首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The strain Pseudomonas sp. strain ADP is able to degrade atrazine as a sole nitrogen source and therefore needs a single source for both carbon and energy for growth. In addition to the typical C source for Pseudomonas, Na2-succinate, the strain can also grow with phenol as a carbon source. Phenol is oxidized to catechol by a multicomponent phenol hydroxylase. Catechol is degraded via the ortho pathway using catechol 1,2-dioxygenase. It was possible to stimulate the strain in order to degrade very high concentrations of phenol (1,000 mg/liter) and atrazine (150 mg/liter) simultaneously. With cyanuric acid, the major intermediate of atrazine degradation, as an N source, both the growth rate and the phenol degradation rate were similar to those measured with ammonia as an N source. With atrazine as an N source, the growth rate and the phenol degradation rate were reduced to ~35% of those obtained for cyanuric acid. This presents clear evidence that although the first three enzymes of the atrazine degradation pathway are constitutively present, either these enzymes or the uptake of atrazine is the bottleneck that diminishes the growth rate of Pseudomonas sp. strain ADP with atrazine as an N source. Whereas atrazine and cyanuric acid showed no significant toxic effect on the cells, phenol reduces growth and activates or induces typical membrane-adaptive responses known for the genus Pseudomonas. Therefore Pseudomonas sp. strain ADP is an ideal bacterium for the investigation of the regulatory interactions among several catabolic genes and stress response mechanisms during the simultaneous degradation of toxic phenolic compounds and a xenobiotic N source such as atrazine.  相似文献   

2.
Three bacterial strains capable of degrading atrazine were isolated from Manfredi soils (Argentine) using enrichment culture techniques. These soils were used to grow corn and were treated with atrazine for weed control during 3 years. The strains were nonmotile Gram-positive bacilli which formed cleared zones on atrazine solid medium, and the 16S rDNA sequences indicated that they were Arthrobacter sp. strains. The atrazine-degrading activity of the isolates was characterized by the ability to grow with atrazine as the sole nitrogen source, the concomitant herbicide disappearance, and the chloride release. The atrazine-degrader strain Pseudomonas sp. ADP was used for comparative purposes. According to the results, all of the isolates used atrazine as sole source of nitrogen, and sucrose and sodium citrate as the carbon sources for growth. HPLC analyses confirmed herbicide clearance. PCR analysis revealed the presence of the atrazine catabolic genes trzN, atzB, and atzC. The results of this work lead to a better understanding of microbial degradation activity in order to consider the potential application of the isolated strains in bioremediation of atrazine-polluted agricultural soils in Argentina.  相似文献   

3.
Pseudomonas sp. strain ADP uses the herbicide atrazine as the sole nitrogen source. We have devised a simple atrazine degradation assay to determine the effect of other nitrogen sources on the atrazine degradation pathway. The atrazine degradation rate was greatly decreased in cells grown on nitrogen sources that support rapid growth of Pseudomonas sp. strain ADP compared to cells cultivated on growth-limiting nitrogen sources. The presence of atrazine in addition to the nitrogen sources did not stimulate degradation. High degradation rates obtained in the presence of ammonium plus the glutamine synthetase inhibitor MSX and also with an Nas mutant derivative grown on nitrate suggest that nitrogen regulation operates by sensing intracellular levels of some key nitrogen-containing metabolite. Nitrate amendment in soil microcosms resulted in decreased atrazine mineralization by the wild-type strain but not by the Nas mutant. This suggests that, although nitrogen repression of the atrazine catabolic pathway may have a strong impact on atrazine biodegradation in nitrogen-fertilized soils, the use of selected mutant variants may contribute to overcoming this limitation.  相似文献   

4.
This study describes the screening of soil bacteria for their capability to degrade zearalenone (ZEN), employing an enrichment technique in which ZEN is used as the sole carbon source. Two isolates that were able to degrade ZEN belonged to the genus Pseudomonas according to biochemical characterization and 16S rRNA gene sequence and were named as Pseudomonas alcaliphila TH-C1 and Pseudomonas plecoglossicida TH-L1, respectively. The results showed that the degradation rates of P. alcaliphila TH-C1 and P. plecoglossicida TH-L1 for ZEN (2 μg/ml) were 68?±?0.85 % and 57?±?0.73 %, when incubated for 72 h at 30 °C in a rotary shaker (160 rpm) and detected by high-performance liquid chromatograms (HPLC). These results suggest that the two Pseudomonas strains are new bacterial resource for degrading ZEN and can provide a new approach for the detoxification of ZEN.  相似文献   

5.
Bacterial atrazine catabolism is initiated by the enzyme atrazine chlorohydrolase (AtzA) in Pseudomonas sp. strain ADP. Other triazine herbicides are metabolized by bacteria, but the enzymological basis of this is unclear. Here we begin to address this by investigating the catalytic activity of AtzA by using substrate analogs. Purified AtzA from Pseudomonas sp. strain ADP catalyzed the hydrolysis of an atrazine analog that was substituted at the chlorine substituent by fluorine. AtzA did not catalyze the hydrolysis of atrazine analogs containing the pseudohalide azido, methoxy, and cyano groups or thiomethyl and amino groups. Atrazine analogs with a chlorine substituent at carbon 2 and N-alkyl groups, ranging in size from methyl to t-butyl, all underwent dechlorination by AtzA. AtzA catalyzed hydrolytic dechlorination when one nitrogen substituent was alkylated and the other was a free amino group. However, when both amino groups were unalkylated, no reaction occurred. Cell extracts were prepared from five strains capable of atrazine dechlorination and known to contain atzA or closely homologous gene sequences: Pseudomonas sp. strain ADP, Rhizobium strain PATR, Alcaligenes strain SG1, Agrobacterium radiobacter J14a, and Ralstonia picketti D. All showed identical substrate specificity to purified AtzA from Pseudomonas sp. strain ADP. Cell extracts from Clavibacter michiganensis ATZ1, which also contains a gene homologous to atzA, were able to transform atrazine analogs containing pseudohalide and thiomethyl groups, in addition to the substrates used by AtzA from Pseudomonas sp. strain ADP. This suggests that either (i) another enzyme(s) is present which confers the broader substrate range or (ii) the AtzA itself has a broader substrate range.  相似文献   

6.
The enzyme 1-aminocyclopropane-1-carboxylate deaminase catalyzes the degradation of 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of the plant hormone ethylene, into α-ketobutyrate and ammonia. The enzyme has been detected in a limited number of bacteria and plays a significant role in sustaining plant growth and development under biotic and abiotic stress conditions by reducing stress-induced ethylene production in plants. We have screened 32 fluorescent Pseudomonas sp. isolated from rhizosphere and non-rhizosphere soils of different crop production systems for drought tolerance using polyethylene glycol 6000 (PEG 6000). Nine of these isolates were tolerant to a substrate metric potential of ?0.30 MPa (15 % PEG 6000) and therefore considered to be drought-tolerant. All of these drought-tolerant isolates were screened for ACC deaminase activity using ACC as the sole nitrogen source, and one (SorgP4) was found to be positive for ACC, producing 3.71?±?0.025 and 1.42?±?0.039 μM/mg protein/h of α-ketobutyrate under the non-stress and drought stress condition, respectively. The isolate SorgP4 also showed other plant growth-promoting traits, such as indole acetic acid production, phosphate solubilization, siderophore and hydrogen cyanide production. The ACC deaminase gene (acdS) from the isolate SorgP4 was amplified, and the nucleotide sequence alignment of the acdS gene showed significant homology with acdS genes of NCBI Genbank. The 16S rRNA gene sequencing analysis identified the isolate as Pseudomonas fluorescens. Both sequences have been submitted to the NCBI GenBank under the accession numbers JX885767 and KC192771 respectively.  相似文献   

7.
Wastewater from atrazine manufacturing plants contains large amounts of residual atrazine and atrazine synthesis products, which must be removed before disposal. One of the obstacles to biological treatment of these wastewaters is their high salt content, eg, up to 4% NaCl (w/v). To enable biological treatment, bacteria capable of atrazine mineralization must be adapted to high-salinity conditions. A recently isolated atrazine-degrading bacterium, Pseudomonas sp strain ADP, originally isolated from contaminated soils was adapted to biodegradation of atrazine at salt concentrations relevant to atrazine manufacturing wastewater. The adaptation mechanism was based on the ability of the bacterium to produce trehalose as its main osmolyte. Trehalose accumulation was confirmed by natural-abundance 1H NMR spectral analysis. The bacterium synthesized trehalose de novo in the cells, but could not utilize trehalose added to the growth medium. Interestingly, the bacterium could not produce glycine betaine (a common compatible solute), but addition of 1 mM of glycine betaine to the medium induced salt tolerance. Osmoregulated Pseudomonas sp strain ADP, feeding on citrate decreased the concentration of atrazine in non-sterile authentic wastewater from 25 ppm to below 1 ppm in less than 2 days. The results of our study suggest that salt-adapted Pseudomonas sp strain ADP can be used for atrazine degradation in salt-containing wastewater. Received 26 August 1997/ Accepted in revised form 06 December 1997  相似文献   

8.
Abstract

Lindane degrading root epiphytic bacteria were isolated from wetland plant Acorus calamus. Bacterial strain A3 identified as Achromobacter sp. A3, showed maximum degradation potential of 88.7?±?1.24% for 50?mg?l?1 lindane. Lindane biodegradation was followed by decrease in pH as well as increase in concentration of chloride ions in the culture medium. Lindane degradation potential of Achromobacter sp. A3 was also studied at different concentrations of lindane. Maximum degradation was at 10?mg l?1 followed by 50?mg l?1 and 100?mg l?1 lindane. Also, lindane induced proteins were studied using SDS-PAGE. The induced proteins were identified as alpha/beta hydrolase fold-3 domain-containing protein, involved in lindane hydrolysis and extracellular solute-binding family protein having role in transmembrane transport of lindane for utilization of lindane by bacteria. The appearance of unique polypeptides in lane corresponding to media supplemented with lindane showed that the exposure of bacterial cells to lindane has resulted in regulative expression of certain proteins. So far as known, this is the first report to isolate and study lindane degrading root epiphytic bacteria from A. calamus.  相似文献   

9.
The effect of various initial caffeine concentrations on growth and caffeine demethylase production by Pseudomonas sp. was studied in bioreactor. At initial concentration of 6.5 g l?1 caffeine, Pseudomonas sp. showed a maximum specific growth rate of 0.2 h?1, maximum degradation rate of 1.1 g h?1, and caffeine demethylase activity of 18,762 U g CDW?1 (CDW: cell dry weight). Caffeine degradation rate was 25 times higher in bioreactor than in shake flask. For the first time, we show highest degradation of 75 g caffeine (initial concentration 20 g l?1) in 120 h, suggesting that the tested strain has potential for successful bioprocess for caffeine degradation. Growth kinetics showed substrate inhibition phenomenon. Various substrate inhibition models were fitted to the kinetic data, amongst which the double-exponential (R 2 = 0.94), Luong (R 2 = 0.92), and Yano and Koga 2 (R 2 = 0.94) models were found to be the best. The Luedeking–Piret model showed that caffeine demethylase production kinetics was growth related. This is the first report on production of high levels of caffeine demethylase in batch bioreactor with faster degradation rate and high tolerance to caffeine, hence clearly suggesting that Pseudomonas sp. used in this study is a potential biocatalyst for industrial decaffeination.  相似文献   

10.
Pseudomonas sp. strain ADP utilizes the human-made s-triazine herbicide atrazine as the sole nitrogen source. The results reported here demonstrate that atrazine and the atrazine degradation intermediates N-isopropylammelide and cyanuric acid are chemoattractants for strain ADP. In addition, the nonmetabolized s-triazine ametryn was also an attractant. The chemotactic response to these s-triazines was not specifically induced during growth with atrazine, and atrazine metabolism was not required for the chemotactic response. A cured variant of strain ADP (ADP M13-2) was attracted to s-triazines, indicating that the atrazine catabolic plasmid pADP-1 is not necessary for the chemotactic response and that atrazine degradation and chemotaxis are not genetically linked. These results indicate that atrazine and related s-triazines are detected by one or more chromosomally encoded chemoreceptors in Pseudomonas sp. strain ADP. We demonstrated that Escherichia coli is attracted to the s-triazine compounds N-isopropylammelide and cyanuric acid, and an E. coli mutant lacking Tap (the pyrimidine chemoreceptor) was unable to respond to s-triazines. These data indicate that pyrimidines and triazines are detected by the same chemoreceptor (Tap) in E. coli. We showed that Pseudomonas sp. strain ADP is attracted to pyrimidines, which are the naturally occurring structures closest to triazines, and propose that chemotaxis toward s-triazines may be due to fortuitous recognition by a pyrimidine chemoreceptor in Pseudomonas sp. strain ADP. In competition assays, the presence of atrazine inhibited chemotaxis of Pseudomonas sp. strain ADP to cytosine, and cytosine inhibited chemotaxis to atrazine, suggesting that pyrimidines and s-triazines are detected by the same chemoreceptor.Atrazine [2-chloro-4-(N-ethylamino)-6-(N-isopropylamino)-1,3,5-s-triazine] is a human-made herbicide that is used worldwide to control broadleaf and grassy weeds. As one of the most heavily used herbicides in the United States, atrazine can be present in parts per million in agricultural runoffs (3), which exceeds the U.S. Environmental Protection Agency''s maximum allowable contaminant level of 3 ppb in ground and surface waters (13). Atrazine is persistent in soil (34) and was once considered nontoxic to animals. However, recent studies have shown that atrazine causes sexual abnormalities in frogs (21, 22, 50), reduced testosterone production in rats (53), and elevated levels of prostate cancer in workers at an atrazine-manufacturing factory (45). These studies suggest that there is cause for concern about atrazine residues in soil, groundwater, and surface waters.Several bacterial strains capable of mineralizing atrazine have been isolated (4, 27, 41, 49, 51, 52, 58). The best-studied atrazine-degrading strain, Pseudomonas sp. strain ADP (atrazine degrading pseudomonad), was isolated from an atrazine spill site in Minnesota (27). Strain ADP utilizes atrazine as a sole nitrogen source and mineralizes it in the process (27). The pathway of atrazine degradation in strain ADP has been characterized in detail (Fig. (Fig.1),1), and the genes encoding the six enzymes required for atrazine degradation have been cloned and sequenced (5, 7, 9, 10, 29, 42). The six genes are located in four distant locations on the atrazine catabolic plasmid (pADP-1) present in strain ADP (10, 29). atzA, atzB, and atzC, which encode the first three enzymes of the pathway, are constitutively expressed and highly conserved in atrazine-degrading bacteria isolated from geographically distinct locations (8, 11). Products of the atzDEF gene cluster catalyze the last three steps of atrazine degradation. This operon is divergently transcribed from atzR, the product of which has high homology to LysR-type regulatory proteins (29). AtzR and the inducer cyanuric acid are required for the expression of the atzDEF operon (14), and the operon is also subject to nitrogen control (15).Open in a separate windowFIG. 1.Pathway of atrazine degradation in Pseudomonas sp. strain ADP (reviewed in reference 55).In a study investigating the bioavailability of atrazine, Park et al. provided evidence that two atrazine-degrading strains, Pseudomonas sp. strain ADP and Agrobacterium radiobacter J14a, were chemotactically attracted to atrazine (38). Chemotaxis, the ability of motile bacteria to detect and respond to specific chemicals, can help bacteria find an optimal niche for their survival and growth and may play a role in the efficient degradation of pollutants in the environment (33, 37). Chemotaxis has been shown to enhance naphthalene biodegradation in both a heterogeneous aqueous system (30) and a non-aqueous-phase liquid system (24). In addition, a chemotactic naphthalene-degrading strain caused a higher rate of naphthalene desorption than was observed with nonchemotactic and nonmotile strains (24). Pseudomonas sp. strain ADP and recombinant strains expressing atz genes have been used to remove atrazine from soil in laboratory and field scale experiments (32, 48). If chemotaxis can enhance bioavailability in environments where the chemicals are sorbed to particles, the use of a motile chemotactic strain for bioremediation would be advantageous. Aside from the practical implications of atrazine chemotaxis, we are interested in understanding the evolution of a chemotactic response to a human-made chemical that was initially synthesized just 50 years ago (23). The results reported here indicate that Pseudomonas sp. strain ADP is chemotactically attracted to atrazine, atrazine metabolites, and the nonmetabolizable structural analog ametryn. The chemotactic response is not induced during growth with atrazine in strain ADP and does not require atrazine metabolism. We demonstrated that a single chemoreceptor (Tap) mediates chemotaxis to s-triazines and structurally similar pyrimidines in Escherichia coli. Additionally, we found that Pseudomonas sp. strain ADP is attracted to pyrimidines. In competition assays, cytosine inhibited atrazine chemotaxis, and vice versa. We therefore concluded that pyrimidines and s-triazines are detected by a single chemoreceptor in Pseudomonas sp. strain ADP.  相似文献   

11.
A study was undertaken to investigate the distribution of biosurfactant producing and crude oil degrading bacteria in the oil contaminated environment. This research revealed that hydrocarbon contaminated sites are the potent sources for oil degraders. Among 32 oil degrading bacteria isolated from ten different oil contaminated sites of gasoline and diesel fuel stations, 80% exhibited biosurfactant production. The quantity and emulsification activity of the biosurfactants varied. Pseudomonas sp. DS10‐129 produced a maximum of 7.5 ± 0.4 g/l of biosurfactant with a corresponding reduction in surface tension from 68 mN/m to 29.4 ± 0.7 mN/m at 84 h incubation. The isolates Micrococcus sp. GS2‐22, Bacillus sp. DS6‐86, Corynebacterium sp. GS5‐66, Flavobacterium sp. DS5‐73, Pseudomonas sp. DS10‐129, Pseudomonas sp. DS9‐119 and Acinetobacter sp. DS5‐74 emulsified xylene, benzene, n‐hexane, Bombay High crude oil, kerosene, gasoline, diesel fuel and olive oil. The first five of the above isolates had the highest emulsification activity and crude oil degradation ability and were selected for the preparation of a mixed bacterial consortium, which was also an efficient biosurfactant producing oil emulsifying and degrading culture. During this study, biosurfactant production and emulsification activity were detected in Moraxella sp., Flavobacterium sp. and in a mixed bacterial consortium, which have not been reported before.  相似文献   

12.
Switchgrass biomass samples collected at three different stages of maturity were seen degrading into reducing sugars and glucose when exposed to 1-(alkylsulfonic)-3-methylimidazolium Brönsted acidic ionic liquids under thermal and microwave conditions. The highest reducing sugar (58.1?±?2.1 %) and glucose (15.3?±?0.5 %) yields were obtained for switchgrass samples dissolved in 1-(butylsulfonic)-3-methylimidazolium chloride ionic liquid by heating at 70 °C for 1 h followed by treatment with 0.22 g water/g switchgrass and then heating at 70 °C for 1 h for the hydrolysis of polysaccharides. The samples treated under microwave conditions produced relatively lower yields of reducing sugar (22.0?±?1.5–37.2?±?1.8 %) and glucose (8.0?±?0.2–12.8?±?0.4 %) yields, compared to heat-treated samples.  相似文献   

13.
Since diethylstilbestrol (DES) interrupts endocrine systems and generates reproductive abnormalities in both wildlife and human beings, methods to remove DES from the environments are urgently recommended. In this study, bacterial strain J51 was isolated and tested to effectively degrade DES. J51 was identified as Pseudomonas sp. based on its nucleotide sequence of 16S rRNA. The quinoprotein alcohol dehydrogenase and isocitrate lyase were identified to be involved in DES degradation by MALDI–TOF–TOF MS/MS analysis. In the presence of 40 mg/l DES, increase of the genes encoding quinoprotein alcohol dehydrogenase and isocitrate lyase in both RNA and protein levels was determined. The HPLC/MS analysis showed that DES was hydrolyzed to a major degrading metabolite DES-4-semiquinone. It was the first time to demonstrate the characteristics of DES degradation by specific bacterial strain and the higher degradation efficiency indicated the potential application of Pseudomonas sp. strain J51 in the treatment of DES-contaminated freshwater and seawater environments.  相似文献   

14.
Extracellular nucleotides affect female reproductive functions, fertilization, and pregnancy. The aim of this study was to investigate biochemical characteristics of ATP and ADP hydrolysis and identify E-NTPDases in myometrial cell membranes from Wistar albino rats. The apparent K m values were 506.4?±?62.1 and 638.8?±?31.3?μM, with a calculated V max (app) of 3,973.0?±?279.5 and 2,853.9?±?79.8?nmol/min/mg for ATP and ADP, respectively. The enzyme activity described here has common properties characteristic for NTPDases: divalent cation dependence; alkaline pH optimum for both substrates, insensitivity to some of classical ATPase inhibitors (ouabain, oligomycine, theophylline, levamisole) and significant inhibition by suramine and high concentration of sodium azides (5?mM). According to similar apparent Km values for both substrates, the ATP/ADP hydrolysis ratio, and Chevillard competition plot, NTPDase1 is dominant ATP/ADP hydrolyzing enzyme in myometrial cell membranes. RT-PCR analysis revealed expression of three members of ectonucleoside triphosphate diphosphohydrolase family (NTPDase 1, 2, and 8) in rat uterus. These findings may further elucidate the role of NTPDases and ATP in reproductive physiology.  相似文献   

15.
There has been considerable interest in cultivation of green microalgae (Chlorophyta) as a source of lipid that can alternatively be converted to biodiesel. However, almost all mass cultures of algae are carbon-limited. Therefore, to reach a high biomass and oil productivities, the ideal selected microalgae will most likely need a source of inorganic carbon. Here, growth and lipid productivities of Tetraselmis suecica CS-187 and Chlorella sp were tested under various ranges of pH and different sources of inorganic carbon (untreated flue gas from coal-fired power plant, pure industrial CO2, pH-adjusted using HCl and sodium bicarbonate). Biomass and lipid productivities were highest at pH 7.5 (320?±?29.9 mg biomass L?1 day?1and 92?±?13.1 mg lipid L?1 day?1) and pH 7 (407?±?5.5 mg biomass L?1 day?1 and 99?±?17.2 mg lipid L?1 day?1) for T. suecica CS-187 and Chlorella sp, respectively. In general, biomass and lipid productivities were pH 7.5?>?pH 7?>?pH 8?>?pH 6.5 and pH 7?>?pH 7.5?=?pH 8?>?pH 6.5?>?pH 6?>?pH 5.5 for T. suecica CS-187 and Chlorella sp, respectively. The effect of various inorganic carbon on growth and productivities of T. suecica (regulated at pH?=?7.5) and Chlorella sp (regulated at pH?=?7) grown in bag photobioreactors was also examined outdoor at the International Power Hazelwood, Gippsland, Victoria, Australia. The highest biomass and lipid productivities of T. suecica (51.45?±?2.67 mg biomass L?1 day?1 and 14.8?±?2.46 mg lipid L?1 day?1) and Chlorella sp (60.00?±?2.4 mg biomass L?1 day?1 and 13.70?±?1.35 mg lipid L?1 day?1) were achieved when grown using CO2 as inorganic carbon source. No significant differences were found between CO2 and flue gas biomass and lipid productivities. While grown using CO2 and flue gas, biomass productivities were 10, 13 and 18 %, and 7, 14 and 19 % higher than NaHCO3, HCl and unregulated pH for T. suecica and Chlorella sp, respectively. Addition of inorganic carbon increased specific growth rate and lipid content but reduced biomass yield and cell weight of T. suecica. Addition of inorganic carbon increased yield but did not change specific growth rate, cell weight or content of the cell weight of Chlorella sp. Both strains showed significantly higher maximum quantum yield (Fv/Fm) when grown under optimum pH.  相似文献   

16.
Pseudomonas sp. strain ADP initiates atrazine catabolism via three enzymatic steps, encoded by atzA, -B, and -C, which yield cyanuric acid, a nitrogen source for many bacteria. In-well lysis, Southern hybridization, and plasmid transfer studies indicated that the atzA, -B, and -C genes are localized on a 96-kb self-transmissible plasmid, pADP-1, in Pseudomonas sp. strain ADP. High-performance liquid chromatography analyses showed that cyanuric acid degradation was not encoded by pADP-1. pADP-1 was transferred to Escherichia coli strains at a frequency of 4.7 × 10−2. This suggests a potential molecular mechanism for the dispersion of the atzABC genes to other soil bacteria.  相似文献   

17.
This study aimed to overexpress a glucose oxidase gene (GOD1) in Aureobasidium sp. P6 to achieve Ca2+-gluconic acid (GA) overproduction. The GOD1 gene was cloned, deleted, and overexpressed. A protein deduced from the GOD1 gene of Aureobasidium sp. P6 strain had 1824 bp that encoded a protein with 606 amino acids, with a conserved NADB-ROSSMAN domain and a GMC-oxred domain. Deleting the GOD1 gene made the disruptant GOK1 completely lose the ability to produce GA and GOD1 activity, whereas overexpressing the GOD1 gene rendered the transformant GOEX8 to produce considerably more Ca2+-GA (160.5?±?5.6 g/L) and higher GOD1 activity (1438.6?±?73.2 U/mg of protein) than its parent P6 strain (118.7?±?4.3 g/L of Ca2+-GA and 1100.0?±?23.6 U/mg of GOD1 protein). During a 10-L fermentation, the transformant GOEX8 grown in the medium containing 160.0 g/L of glucose produced 186.8?±?6.0 g/L of Ca2+-GA, the yield was 1.2 g/g of glucose, and the volumetric productivity was 1.7 g/L/h. Most of the produced GOD1 were located in the yeast cell wall. The purified product was identified to be a GA. The transformant GOEX8 overexpressing the GOD1 gene could produce considerably more Ca2+-GA (186.8?±?6.0 g/L) than its wild-type strain P6.  相似文献   

18.
The host behavioral and immune (encapsulation) defenses against the parasitoid Anagyrus sp. nr. pseudococci were compared for five mealybug species with different phylogenetic relationships and geographical origins: i) a Mediterranean native mealybug species, Planococcus ficus, with a long co-evolutionary history with the parasitoid; ii) three alien mealybugs species, Planococcus citri, Pseudococcus calceolariae and Pseudococcus viburni, with a more recent co-evolutionary history; and iii) a fourth alien mealybug species, Phenacoccus peruvianus, with no previous common history with the parasitoid. Three host defense behaviors were registered: abdominal flipping, reflex bleeding and walking away. The native host Pl. ficus and its congener Pl. citri exhibited the lowest probability of defense behavior (0.11?±?0.01 and 0.09?±?0.01 respectively), whereas the highest value was observed in P. viburni (0.31?±?0.02). Intermediate levels of defense behavior were registered for Ps. calceolariae, and Ph. peruvianus. The probability of parasitoid encapsulation was lowest and highest for two alien host species, Ph. peruvianus (0.20?±?0.07) and Ps. viburni (0.86?±?0.05), respectively. The native host Pl. ficus, its congener Pl. citri and Ps. calceolariae showed intermediate values (0.43?±?0.07, 0.52?±?0.06, and 0.45?±?0.09, respectively). The results are relevant with respect to biological control and to understand possible evolutionary processes involved in host range of A. sp. nr. pseudococci.  相似文献   

19.
Aim of the study was to identify atrazine remediating bacteria that can potentially succeed in situ where they encounter varied environmental conditions. Three epiphytic root bacteria, genus Pseudomonas and Arthrobacter, were isolated from rhizoplanes of hydrophytes Acorus calamus, Typha latifolia, and Phragmites karka. Potential of these strains to decontaminate environmentally relevant concentrations of atrazine was determined in liquid atrazine medium (LAM) and Luria-Bertani (LB) medium at varying pH and temperature. There was an increase in decontamination by the strains with time upon exposure to 2.5 to 10 mg l?1 atrazine over a period of 15 days, notably, in both minimal and nutrient-rich media. Growth in terms of O.D.600 and biomass determined during the same period also showed a corresponding surge. Pseudomonas sp. strain AACB mitigated atrazine in a wide range of pH (5 to 8). Pseudomonas sp. strains AACB and TTLB decontaminated >?62% atrazine at 10 °C. All the strains exhibited plant growth–promoting traits in vitro, reported for the first time in the presence of atrazine. Strain AACB exhibits the novel trait of atrazine decontamination under harsh environmental conditions mimicked in lab. Strains isolated in the present study promise success in in situ remediation. Bioreactors and water treatment plants can be designed comprising the hydrophytes and the strains inoculated into their rhizospheres to improve efficacy of the treatment. They can be used to study plant-bacterium mutualistic symbiosis or other interactions occurring during atrazine mitigation.  相似文献   

20.
Aims: Isolation and characterization of nicotine‐degrading bacteria with advantages suitable for the treatment of nicotine‐contaminated water and soil and detection of their metabolites. Methods and Results: A novel nicotine‐degrading bacterial strain was isolated from tobacco field soil. Based on morphological and physiochemical properties and sequence of 16S rDNA, the isolate was identified as Pseudomonas sp., designated as CS3. The optimal culture conditions of strain CS3 for nicotine degradation were 30°C and pH 7·0. However, the strain showed broad pH adaptability with high nicotine‐degrading activity between pH 6·0 and 10·0. Strain CS3 could decompose nicotine nearly completely within 24 h in liquid culture (1000 mg L?1 nicotine) or within 72 h in soil (1000–2500 mg kg?1 nicotine) and could endure up to 4000 mg L?1 nicotine in liquid media and 5000 mg kg?1 nicotine in soil. Degradation tests in flask revealed that the strain had excellent stability and high degradation activity during the repetitive degradation processes. Additionally, three intermediates, 3‐(3,4‐dihydro‐2H‐pyrrol‐5‐yl) pyridine, 1‐methyl‐5‐(3‐pyridyl) pyrrolidine‐2‐ol and cotinine, were identified by GC/MS and NMR analyses. Conclusions: The isolate CS3 showed outstanding nicotine‐degrading characteristics such as high degradation efficiency, strong substrate endurance, broad pH adaptability, and stability and persistence in repetitive degradation processes and may serve as an excellent candidate for applications in the bioaugmentation process to treat nicotine‐contaminated water and soil. Also, detection of nicotine metabolites suggests that strain CS3 might decompose nicotine via a unique nicotine‐degradation pathway. Significance and Impact of the Study: The advantage of applying the isolated strain lies in broad pH adaptability and stability and persistence in repetitive use, the properties previously less focused in other nicotine‐degrading micro‐organisms. The strain might decompose nicotine via a nicotine‐degradation pathway different from those of other nicotine‐utilizing Pseudomonas bacteria reported earlier, another highlight in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号