stable form (PDB code, ) showed that the reactive site loop is inserted into an A beta-sheet, as in the latent plasminogen activator inhibitor-1. Mutational analyses suggest strongly that interactions not found in the final stable form cause the kinetic trap in serpin protein folding.  相似文献   

4.
Summary An analysis of transition-state models for exchange-only transport shows that substrate binding forces, carrier conformational changes, and coupled substrate flow are interrelated. For a system to catalyze exchange but not net transport, addition of the substrate must convert the carrier from an immobile to a mobile form. The reduction in the energy barrier to movement is necessarily paid for out of the intrinsic binding energy between the substrate and the transport site, and is dependent on the formation of two different types of complex: a loose complex initially and a tight complex in the transition state in carrier movement. Hence the site should at first be incompletely organized for optimal binding but, following a conformational change, complementary to the substrate structure in the transition state. The conformational change, which may involve the whole protein, would be induced by cooperative interactions between the substrate and several groups within the site, involving a chelate effect. The tightness of coupling, i.e., the ratio of exchange to net transport, is directly proportional to the increased binding energy in the transition state, a relationship which allows the virtual substrate dissociation constant in the transition state to be calculated from experimental rate and half-saturation constants. Because the transition state is present in minute amount, strong bonding here does not enhance the substrate's affinity, and specificity may, therefore, be expressed in maximum exchange rates alone. However, where substrates largely convert the carrier to a transport intermediate whose mobility is the same with all substrates, specificity is also expressed in affinity. Hence the expression of substrate specificity provides evidence on the translocation mechanism.  相似文献   

5.
Protein-folding and -unfolding transitions were studied by the method of computer simulation. The protein was modeled as a two-dimensional lattice polymer. Various energy terms were assumed to be operative between units composing the polymer. But hydrophobic interactions were neglected explicitly. Both thermodynamic and kinetic quantities were obtained from the simulation, and from their temperature dependence in the transition zone characteristics of the conformational transition of proteins were discussed. Two amino acid substituted models, differing in the location of substitution, were studied and compared with the original in order to clarify the effect of substitution on conformational transition of proteins. The following conclusions were reached in this study: (1) The relaxation time of the slow mode, which reflects the overall folding and unfolding processes, shows a peak near the transition temperature, while that of the fast mode is almost independent of temperature. The peak of the slow mode occurs at a slightly lower temperature than the transition temperature. (2) The dependence of the logarithm of the rate constants on the inverse of temperature (Arrhenius plot) is linear. Therefore, the plot of the free energy of activation vs temperature is linear. (3) The values of kinetic parameters obtained suggest that in the activated state the intramolecular interactions are half broken, while the state is close to the native state on the entropy axis. (4) The amino acid substitution, which is modeled as having slightly unfavorable short-range interactions, causes the substituted ones to be slightly unstable. Moreover, it causes the folding transition to slow. From the analysis of the way slowing down is observed in the two substituted models, we conclude that a structure, designed to model a β-sheet, is formed before it gets assembled with other structures, which are designed to model α-helices. The process of assembly occurs nearly at the activated state of the folding and unfolding transition. (5) It is suggested from this study that the maximum of folding rate constant in the Arrhenius plot that has been observed experimentally in real proteins is likely due to hydrophobic interactions.  相似文献   

6.
7.
Enzymatic catalysis has conflicting structural requirements of the enzyme. In order for the enzyme to form a Michaelis complex, the enzyme must be in an open conformation so that the substrate can get into its active center. On the other hand, in order to maximize the stabilization of the transition state of the enzymatic reaction, the enzyme must be in a closed conformation to maximize its interactions with the transition state. The conflicting structural requirements can be resolved by a flexible active center that can sample both open and closed conformational states. For a bisubstrate enzyme, the Michaelis complex consists of two substrates in addition to the enzyme. The enzyme must remain flexible upon the binding of the first substrate so that the second substrate can get into the active center. The active center is fully assembled and stabilized only when both substrates bind to the enzyme. However, the side-chain positions of the catalytic residues in the Michaelis complex are still not optimally aligned for the stabilization of the transition state, which lasts only approximately 10(-13) s. The instantaneous and optimal alignment of catalytic groups for the transition state stabilization requires a dynamic enzyme, not an enzyme which undergoes a large scale of movements but an enzyme which permits at least a small scale of adjustment of catalytic group positions. This review will summarize the structure, catalytic mechanism, and dynamic properties of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase and examine the role of protein conformational dynamics in the catalysis of a bisubstrate enzymatic reaction.  相似文献   

8.
Methods of laser-induced temperature jumps and fast freezing were used for testing the rates of thermoinduced conformational transitions of reaction center (RC) complexes in chromatophores and isolated RC preparations of various photosynthesizing purple bacteria. An electron transfer reaction from primary to secondary quinone acceptors was used as a probe of electron transport efficiency. The thermoinduced transition of the acceptor complex to the conformational state facilitating electron transfer to the secondary quinone acceptor was studied. To investigate the dynamics of spontaneous decay of the RC state induced by the thermal pulse, the thermal pulse was applied either before or during photoinduced activation of electron transport reactions in the RC acceptor complex. The maximum effect was observed if the thermal pulse was applied against the background of steady-state photoactivation of the RC. It was shown that neither the characteristic time of the thermoinduced transition within the temperature range 233-253 K nor the characteristic time of spontaneous decay of this state at 253 K exceeded several tens of milliseconds. Independent support of the estimates was obtained from experiments with varied cooling rates of the samples tested.  相似文献   

9.
Akmal A  Muñoz V 《Proteins》2004,57(1):142-152
We introduce a simple procedure to analyze the temperature dependence of the folding and unfolding rates of two-state proteins. We start from the simple transition-state-like rate expression: k = D(eff)exp(-DeltaG(TS)/RT), in which upper and lower bounds for the intra-chain effective diffusion coefficient (D(eff)) are obtained empirically using the timescales of elementary processes in protein folding. From the changes in DeltaG(TS) as a function of temperature, we calculate enthalpies and heat capacities of activation, together with the more elusive entropies of activation. We then estimate the conformational entropy of the transition state by extrapolation to the temperature at which the solvation entropy vanishes by cancellation between polar and apolar terms. This approach is based on the convergence temperatures for the entropy of solvating apolar (approximately 385 K) and polar groups (approximately 335 K), the assumption that the structural properties of the transition state are somewhere in between the unfolded and folded states, and the established relationship between observed heat capacity and solvent accessibility.1 To circumvent the lack of structural information about transition states, we use the empirically determined heat capacities of activation as constraints to identify the extreme values of the transition state conformational entropy that are consistent with experiment. The application of this simple approach to six two-state folding proteins for which there is temperature-dependent data available in the literature provides important clues about protein folding. For these six proteins, we obtain an average equilibrium cost in conformational entropy of -4.3 cal x mol(-1)K(-1)per residue, which is in close agreement to previous empirical and computational estimates of the same quantity. Furthermore, we find that all these proteins have a conformationally diverse transition state, with more than half of the conformational entropy of the unfolded state. In agreement with predictions from theory and computer simulations, the transition state signals the change from a regime dominated by loss in conformational entropy to one driven by the gain in stabilization free energy (i.e., including protein interactions and solvation effects). Moreover, the height of the barrier is determined by how much stabilization free energy is realized at that point, which is related to the relative contribution of local versus non-local interactions. A remarkable observation is that the fraction of conformational entropy per residue that is present in the transition state is very similar for the six proteins in this study. Based on this commonality, we propose that the observed change in thermodynamic regime is connected to a change in the pattern of structure formation: from one driven by formation of pairwise interactions to one dominated by coupling of the networks of interactions involved in forming the protein core. In this framework, the barrier to two-state folding is crossed when the folding protein reaches a "critical native density" that allows expulsion of remaining interstitial water and consolidation of the core. The principle of critical native density should be general for all two-state proteins, but can accommodate different folding mechanisms depending on the particularities of the structure and sequence.  相似文献   

10.
The preprotein cross-linking domain and C-terminal domains of Escherichia coli SecA were removed to create a minimal DEAD motor, SecA-DM. SecA-DM hydrolyzes ATP and has the same affinity for ADP as full-length SecA. The crystal structure of SecA-DM in complex with ADP was solved and shows the DEAD motor in a closed conformation. Comparison with the structure of the E. coli DEAD motor in an open conformation (Protein Data Bank ID 2FSI) indicates main-chain conformational changes in two critical sequences corresponding to Motif III and Motif V of the DEAD helicase family. The structures that the Motif III and Motif V sequences adopt in the DEAD motor open conformation are incompatible with the closed conformation. Therefore, when the DEAD motor makes the transition from open to closed, Motif III and Motif V are forced to change their conformations, which likely functions to regulate passage through the transition state for ATP hydrolysis. The transition state for ATP hydrolysis for the SecA DEAD motor was modeled based on the conformation of the Vasa helicase in complex with adenylyl imidodiphosphate and RNA (Protein Data Bank ID 2DB3). A mechanism for chemical-mechanical coupling emerges, where passage through the transition state for ATP hydrolysis is hindered by the conformational changes required in Motif III and Motif V, and may be promoted by binding interactions with the preprotein substrate and/or other translocase domains and subunits.  相似文献   

11.
Rates of thermoinduced conformational transitions of reaction center (RC) complexes providing effective electron transport were studied in chromatophores and isolated RC preparations of various photosynthesizing purple bacteria using methods of fast freezing and laser-induced temperature jump. Reactions of electron transfer from the primary to secondary quinone acceptors and from the multiheme cytochrome c subunit to photoactive bacteriochlorophyll dimer were used as probes of electron transport efficiency. The thermoinduced transition of the acceptor complex to the conformational state facilitating electron transfer to the secondary quinone acceptor was studied. It was shown that neither the characteristic time of the thermoinduced transition within the temperature range 233-253 K nor the characteristic time of spontaneous decay of this state at 253 K exceeded several tens of milliseconds. In contrast to the quinone complex, the thermoinduced transition of the macromolecular RC complex to the state providing effective electron transport from the multiheme cytochrome c to the photoactive bacteriochlorophyll dimer within the temperature range 220-280 K accounts for tens of seconds. This transition is thought to be mediated by large-scale conformational dynamics of the macromolecular RC complex.  相似文献   

12.
Y K Cho  D B Northrop 《Biochemistry》1999,38(23):7470-7475
High pressure causes biphasic effects on the oxidation of benzyl alcohol by yeast alcohol dehydrogenase as expressed in the kinetic parameter V/K which measures substrate capture. Moderate pressure increases the rate of capture of benzyl alcohol by activating the hydride transfer step. This means that the transition state for hydride transfer has a smaller volume than the free alcohol plus the capturing form of enzyme, with a DeltaV of -39 +/- 1 mL/mol, a value that is relatively large. This is the first physical property of an enzymatic transition state thus characterized, and it offers new possibilities for structure-activity analyses. Pressures of >1.5 kbar decrease the rate of capture of benzyl alcohol by favoring a conformation of the enzyme which binds nicotinamide adenine dinucleotide (NAD+) less tightly. This means that the ground state for tight binding, E-NAD+, has a larger volume than the collision complex, E-NAD+, with a DeltaV of 73 +/- 2 mL/mol. The equilibrium constant of the conformational change Keq is 75 +/- 13 at 1 atm. The effects of pressure on the capture of NAD+ have no activation phase because the conformational change is now being expressed kinetically instead of thermodynamically, together with but in opposition to hydride transfer, causing the effects to cancel. For yeast alcohol dehydrogenase, this conformational change had not been detected previously, but similar conformational changes have been found by spectroscopic means in other dehydrogenases, and some of them are also sensitive to pressure. The opposite signs for the volume change of tighter binding and hydride transfer run contrary to Pauling's hypothesis that substrates are bound more tightly in the transition state than in the Michaelian reactant state.  相似文献   

13.
P V LoGrasso  F Moll  rd    T A Cross 《Biophysical journal》1988,54(2):259-267
Reconstituted lipid bilayers of dimyristoylphosphatidylcholine (DMPC) and gramicidin A' have been prepared by cosolubilizing gramicidin and DMPC in one of three organic solvent systems followed by vacuum drying and hydration. The conformational state of gramicidin as characterized by 23Na NMR, circular dichroism, and solid state 15N NMR is dependent upon the cosolubilizing solvent system. In particular, two conformational states are described; a state in which Na+ has minimal interactions with the polypeptide, referred to as a nonchannel state, and a state in which Na+ interacts very strongly with the polypeptide, referred to as the channel state. Both of these conformations are intimately associated with the hydrophobic core of the lipid bilayer. Furthermore, both of these states are stable in the bilayer at neutral pH and at a temperature above the bilayer phase transition temperature. These results with gramicidin suggest that the conformation of membrane proteins may be dictated by the conformation before membrane insertion and may be dependent upon the mechanism by which the insertion is accomplished.  相似文献   

14.
Xing X  Bell CE 《Biochemistry》2004,43(51):16142-16152
RecA catalyzes the DNA pairing and strand-exchange steps of homologous recombination, an important mechanism for repair of double-stranded DNA breaks. The binding of RecA to DNA is modulated by adenosine nucleotides. ATP increases the affinity of RecA for DNA, while ADP decreases the affinity. Previously, the crystal structures of E. coli RecA and its complex with ADP have been determined to resolutions of 2.3 and 3.0 A, respectively, but the model for the RecA-ADP complex did not include magnesium ion or side chains. Here, we have determined the crystal structures of RecA in complex with MgADP and MnAMP-PNP, a nonhydrolyzable analogue of ATP, at resolutions of 1.9 and 2.1 A, respectively. Both crystals grow in the same conditions and have RecA in a right-handed helical form with a pitch of approximately 82 A. The crystal structures show the detailed interactions of RecA with the nucleotide cofactors, including the metal ion and the gamma phosphate of AMP-PNP. There are very few conformational differences between the structures of RecA bound to ADP and AMP-PNP, which differ from uncomplexed RecA only in a slight opening of the P-loop residues 66-73 upon nucleotide binding. To interpret the functional significance of the structure of the MnAMP-PNP complex, a coprotease assay was used to compare the ability of different nucleotides to promote the active, extended conformation of RecA. Whereas ATPgammaS and ADP-AlF(4) facilitate a robust coprotease activity, ADP and AMP-PNP do not activate RecA at all. We conclude that the crystal structure of the RecA-MnAMP-PNP complex represents a preisomerization state of the RecA protein that exists after ATP has bound but before the conformational transition to the active state.  相似文献   

15.
Binding of the transition state analogue coformycin and the ground state analogue 1-deaazadenosine to bovine adenosine deaminase have been thermody-namically characterized. The heat capacity changes for coformycin and 1-deazaadenosine binding are - 4.7 × 0.8 kJ/mole-K and -1.2 × 0.1 kJ/mole-K, respectively. Since the predominant source of heat capacity change in enzyme interactions are changes in the extent of exposure of nonpolar amino acid side chains to the aqueous environment and the hydrophobic effect is the predominant factor in native structure stabilization, we propose that the binding of either class of ligand is associated with a stabilizing enzyme conformational change with coformycin producing the far greater effect Analysis of the T dependence of the second order rate constant for formation of the enzyme/coformycin complex further reveals that the conformational change is not rate limiting. We propose that the enzyme may facilitate catalysis via the formation of a stabilizing conformation at the reaction transition state.  相似文献   

16.
Sineva EV  Davydov DR 《Biochemistry》2010,49(50):10636-10646
We report cloning, expression in Escherichia coli, and purification of cytochrome P450 from a deep-sea bacterium Photobacterium profundum strain SS9 (P450-SS9). The enzyme, which is predominately high spin (86%) in the absence of any added ligand, binds fatty acids and their derivatives and exhibits the highest affinity for myristic acid. Binding of the majority of saturated fatty acids displaces the spin equilibrium further toward the high-spin state, whereas the interactions with unsaturated fatty acids and their derivatives (arachidonoylglycine) have the opposite effect. Pressure perturbation studies showed that increasing pressure fails to displace the spin equilibrium completely to the low-spin state in the ligand-free P450-SS9 or in the complexes with either myristic acid or arachidonoylglycine. Stabilization of high-spin P450-SS9 signifies a pressure-induced transition to a state with reduced accessibility of the active site. This transition, which is apparently associated with substantial hydration of the protein, is characterized by the reaction volume change (ΔV) around -100 to -200 mL/mol and P(1/2) of 300-800 bar, which is close to the pressure of habitation of P. profundum. The transition to a state with confined water accessibility is hypothesized to represent a common feature of cytochromes P450 that serves to coordinate heme pocket hydration with ligand binding and the redox state. Displacement of the conformational equilibrium toward the "closed" state in P450-SS9 (even ligand-free) may have evolved to allow the protein to adapt to enhanced protein hydration at high hydrostatic pressures.  相似文献   

17.
A modified form of aspartate transcarbamylase is synthesized by Escherichia coli in the presence of 2-thiouracil which does not exhibit homotropic cooperative interactions between active sites yet retains heterotropic cooperative interactions due to nucleotide binding. The conformational changes induced in the modified enzyme by the binding of different ligands (substrates, substrate analogs, a transition state analog, and nucleotide effectors) were studied using ultraviolet absorbance and circular dichroism difference spectroscopy. Comparison of the results for the modified enzyme and its isolated subunits to those for the native enzyme and its isolated subunits showed that the conformational changes detected by these methods are qualitatively similar in the two enzymes. Comparison of the absorbance difference spectra due to the binding of a transition substrate analog to the intact native or modified enzymes to the corresponding results for the isolated subunits suggested that ligand binding causes an increased exposure to solvent of certain tyrosyl and phenylalanyl residues in the intact enzymes but not in the isolated subunits. This result is consistent with a diminution of subunit contacts due to substrate binding in the course of homotropic interactions in the native enzyme. Such conformational changes, though perhaps necessary for homotropic cooperativity, are not sufficient to cause homotropic cooperativity since the modified enzyme gave identical perturbations. Interactions of the transition state analog, N-(phosphonacetyl)-L-aspartate, with the modified enzyme were studied. Enzyme kinetic data obtained at low aspartate concentrations showed that this transition state analog does not stimulate activity, but rather exhibits the inhibition predicted for the total absence of homotropic cooperative interactions in the modified enzyme. Spectrophotometric titrations of the number of catalytic sites with the transition state analog showed that the modified enzyme and its isolated subunits possess, respectively, four and two high affinity sites for the inhibitor instead of six and three observed in the case of the normal enzyme and its isolated catalytic subunits. These results are correlated with the lower specific enzymatic activities of the modified enzyme and its catalytic subunits compared to the normal corresponding enzymatic species.  相似文献   

18.
Several recent studies of protein the unfolded proteins. In urea- and guanidine HCl-unfolded ferricytochrome c (horse heart), an acid-induced spin state transformation of the heme group has been detected by the heme absorptions, Trp-59 fluorescence, and the intrinsic viscosity of protein. Kinetics of this second conformational transition, by the temperature jump and stopped flow methods, are complex. One rapid reaction (tau1), pH-independent, occurs in a 50-mus range; the second reaction (tau2), in a 1-ms range, depends linearly upon pH and is faster at the alkaline side; a third reaction (tau3), in a 1-s range, shows a sigmoidal transition at pH 5.1 and is faster at the acidic side. The results are consistent with a kinetic scheme which involves protein conformational changes in the transformation of the heme coordination state. The kinetics, along with previous equilibrium studies, indicate that ligand or charge interactions within a protein molecule are not completely prohibited even in strongly denaturing conditions, such as in high concentrations of urea and guanidine HCl. Thus, local structures of peptide chain associated with these interactions can exist in the unfolded protein.  相似文献   

19.
GTP-bound forms of Ras family small GTPases exhibit dynamic equilibrium between two interconverting conformations, "inactive" state 1 and "active" state 2. A great variation exists in their state distribution; H-Ras mainly adopts state 2, whereas M-Ras predominantly adopts state 1. Our previous studies based on comparison of crystal structures representing state 1 and state 2 revealed the importance of the hydrogen-bonding interactions of two flexible effector-interacting regions, switch I and switch II, with the γ-phosphate of GTP in establishing state 2 conformation. However, failure to obtain both state structures from a single protein hampered further analysis of state transition mechanisms. Here, we succeed in solving two crystal structures corresponding to state 1 and state 2 from a single Ras polypeptide, M-RasD41E, carrying an H-Ras-type substitution in residue 41, immediately preceding switch I, in complex with guanosine 5'-(β,γ-imido)triphosphate. Comparison among the two structures and other state 1 and state 2 structures of H-Ras/M-Ras reveal two new structural features playing critical roles in state dynamics; interaction of residues 31/41 (H-Ras/M-Ras) with residues 29/39 and 30/40, which induces a conformational change of switch I favoring its interaction with the γ-phosphate, and the hydrogen-bonding interaction of switch II with its neighboring α-helix, α3-helix, which induces a conformational change of switch II favoring its interaction with the γ-phosphate. The importance of the latter interaction is proved by mutational analyses of the residues involved in hydrogen bonding. These results define the two novel functional regions playing critical roles during state transition.  相似文献   

20.
Weng J  Fan K  Wang W 《PloS one》2012,7(1):e30465
BtuCD is a member of the ATP-binding cassette transporters in Escherichia coli that imports vitamin B(12) into the cell by utilizing the energy of ATP hydrolysis. Crystal structures of BtuCD and its homologous protein HI1470/1 in various conformational states support the "alternating access" mechanism which proposes the conformational transitions of the substrate translocation pathway at transmembrane domain (TMD) between the outward-facing and inward-facing states. The conformational transition at TMD is assumed to couple with the movement of the cytoplasmic nucleotide-binding domains (NBDs) driven by ATP hydrolysis/binding. In this study, we performed targeted molecular dynamics (MD) simulations to explore the atomic details of the conformational transitions of BtuCD importer. The outward-facing to inward-facing (O→I) transition was found to be initiated by the conformational movement of NBDs. The subsequent reorientation of the substrate translocation pathway at TMD began with the closing of the periplasmic gate, followed by the opening of the cytoplamic gate in the last stage of the conformational transition due to the extensive hydrophobic interactions at this region, consistent with the functional requirement of unidirectional transport of the substrates. The reverse inward-facing to outward-facing (I→O) transition was found to exhibit intrinsic diversity of the conformational transition pathways and significant structural asymmetry, suggesting that the asymmetric crystal structure of BtuCD-F is an intermediate state in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号