首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Electrophysiological investigations of intercellular communication and membrane resistance in higher plants have been hampered by the difficulty in measuring these quantities independently. Uncertainty about the position of an electrode inserted into vacuolate tissue has further complicated such measurement. To overcome these problems sister cell pairs of a Zea mays L. Black Mexican Sweet suspension culture were used and dye was injected from the current-injecting electrode to determine the location of the electrode tip in each experiment. Of the impalements, 72% were cytoplasmic. The presence of plasmodesmata was fully incorporated into the electriccircuit model for the cell, and the resistance of the membrane of the current-injected cell was calculated, separate from the plasmodesmata resistance. This avoided some of the confusion resulting from work on multicellular tissue in which the position of the electrode and the extent of intercellular coupling is not determined. Using this technique, plasma-membrane resistivity was measured as 0.65 ·m2, the resistivity of the tonoplast and plasma membrane in series was 1.35 ·m2, and the resistance of a single plasmodesma was calculated to be 53 ± 11 G.Abbreviations BMS Black Mexican Sweet - PD potential difference - Rj resistance of the plasmodesmata in the junction between cells - Rm resistance of the plasma membrane of the current-injected cell - Rt resistance of the tonoplast - V1, V2 membrane PDs of sister cells This work was funded by an Australian Research Council grant to R.L.O. We are grateful to Dr. Maret Vesk (Electron Microscope Unit, The University of Sydney) for assistance with the preparation of EM sections, and to Dr. Richard Brettell (C.S.I.R.O. Division of Plant Industry) for assistance with the BMS culture.  相似文献   

2.
On photoautotrophically grown, suspension-cultured cells of Chenopodium rubrum L. the electrical potential difference V mand the electrical resistance across plasmalemma and tonoplast have been measured using one or two intracellular micro-electrodes. In a mineral test-medium of 5.8 mM ionic strength V mvalues between 100 and 250 mV, 40% thereof between 170 and 200 mV, and a mean value (±S.E.M.) of 180.6±3.4 mV have been recorded. The average membrane input resistance R mwas 269±36 M, corresponding to an average membrane resistivity r mof 3.0 m2. V mand r mare sensitive to light, temperature, and addition of cyanide, suggesting the presence of an electrogenic hyperpolarizing ion pump, and are ascribed essentially to the plasmalemma. A hexose-specific saturable electrogenic membrane channel is identified through a decrease of V mand r mupon addition of hexoses. The hexoseconcentration-dependent depolarization V msaturates at 92 mV and returns half-saturating concentrations (apparent k mvalues) of 0.16 mM galactose, 0.28 mM glucose, and 0.48 mM fructose. The magnitude of V mand r mwell agrees with pertinent data from mesophyll cells in situ (where only V mdata are available) and from photoautotrophic lower plant cells. However, V mis markedly higher than reported for heterotrophically grown suspension cells of different higher plants (with which r mdata have not been reported so far). It is concluded from the present study and a companion paper on water transport (Büchner et al., Planta, in press) that photoautotrophically grown Chenopodium suspension cells closely resemble mesophyll cells as to cell membrane transport properties.Abbreviations V m membrane potential(mV) - R o input resistance () - R m membrane input resistance () - r m specific resistance (resistivity) of the membrane (m2)  相似文献   

3.
Summary The passive electrical properties and initiation of action potentials have been examined in the external epithelium of oikopleurid larvacean tunicates. The epithelial cells are electrically coupled, and are polygons up to 200 m across and up to 1.4–2.8 m thick. Membrane constants determined by a 2-electrode study were forO. dioica:: 922 m; Rm: 4.3 kcm2; Ri: 82.7 cm. Corresponding values for the largerO. longicauda were: 3350 m; 35.6 kcm2; and 104.5 cm. Mean resting potentials in both species were around 80 mV. Mechanical stimulation evokes over-shooting action potentials propagated (at 18 °C) at some 40 cm/s. These are rapid events, repolarisation being almost complete in 5 ms. There is no undershoot.When the recording electrode penetrates the epithelial cell from its inner surface distant mechanical stimulation may evoke similar action potentials arising from the stimulus site, but more often evokes graded small depolarisations which give rise to action potentials with increasing strength of mechanical stimulation. Reasons are given for considering these to be generator potentials resulting from deformation of the outer epithelial cell membrane by the tip of the recording electrode. The effects of epithelial action potentials upon the potentials recorded from the caudal muscle cells are briefly described.  相似文献   

4.
Summary The passive electrical cable properties of ocellar L-neurons were determined by applying current steps and recording the voltage transients using a two-electrode intracellular current clamp system. Morphological data were obtained following intracellular staining with Lucifer yellow.Two groups of neurons were distinguished physiologically. In the first group both the membrane time constant m and the first equalizing time constant 1 could be determined. In the second group only m was measurable. The ratio of the physiological groups was equal to the ratio of the morphological types ML:(M1 plus M2) in the median ocellar nerve. Thus the first group probably consists of ML-type L-neurons. The passive cable properties of this group were calculated by combining the physiological and morphological data. The following values were obtained: electrotonic lengthL=1.35; membrane time constant m =7.6 ms; length constant =0.22 cm; membrane resistivityR m=2.0 · 103 · cm2; membrane capacitanceC m=3.8 F · cm–2; intracellular resistivityR i=24 · cm. Evidence is presented that the membrane parameters of the other types of L-neurons have the same values. The results are discussed with special reference to transmission in the ocellar system.  相似文献   

5.
We have examined the effects of culturing neonatal rat-brain astrocytes in medium containing delipidated serum, with or without added linoleic acid (LA, 18:26), on membrane fatty-acid composition and functions. After 18–21 days in culture, polyunsaturated fatty acids (PUFA) constituted24 mol% of the total fatty acids in the astrocytes grown in delipidated media (controls); these proportions were increased by 35–40% to33 mol% when the cells were supplemented with 35M LA. Notable differences in the PUFA profiles of the cells cultured with or without added LA included: (a) higher proportions of 6 PUFA in the LA-supplemented astrocytes (25%, relative to10% in controls) that were accompanied by an increase in the ratio of 6/3 PUFA (from <2 in controls to 5), and (b) higher proportions of 20:39 and 22:39 in the control astrocytes (>5%) relative to the LA-supplemented cells (1%). The major metabolites in the 6 PUFA-enriched cells were arachidonic (20:46), adrenic (22:46) and docosapentaenoic (22:56) acids (15, 5 & 3 mol%, respectively). Enrichment of the astrocytes in 6 PUFA did not alter basal levels of cAMP, nor did it affect the amounts of cAMP formed in response to forskolin, isoproterenol, adenosine or histamine. However, dopamine-dependent increases in cAMP formation in the presence of the phosphodiesterase inhibitor, Ro 20-1724, were reduced by 25% relative to those in controls. LA supplementation modified uptake of [3H]adenosine into the astrocytes; values for Kt for a high affinity transport were increased relative to controls, and maximum capacity of a lower affinity process was reduced. Uptake of [3H]glutamate was not altered in the 6 PUFA-enriched astrocytes. This study demonstrated that cultured astrocytes take up exogenous linoleic acid and incorporate its metabolites into, phospholipid, and that the resulting changes in membrans PUFA composition modify only specific cell functional properties.Abbreviations PUFA polyunsaturated fatty acid(s) - EFA essential fatty acid(s) - LA linoleic acid - AA arachidonic acid - DHA docosahexaenoic acid - BSA bovine serum albumin - DMEM Dulbecco's modified Eagle's medium - TBARS thiobarbituric-acid-reactive substances - NECA 5-N-ethylcarboxamidoadenosine Special issue dedicated to Dr. Leon S. Wolfe.  相似文献   

6.
Summary Three weakly electric fish (Gnathonemus petersii) were force-choice trained in a two-alternative procedure to discriminate between objects differing in their electrical characteristics. The objects were carbon dipoles in plexiglass tubing (length 2.5 cm, diameter 0.6 cm). Their electrical characteristics could be changed by varying the impedance of an external circuit to which they were connected (Fig. 1). In one (the capacitance dipole) the resistance was very low(< 3 ) and the capcitance variable. In the other (the resistance dipole) the resistance was variable and the capacitance low (<50 pF).Capacitances from several hundred pF (lower thresholds, Fig. 2) to several hundred nF (upper thresholds, Fig. 3) could be discriminated from both insulators and good conductors. In all cases the reward-negative stimulus was the capacitance dipole, which was avoided by all fish spontaneously. Thresholds were defined at 70% correct choices.The fish were then tested for their ability to discriminate between one object with a given capacitance and another with resistances varying from 3 to 200 k. The capacitance dipole continued to be the negative stimulus throughout. All 3 fish avoided it in at least 80% of the trials at each stimulus combination (Fig. 4). This result suggests that Gnathonemus perceives the capacitance and the resistance of objects differentially.The effect of the dipole-objects as well as some natural objects on the local EOD was recorded differentially very close to the fish's skin (Fig. 5). The amplitude of the local EODs was affected by all types of objects as they approached the skin. However, the waveform was changed only by capacitance dipoles and some natural objects (Figs. 6 and 7). It appears that the fish perceive not only intensity changes in the local EOD but wave-form deformations as well and can thus distinguish objects of different complex impedances.Abbreviations EOD electric organ discharge - f max maximal spectral frequency - GP Gnathonemus petersii - LFS local filtered signal - PMA probing motor act - S+ positive stimulus - S negative stimulus  相似文献   

7.
Summary The mechanism of Na+ transport in rabbit urinary bladder has been studied by microelectrode techniques. Of the three layers of epithelium, the apical layer contains virtually all the transepithelial resistance. There is radial cell-to-cell coupling within this layer, but there is no detectable transverse coupling between layers. Cell coupling is apparently interrupted by intracellular injection of depolarizing current. The cell interiors are electrically negative to the bathing solutions, but the apical membrane of the apical layer depolarizes with increasingI sc. Voltage scanning detects no current sinks at the cell junctions or elsewhere. The voltage-divider ratio, , (ratio of resistance of apical cell membrane,R a, to basolateral cell membrane,R b) decreases from 30 to 0.5 with increasingI sc, because of the transportrelated conductance pathway in the apical membrane. Changes in effective transepithelial capacitance withI sc are predicted and possibly observed. The transepithelial resistance,R t, has been resolved intoR a, Rb, and the junctional resistance,R j, by four different methods: cable analysis, resistance of uncoupled cells, measurements of pairs of (R t, ) values in the same bladder at different transport rates, and the relation betweenR t andI sc and between andI sc.R j proves to be effectively infinite (nominally 300 k F) and independent ofI sc, andR a decreases from 154 to 4 k F with increasingI sc. In the resulting model of Na+ transport in tight epithelia, the apical membrane contains an amiloride-inhibited and Ca++-inhibited conductance pathway for Na+ entry; the basolateral membrane contains a Na+–K+-activated ATPase that extrudes Na+; intracellular (Na+) may exert negative feedback on apical membrane conductance; and aldosterone acts to stimulate Na+ entry at the apical membrane via the amiloride-sensitive pathway.  相似文献   

8.
Summary A 5BS/5RmS translocation chromosome spontaneously recovered from a Chinese Spring — Secale montanum wheat-rye telocentric 5RmS addition line has been identified and cytologically studied using C-banding in somatic and meiotic cells. Analysis of the translocated chromosome showed that a terminal segment of the short arm of 5B had been replaced by a short terminal region of chromosome arm 5RmS. The translocation led to the deletion of the genetic system promoting pairing located in 5BS, which is slightly compensated for when doses of 5RmS are increased, indicating homoeology to wheat chromosome 5BS. The -amylase phenotype in 5B/5Rm translocated material was studied and found to be identical to that of ditelocentric line 5BL of Chinese Spring. An effect on the -amylase activity was detected as a result of the removal of the terminal region of 5BS, perhaps as a consequence of variation in dormancy period duration.  相似文献   

9.
Two new dimensionless parameters ( and ) are proposed for calculating the proportional, integral, and derivative constants of a dissolved oxygen proportional integral-derivative (PID) feed-back control algorithm from knowledge of the growth rate, bioreactor design and operation variables. The values of and were determined for a broad range of Reynolds numbers (between 1000 to 40 000) during the exponential growth phase of two highly different processes: fermentations of recombinant Escherichia coli and cultures of human hematopoietic cells. The utility of and for use in dissolved oxygen self-tunning adaptive control algorithms is discussed.  相似文献   

10.
A hollow fiber perfusion reactor constructed from pairs of concentric fibers forming a thin annular space is analyzed theoretically in terms of mass transfer resistances, and is shown experimentally to support the growth of an anchorage-dependent cell line in high-density culture. Hollow fiber perfusion reactors described in the literature typically employ a perfusion pathlength much greater than the distance that could be supported by diffusion alone, and analyses of these reactors typically incorporate the assumption of uniform perfusion throughout the cell mass despite many reported observations of inhomogeneous cell growth in perfusion reactors. The mathematical model developed for the annular reactor predicts that the metabolism of oxygen, carbon substrates, and proteins by anchorage-dependent cells can be supported by the reactor even in the absence of perfusion. The implications of nonuniform cell growth in perfusion reactors in general is discussed in terms of nutrient distribution. In the second part of the paper, the growth and metabolism of the mouse adrenal tumor line Y-1 in flask culture and in the annular reactor are compared. The reactor is shown to be a promising means for culturing anchorage-dependent cells at high density.List of Symbols c mol/dm3 substrate concentration - D mm2/s effective diffusivity of substrate in the membrane - D tm2/s effective diffusivity of substrate in the cell region - L pm2s/kg hydraulic permeability of fiber - Pe m Peclet number for membrane transport, wR1/D m - Pe t Peclet number for transport through cell mass, v wR2/D t - Q mol/m3s zero-order consumption rate of substrate per unit volume of cell mass - r m radial distance from centerline of fiber lumen - R 1, R 2 m inner and outer radii of inner annular fiber (Fig. 1) - R 3, 4 m inner and outer radii of outer annular fiber (Fig. 1) - v wm/s fluid velocity through the fiber wall at R 1 - fraction of shell side filled with cells - dimensionless radial distance, R 3/R1 - dimensionless radial distance, R 2/R 1 - cm2 hydraulic conductivity - viscosity - 2, Thiele modulus - dimensionless radial distance, R 4/R 1  相似文献   

11.
Summary We have developed a miniature silver-silver chloride electrode. The outer diameter of the electrodes averaged 22 m and the input resistance 8.8 k. Since the core of the electrode is a glass fiber, the problem of the extreme malleability of a small diameter silver fiber is circumvented. The properties of the electrode permit us to insert it into short (600 m) fragments of the amphibian collecting duct while they are being perfusedin vitro. The passage of currents in the range of 0 to 6×10–8 amperes allowed us to voltage clamp the nephron fragment between +20 and –20 mV. The current-voltage plots are linear over this range. Two lines of evidence suggest that the voltage clamp is homogeneous. First, the voltage measured at the perfusion end during a voltage-clamp experiment of the tubule is not significantly different from that measured at the collecting end. Secondly, the specific resistance of collecting ducts estimated from the core conductor analysis is 3.3±0.8×104 cm, a value not significantly different from that computed from the current-voltage plots as determined with the Ag–AgCl electrode, 3.0±0.5×104 cm. This method permits precise control of both the ionic and electrical gradients across fragments of the amphibian collecting duct.  相似文献   

12.
Summary The isolated frog lens epithelium can be maintained intact in both appearance and electrical properties for more than 24 hours. The mean resting membrane potential was –80 mV and the cells were depolarized by both high potassium and low calcium Ringer's solution in a manner very similar to that of the whole lens. The epithelial cells were found to be well coupled using both electrical and dye-injection techniques. Electrical coupling was measured using separate current-injection and voltage-measuring electrodes and the relationship between the induced voltage and distance from the current-passing electrode could be well fitted by a Bessel Function solution to the cable equation. The values obtained from the fit for the membrane and internal resistances were 1.95 m2 and 25 m, respectively. Exposure to octanol (500m) or low external Ca2+ (<1m) failed to disrupt significantly the intercellular flow of current. There was evidence to suggest thatraised intracellular calcium does, however, uncouple the cells. Dye coupling was investigated by microinjecting Lucifer Yellow CH into single epithelial cells. Diffusion into surrounding cells was rapid and, in control medium, occurred in a radially symmetrical manner. In contrast to the electrical coupling data, dye transfer appeared to be blocked by exposure to 500 m octanol and was severely restricted on perfusing with low external calcium. Differences between the electrical and dye-coupling experiments indicate either that there are two types of junction within the cell and only the larger type, permeable to Lucifer Yellow, is capable of being uncoupled or that there is only one large type of junction which can be partially closed by uncoupling agents.  相似文献   

13.
In a previous article (8) a geometrical study of the five-membered ring showed that: a) for the case of the 20 symmetrical C2 and Cs conformations, the pseudorotation formulae for the torsion angles are a geometrical property of the ring; b) geometrical considerations alone are unable to define the puckering amplitude, the bond angle values, and the pathway between two symmetrical conformations. Here we examine how the energy equations enable us to define the deformation amplitude m, establish the bond angles expressions and check the energy invariability along the pseudorotation circuit. The problem is next developed fully in the case where the bond and torsional energy only are considered: the literal expression1 of m is then given as a function of the bond angle which cancels out the bond angle energy. A numerical application is carried out on cyclopentane and the values of the parameters Kt, K1 and used in the Conformational energy calculations are considered.Notations used 1 i bond lengths 1 in the case of the regular ring - i torsional angles - i bond angles - 3/5 = 108 - 4/5 = 144 - , i i – = complement to the 108 bond angle i - T - E Conformational energy of the 5-membered ring - E Conformational energy difference between planar and deformed ring - A n Coefficients of the energy development in terms of - E i l Bond energy relative to atom i (associated with angle i) - K i l Bond constant relative to atom i (associated with angle i) - E i l Torsional energy relative to the i th bond (associated with angle i) - k i l Torsional constant relative to the i th bond (associated with angle i) - i Angle i value corresponding to zero bond energy E i l (when the 5 atoms of the ring are identical, i ) - r ij Distance between atoms i and j - q i Charge carried by atom i - e Constant of proportionality including the effective dielectric constant - A ij, Bij, dij Coefficients dependent on the nature of the atoms i and j and accounted for in the Van der Waals energy and hydrogen bond expressions - S (r ij) Electrostatic contribution to the hydrogen bond energy - P Pseudorotation phase angle - m Maximum torsional angle value characterising the deformation amplitudeM  相似文献   

14.
The electrochemical gradient of protons, , was estimated in the obligatory aerobic yeastRhodotorula glutinis in the pH0 range from 3 to 8.5. The membrane potential, , was measured by steady-state distribution of the hydrophobic ions, tetraphenylphosphonium (TPP+) for negative above pH0 4.5, and thiocyanate (SCN) for positive below pH0 4.5. The chemical gradient of H+ was determined by measuring the chemical shift of intracellular Pi by31P-NMR at given pH0 values. The values of pHi increased almost linearly from 7.3 at pH0 3 to 7.8 at pH0 8.5. In the physiological pH0 range from 3.5 to 6, was fairly constant at values between 17–18 KJ mol–1, gradually decreasing at pH0 above 6. In deenergized cells, the intracellular pHi decreased to values as low as 6, regardless of whether the cell suspension was buffered at pH0 4.5 or 7.5. There was no membrane potential detectable in deenergized cells.  相似文献   

15.
In washed cells of cadmium-sensitive Staphylococcus aureus 17810S oxidizing glutamate, initial Cd2+++ influx via the Mn2+ porter down membrane potential () was fast due to involvement of energy generated by two proton pumps—the respiratory chain and the ATP synthetase complex working in the hydrolytic direction. Such an unusual energy drain for rapid initial Cd2+ influx is suggested to be due to a series of toxic events elicited by Cd2+ accumulation down generated via the redox proton pump: (i) strong inhibition of glutamate oxidation accompanied by a decrease of electrochemical proton gradient ( H +) formation via the respiratory chain, (ii) automatic reversal of ATP synthetase from biosynthetic to hydrolytic mode, which was monitored by a decrease of H +-dependent ATP synthesis, (iii) acceleration of the initial Cd2+ influx down generated the reversed ATP synthetase, the alternative proton pump hydrolyzing endogenous ATP. The primary, cadmium-sensitive targets in strain 17810S seem to be dithiols located in the cytoplasmic glutamate oxidizing system, prior to the membrane-embedded NADH oxidation system. Inhibition by Cd2+ of H +-dependent ATP synthesis and of pH gradient (pH)-linked [14C]glutamate transport is a secondary effect due to cadmium-mediated inhibition of H + generation at the cytoplasmic level. In washed cells of cadmium-resistant S. aureus 17810R oxidizing glutamate, Cd2+ accumulation was prevented due to activity of the plasmid-coded Cd2+ efflux system. Consequently, H +-producing and -requiring processes were not affected by Cd2+.  相似文献   

16.
Summary Electrical potential differences across the plasma membrane () of the yeastPichia humboldtii were measured with microelectrodes (filled with 0.1m KCl) inserted into cells immobilized in microfunnels. The registered signals were reproducible and stable for several minutes. On attainment of stable reading for the specific membrane resistanceR sp was determined by applying square-current pulses to the preparation. Both andR sp were pH dependent and displayed equal but opposite deflection, reaching its maximal value of –88±9 mV (n=13) andR sp its minimal value of 10 k·cm2 (maximal conductance) at pH 6.5. Uncouplers and the polyene antibiotic nystatin depolarized the cells, decreasing to –21±15 mV (n=10) with concomitant decrease ofR sp. Comparison of values from microelectrode measurements with those calculated from the steady-state distribution of tetraphenylphosphonium ions agreed within 10 mV under all physiological conditions tested, except at pH values above 7.0. During microelectrode insertion transient voltage signals (a few msec long) were detected by means of an oscilloscope. These voltage signals were superimposed on the stable recordings described above. These short voltage signals disappeared in uncoupled cells. The closely related values obtained by two independent methods (direct measurements with microelectrodes and calculation from steady-state distribution of a lipophilic cation) provide evidence that these values reffect the true membrane potential of intact cells.  相似文献   

17.
Summary A previous method of measuring the swelling pressure ( g ) of the cytoplasmic gel of the giant axon ofLoligo vulgaris was refined. The estimates of g made with the improved method were consistent with those made with the earlier method. In these methods the activity of the solvent in the gel is measured by increasing the activity of the solvent in the internal phase of the gel by application of hydrostatic pressure to the gel directly. Comparable values for the activity of the solvent in the gel were obtained also by an alternate method, in which the deswelling of the gel is measured upon decreasing the activity of the solvent in the external phase by addition of a nonpenetrating high mol wt polymer (i.e., Ficoll).Additional support was obtained for the earlier suggestion that g contributes to the swelling and shrinkage pattern of the whole axon. In part, the new evidence involved two consecutivedirect measurements of intraxonal pressure. The first measurement was that of a mixed pressure composed of g and m ( m being the effective osmotic pressure due to the intra-extraxonal gradient in the activity of mobile solutes). The subsequent measurement was that of g alone. The latter measurement was made feasible by destroying the axolemma, thereby eliminating the contribution of m . An estimate of m was obtained by subtracting g from the total pressure measured initially. The m determined by the above method was two orders of magnitude smaller than the theoretical osmotic pressure. This is consistent with the m determined previously, where osmotic intra-extraxonal filtration coefficients were compared to the hydrostatic. The mixed pressure experiments lend credence to the idea that the substantial contribution of g to the water relations of the whole axon is due to g being of the same order of magnitude as m .The degree of free swelling of axoplasmic gels was studied as a function of pH, salt concentration, and hydration radius of the anion of the salt used. The swelling increased with an increase in the reciprocal of the hydration radius, a decrease in salt concentration, and at pH below or above 4.5.The nature of the constraints to the free swelling of axoplasm in axons immersed in seawater was studied. With the seawater employed, these constraints appeared to be due more to the retractive forces of the sheath than to m .  相似文献   

18.
Summary The isolated pigment epithelium and choroid of frog was mounted in a chamber so that the apical surfaces of the epithelial cells and the choroid were exposed to separate solutions. The apical membrane of these cells was penetrated with microelectrodes and the mean apical membrane potential was –88 mV. The basal membrane potential was depolarized by the amount of the transepithelial potential (8–20mV). Changes in apical and basal cell membrane voltage were produced by changing ion concentrations on one or both sides of the tissue. Although these voltage changes were altered by shunting and changes in membrane resistance, it was possible to estimate apical and basal cell membrane and shunt resistance, and the relative ionic conductanceT i of each membrane. For the apical membrane:T K0.52,T HCO 3=0.39 andT Na=0.05, and its specific resistance was estimated to be 6000–7000 cm2. From the basalT K=0.90 and its specific resistance was estimated to be 400–1200 cm2. From the basal potassium voltage responses the intracellular potassium concentration was estimated at 110mm. The shunt resistance consisted of two pathways: a paracellular one, due to the junctional complexes and another, around the edge of the tissue, due to the imperfect nature of the mechanical seal. In well-sealed tissues, the specific resistance of the shunt was about ten times the apical plus basal membrane specific resistances. This epithelium, therefore, should be considered tight. The shunt pathway did not distinguish between anions (HCO3 , Cl, methylsulfate, isethionate) but did distinguish between Na+ and K+.  相似文献   

19.
R. M. Spanswick 《Planta》1972,102(3):215-227
Summary Electrical coupling between adjacent cells of Elodea canadensis has been demonstrated using a microelectrode technique in which the membrane potentials were recorded during the passage of a current pulse from the vacuole of one cell to the external solution. The changes in membrane potential resulting from the passage of the current may be simulated by an equivalent circuit in which the tonoplast:plasmalemma:plasmodesmata resistances are in the ratio 1.0:5.6:2.2. On this basis, the specific resistances are 3.1 k cm2 for the plasmalemma, 1.0 k cm2 for the tonoplast and 0.051 k cm2 for the junction between the cells. Although the plasmodesmata permit the passage of current, it is estimated that they have a resistance about 60 times higher than would be the case if they were completely open channels. Electrical coupling has also been demonstrated between parenchymal cells in oat coleoptiles and between cortical cells in maize roots. The significance of these findings is discussed in relation to the symplastic transport of ions and other small molecules and in relation to the quantitative measurement of membrane resistance in multicellular tissue.  相似文献   

20.
Transitions in growth irradiance level from 92 to 7 Em-2 s-1 and vice versa caused changes in the pigment contents and photosynthesis of Oscillatoria agardhii. The changes in chlorophyll a and C-phycocyanin contents during the transition from high to low irradiance (HL) were reflected in photosynthetic parameters. In the LH transition light utilization efficiencies of the cells changed faster than pigment contents. This appeared to be related to the lowering of light utilization efficiencies of photosynthesis. As a possible explanation it was hypothesized that excess photosynthate production led to feed back inhibition of photosynthesis. Time-scales of changes in the maximal rate of O2 evolution were discussed as changes in the number of reaction centers of photosystem II in relation to photosynthetic electron transport. Parameters that were subject to change during irradiance transitions obeyed first order kinetics, but hysteresis occurred when comparing HL with LH transients. Interpretation of first order kinetic analysis was discussed in terms of adaptive response vs changes in growth rate.Non-standard abbreviations Chla chlorophyll a - CPC C-phycocyanin - PS II photosystem II - PS I photosystem I - RC II reaction center of photosystem II - P photosynthetic O2-evolution - I irradiance, Em-2 s-1 - light utilization efficiency of cells, mmol O2·mg dry wt-1·h-1/Em-2 s-1 - light utilization efficiency of photosynthetic apparatus, mol O2·mol Chla -1·h-1/Em-2 s-1 - Pmax maximal rate of O2 evolution by cells, mol O2·mg dry wt-1·h-1 - Pmax maximal rate of O2 evolution by photosynthetic apparatus, mol O2·mol·Chla -1·h-1 - LL low light, E m-2 s-1 - HL high light, E m-2 s-1 - LH low to high light transition - HL high to low light transition - k specific rate of adaptation, h-1 - specific growth rate, h-1 - Q pool size of cell constituent, mol·mg dry wt-1 - q net synthesis rate of cell constituent, mol·mg dry wt-1·h-1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号