首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Summary We examined the interactions of cAMP-dependent protein kinase and varying aqueous Cl concentrations in modulating the activity of Cl channels obtained by fusing basolaterally enriched renal outer medullary vesicles into planar lipid bilayers. Under the present experimental conditions, thecis andtrans solutions face the extracellular and intracellular aspects of these Cl channels, respectively. Raising thetrans Cl concentration from 2 to 50mm increased the channel open-time probability, raised the unit channel conductance, and affected the voltage-independent determinant (G) of channel activity but not the gating charge (Winters, C.J., Reeves, W.B., Andreoli, T.E. 1990.J. Membrane Biol. 118:269–278). With 2mm trans KCl,trans addition of the catalytic subunit of PKA (C-PKA) plus ATP increased channel open-time probability and altered the voltage-independent determinant of channel activity without affecting either unit channel conductance or gating charge. The effect was ATP specific, did not occur with (C-PKA plus ATP) addition tocis solutions, and was abolished by denaturing C-PKA. Finally, (C-PKA plus ATP) activation of channel activity was not detected with relatively high (50mm)trans Cl concentrations. These data indicate that (C-PKA plus ATP) might modulate Cl channel activity by phosphorylation at or near the Cl-sensitive site on the intracellular face of these channels.  相似文献   

2.
Summary The role of adenosine 3,5-monophosphate (cAMP) dependent protein kinase (PK-A) on the Cl conductance has been studied in the apical membrane vesicles purified from the chorionic villi of human placenta. In order to phosphorylate the cytosolic side of the membranes, vesicles have been hypotonically lysed, loaded with 100nm catalytic subunit of PK-A purified from human placenta and 1mm of the phosphatase resistant adenosine 5-thiotriphosphate (ATP-gamma-S) and resealed. Cl conductance has been measured by the quenching of the fluorescent probe 6-methoxy-N-(3-sulfopropyl) quinolinium (SPQ) at 23°C with membrane potential clamped at 0 mV. The actual volume of the resealed vesicles was measured in each experiment by trapping an impermeable radioactive molecule ([14C]-sucrose) and included in each Cl flux calculation. In 19 independent experiments, the mean Cl conductance in placental membranes in the absence of phosphorylation was 3.67±3.18 whereas with the addition of PK-A and ATP-gamma-S it was 1.97±1.75 nmol·sec–1·(mg protein)–1 (mean±sd). PK-A dependent phosphorylation reduced the Cl conductance in 14/19 experiments. The same protocol applied to the apical membranes of bovine trachea, where PK-A is known to activate the Cl channels, confirmed that the PK-A dependent phosphorylation increased the Cl conductance in 11/13 experiments, from 1.01±0.61 to 1.85±0.99 nmol·sec–1·(mg protein)–1(mean±sd). These studies indicate that the PK-A dependent phosphorylation inhibits one or more Cl channel(s) of the apical membranes of human placenta.  相似文献   

3.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that is defective in cystic fibrosis, and has also been closely associated with ATP permeability in cells. Using a Xenopus oocyte cRNA expression system, we have evaluated the molecular mechanisms that control CFTR-modulated ATP release. CFTR-modulated ATP release was dependent on both cAMP activation and a gradient change in the extracellular chloride concentration. Activation of ATP release occurred within a narrow concentration range of external Cl that was similar to that reported in airway surface fluid. Mutagenesis of CFTR demonstrated that Cl conductance and ATP release regulatory properties could be dissociated to different regions of the CFTR protein. Despite the lack of a need for Cl conductance through CFTR to modulate ATP release, alterations in channel pore residues R347 and R334 caused changes in the relative ability of different halides to activate ATP efflux (wtCFTR, Cl >> Br; R347P, Cl >> Br; R347E, Br >> Cl; R334W, Cl = Br). We hypothesize that residues R347 and R334 may contribute a Cl binding site within the CFTR channel pore that is necessary for activation of ATP efflux in response to increases of extracellular Cl. In summary, these findings suggest a novel chloride sensor mechanism by which CFTR is capable of responding to changes in the extracellular chloride concentration by modulating the activity of an unidentified ATP efflux pathway. This pathway may play an important role in maintaining fluid and electrolyte balance in the airway through purinergic regulation of epithelial cells. Insight into these molecular mechanisms enhances our understanding of pathogenesis in the cystic fibrosis lung.  相似文献   

4.
Summary Experiments were performed to determine the presence of a Cl–OH exchange (Cl–H+ cotransport) in the brush-border membranes isolated from the intestinal epithelium of freshwater trout. Determinations of alkaline phosphatase activities have shown that vesicle suspensions had an enrichment factor of about 17 in this enzyme indicating a high degree of purification of the brush-border membrane preparation. Cl uptake by vesicles in the presence of a proton gradient occurs against a concentration gradient with an overshoot ratio of about 2 and is inhibited by SITS. Several lines of evidence suggest that the mechanism involved is electrical in nature: (i) Cl uptake is increased when the proton gradient is increased, but there is a linear relationship between the Cl uptake and the Nernst potential of protons. (ii) Cl uptake is increased when a proton ionophore is added at low concentration and inhibited at high concentration, suggesting that a proton conductance is involved in the Cl uptake. (iii) there is a linear relationship between the initial speed of the uptake of increasing Cl concentrations and the Cl concentration. (iv) Cl uptake can be modulated by different potassium gradients with or without valinomycin. It is concluded that the enterocyte of the freshwater trout is not equipped with a Cl–OH exchange and the Cl uptake by vesicles is realized by a Cl conductance.  相似文献   

5.
6.
Summary Cl channels from basolaterally-enriched rabbit outer renal medullary membranes are activated either by increases in intracellular Cl activity or by intracellular protein kinase A (PKA). Phosphorylation by PKA, however, is not obligatory for channel activity since channels can be activated by intracellular Cl in the absence of PKA. The PKA requirement for activation of Cl channels in certain secretory epithelia is, in contrast, obligatory. In the present studies, we examined the effects of PKA and intracellular Cl concentrations on the properties of Cl channels obtained either from basolaterally-enriched vesicles derived from highly purified suspensions of mouse medullary thick ascending limb (mTALH) segments, or from apical membrane vesicles obtained from two secretory epithelia, bovine trachea and rabbit small intestine. Our results indicate that the Cl channels from mTALH suspensions were virtually identical to those previously described from rabbit outer renal medulla. In particular, an increase in intracellular (trans) Cl concentration from 2 to 50 mm increased both channel activity (P o) and channel conductance (g Cl, pS). Likewise, trans PKA increased mTALH Cl channel activity by increasing the activity of individual channels when the trans solutions were 2 mm Cl. Under the latter circumstance, PKA did not activate quiescent channels, nor did it affect g Cl. Moreover, when mTALH Cl channels were inactivated by reducing cis Cl concentrations to 50 mm, cis PKA addition did not affect P o. These results are consistent with the view that these Cl channels originated from basolateral membranes of the mTALH.Cl channels from apical vesicles from trachea and small intestine were completely insensitive to alterations in trans Cl concentrations and demonstrated markedly different responses to PKA. In the absence of PKA, tracheal Cl channels inactivated spontaneously after a mean time of 8 min; addition of PKA to trans solutions reactivated these channels. The intestinal Cl channels did not inactivate with time. Trans PKA addition activated new channels with no effect on basal channel activity. Thus the regulation of Cl channel activity by both intracellular Cl and by PKA differ in basolateral mTALH Cl channels compared to apical Cl channels from either the tracheal or small intestine.We acknowledge the able technical assistance of Steven D. Chasteen. Clementine M. Whitman provided her customary excellent secretarial assistance. This work was supported by Veterans Administration Merit Review Grants to T.E. Andreoli and to W.B. Reeves. C.J. Winters is a Veterans Administration Associate Investigator.  相似文献   

7.
Summary The behavior of single Cl channel was studied by fusing isolated canine cardiac sarcoplasmic reticulum (SR) vesicles into planar lipid bilayers. The channel exhibited unitary conductance of 55 pS (in 260mm Cl) and steady-state activation. Subconductance states were observed. Open probability was dependent on holding potentials (–60 to +60 mV) and displayed a bell-shaped relationship, with probability values ranging from 0.2 to 0.8 with a maximum at –10 mV. Channel activity was irreversibly inhibited by DIDS, a stilbene derivative. Time analysis revealed the presence of one time constant for the full open state and three time constants for the closed states. The open and the longer closed time constants were found to be voltage dependent. The behavior of the channel was not affected by changing Ca2+ and Mg2+ concentrations in both chambers, nor by adding millimolar adenosine triphosphate, or by changing the pH from 7.4 to 6.8. The presence of sulfate anions decreased the unit current amplitude, but did not affect the open probability. These results reveal that at the unitary level the cardiac SR anion-selective channel has distinctive as well as similar electrical properties characteristic of other types of Cl channels.  相似文献   

8.
Using an 125I efflux assay, we have studied the expression of various types of chloride channels in isolated neonatal rat cardiomyocytes. Three different classes of anion conductances were distinguished: (1) a Cal2+-sensitive Cl conductance, triggered upon stimulation of the cells with endothelin-1 or Ca2+-ionophore; (2) a CAMP/protein kinase A-operated Cl conductance, activated by addition of forskolin. This anion channel could be identified as the Cystic Fibrosis Transmembrane conductance Regulator (CFTR-CI channel) by Western blotting as well as by its enhanced activity in cultures pretreated with the tyrosine kinase inhibitor genistein; (3) a distinct class of cell volume-regulated Cl channels, potentiated in the presence of endothelin-1 or the phosphotyrosine phosphatase inhibitor pervanadate. The potential role of each class of Cl channels in the generation and/or modulation of action potentials as well as in maintaining cell volume is discussed.  相似文献   

9.
Summary The net loss of KCl observed in Ehrlich ascites cells during regulatory volume decrease (RVD) following hypotonic exposure involves activation of separate conductive K+ and Cl transport pathways. RVD is accelerated when a parallel K+ transport pathway is provided by addition of gramicidin, indicating that the K+ conductance is rate limiting. Addition of ionophore A23187 plus Ca2+ also activates separate K+ and Cl transport pathways, resulting in a hyperpolarization of the cell membrane. A calculation shows that the K+ and Cl conductance is increased 14-and 10-fold, respectively. Gramicidin fails to accelerate the A23187-induced cell shrinkage, indicating that the Cl conductance is rate limiting. An A23187-induced activation of42K and36Cl tracer fluxes is directly demonstrated. RVD and the A23187-induced cell shrinkage both are: (i) inhibited by quinine which blocks the Ca2+-activated K+ channel. (ii) unaffected by substitution of NO 3 or SCN for Cl, and (iii) inhibited by the anti-calmodulin drug pimozide. When the K+ channel is blocked by quinine but bypassed by addition of gramicidin, the rate of cell shrinkage can be used to monitor the Cl conductance. The Cl conductance is increased about 60-fold during RVD. The volume-induced activation of the Cl transport pathway is transient, with inactivation within about 10 min. The activation induced by ionophore A23187 in Ca2+-free media (probably by release of Ca2+ from internal stores) is also transient, whereas the activation is persistent in Ca2+-containing media. In the latter case, addition of excess EGTA is followed by inactivation of the Cl transport pathway. These findings suggest that a transient increase in free cytosolic Ca2+ may account for the transient activation of the Cl transport pathway. The activated anion transport pathway is unselective, carrying both Cl, Br, NO 3 , and SCN. The anti-calmodulin drug pimozide blocks the volume- or A23187-induced Cl transport pathway and also blocks the activation of the K+ transport pathway. This is demonstrated directly by42K flux experiments and indirectly in media where the dominating anion (SCN) has a high ground permeability. A comparison of the A23187-induced K+ conductance estimated from42K flux measurements at high external K+, and from net K flux measurements suggests single-file behavior of the Ca2+-activated K+ channel. The number of Ca2+-activated K+ channels is estimated at about 100 per cell.  相似文献   

10.
Summary This paper reports experiments designed to assess the relations between net salt absorption and transcellular routes for ion conductance in single mouse medullary thick ascending limbs of Henle microperfusedin vitro. The experimental data indicate that ADH significantly increased the transepithelial electrical conductance, and that this conductance increase could be rationalized in terms of transcellular conductance changes. A minimal estimate (G c min ) of the transcellular conductance, estimated from Ba++ blockade of apical membrane K+ channels, indicated thatG c min was approximately 30–40% of the measured transepithelial conductance. In apical membranes, K+ was the major conductive species; and ADH increased the magnitude of a Ba++-sensitive K+ conductance under conditions where net Cl absorption was nearly abolished. In basolateral membranes, ADH increased the magnitude of a Cl conductance; this ADH-dependent increase in basal Cl conductance depended on a simultaneous hormone-dependent increase in the rate of net Cl absorption. Cl removal from luminal solutions had no detectable effect onG e , and net Cl absorption was reduced at luminal K+ concentrations less than 5mm; thus apical Cl entry may have been a Na+,K+,2Cl cotransport process having a negligible conductance. The net rate of K+ secretion was approximately 10% of the net rate of Cl absorption, while the chemical rate of net Cl absorption was virtually equal to the equivalent short-circuit current. Thus net Cl absorption was rheogenic; and approximately half of net Na+ absorption could be rationalized in terms of dissipative flux through the paracellular pathway. These findings, coupled with the observation that K+ was the principal conductive species in apical plasma membranes, support the view that the majority of K+ efflux from cell to lumen through the Ba++-sensitive apical K+ conductance pathway was recycled into cells by Na+,K+,2Cl cotransport.  相似文献   

11.
Summary Endocytotic vesicles from rat kidney cortex, isolated by differential centrifugation and enriched on a Percoll gradient, contain both an electrogenic H+ translocation system and a conductive chloride pathway. Using the dehydration/rehydration method, we fused vesicles of enriched endosomal vesicle preparations and thereby made them accessible to the patch-clamp technique. In the fused vesicles, we observed Cl channels with a single-channel conductance of 73±2 pS in symmetrical 140mm KCl solution (n=25). The current-voltage relationship was linear in the range of –60 to +80 mV, but channel kinetic properties dependended on the clamp potential. At positive potentials, two sublevels of conductance were discernible and the mean open time of the channel was 10–15 msec. At negative voltages, only one substate could be resolved and the mean open time decreased to 2–6 msec. Clamp voltages more negative than –50 mV caused reversible channel inactivation. The channel was selective for anions over cations. Ion substitution experiments revealed an anion permeability sequence of Cl=Br=I>SO 4 2– F. Gluconate, methanesulfonate and cyclamate were impermeable. The anion channel blockers 4,4-diisothiocyanatostilbene-2,2-disulfonic acid (DIDS, 1.0mm) and 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB, 0.1mm) totally inhibited channel activity. Comparisons with data obtained from radiolabeled Cl-flux measurements and studies on the H+ pump activity in endocytotic vesicle suspensions suggest that the channel described here is involved in maintenance of electroneutrality during ATP-driven H+ uptake into the endosomes.  相似文献   

12.
Summary The dependence of colicin channel activity on membrane potential and peptide concentration was studied in large unilamellar vesicles using colicin E1, its COOH-terminal thermolytic peptide and other channel-forming colicins. Channel activity was assayed by release of vesicle-entrapped chloride, and could be detected at a peptide: lipid molar ratio as low as 10–7. The channel activity was dependent on the magnitude of atrans-negative potassium diffusion potential, with larger potentials yielding faster rates of solute efflux. For membrane potentials greater than –60mV (K in + /K out + 10), addition of valinomycin resulted in a 10-fold increase in the rate of Cl efflux. A delay in Cl efflux observed when the peptide was added to vesicles in the presence of a membrane potential implied a potential-independent binding-insertion mechanism. The initial rate of Cl efflux was about 1% of the single-channel conductance, implying that only a small fraction of channels were initially open, due to the delay or latency of channel formation known to occur in planar bilayers.The amount of Cl released as a function of added peptide increased monotonically to a concentration of 0.7 ng peptide/ml, corresponding to release of 75% of the entrapped chloride. It was estimated from this high activity and consideration of vesicle number that 50–100% of the peptide molecules were active. The dependence of the initial rate of Cl efflux on peptide concentration was linear to approximately the same concentration, implying that the active channel consists of a monomeric unit.  相似文献   

13.
Summary The present studies examined some of the properties of Cl channels in renal outer medullary membrane vesicles incorporated into planar lipid bilayers. The predominant channel was anion selective having aP Cl/P K ratio of 10 and a unit conductance of 93 pS in symmetric 320mm KCl. In asymmetric KCl solutions, theI-V relations conformed to the Goldman-Hodgkin-Katz equation. Channel activity was voltage-dependent with a gating charge of unity. This voltage dependence of channel activity may account, at least in part, for the striking voltage dependence of the basolateral membrane Cl conductance of isolated medullary thick ascending limb segments. The Cl channels incorporated into the planar bilayers were asymmetrical: thetrans surface was sensitive to changes in ionized Ca2+ concentrations and insensitive to reducing KCl concentrations to 10mm, while thecis side was insensitive to changes in ionized Ca2+ concentrations, but was inactivated by reducing KCl concentrations to 50mm.  相似文献   

14.
Our previously published whole-cell patch-clamp studies on the cells of the intralobular (granular) ducts of the mandibular glands of male mice revealed the presence of an amiloride-sensitive Na+ conductance in the plasma membrane. In this study we demonstrate the presence also of a Cl conductance and we show that the sizes of both conductances vary with the Cl concentration of the fluid bathing the cytosolic surface of the plasma membrane. As the cytosolic Cl concentration rises from 5 to 150 mmol/liter, the size of the inward Na+ current declines, the decline being half-maximal when the Cl concentration is approximately 50 mmol/liter. In contrast, as cytosolic Cl concentration increases, the inward Cl current remains at a constant low level until the Cl concentration exceeds 80 mmol/liter, when it begins to increase. Studies in which Cl in the pipette solution was replaced by other anions indicate that the Na+ current is suppressed by intracellular Br-, Cl and NO 3 - but not by intracellular I-, glutamate or gluconate. Our studies also show that the Cl conductance allows passage of Cl and Br- equally well, I-less well, and NO 3 - , glutamate and gluconate poorly, if at all. The findings with NO 3 - are of particular interest because they show that suppression of the Na+ current by a high intracellular concentration of a particular anion does not depend on actual passage of that anion through the Cl conductance. In mouse granular duct cells there is, thus, a reciprocal regulation of Na+ and Cl conductances by the cytosolic Cl concentration. Since the cytosolic Cl concentration is closely correlated with cell volume in many epithelia, this reciprocal regulation of Na+ and Cl conductances may provide a mechanism by which ductal Na+ and Cl transport rates are adjusted so as to maintain a stable cell volume.This project was supported by the National Health and Medical Research Council of Australia. We thank Professor P. Barry (University of New South Wales) for assistance with the junction potential measurements.  相似文献   

15.
Cl conductance in cultured embryonic chick cardiac myocytes was characterized using whole-cell patch clamp techniques. Following elimination of cation currents in Na+and K+-free internal and external solutions, the basal whole-cell current was predominantly a Cl current. Cl-sensitive current (I Cl) was defined as the difference between the whole-cell currents recorded in normal and low [Cl] o when measured in the same cell. The whole-cell current in the absence or presence of 10 m cAMP was time independent, displayed outward rectification with the pipette [Cl] < 40 mm, and was not saturated with a physiological Cl gradient. The Cl current was also activated by 1 m forskolin and inhibited by 0.3 mm anthracene-9-carboxylic acid (9-AC). Forskolin was less effective than cAMP (internal dialysis) in activating the Cl current. The cAMP- or forskolin-activated and basal Cl current were reasonably fit by the Goldman-Hodgkin-Katz equation. The calculated P Cl in the presence of cAMP was increased by fiveto sixfold over the basal level. In the presence of 5 mm EGTA to decrease free [Ca2+] i , the whole-cell current could not be stimulated by cAMP, forskolin or IBMX (0.1 mm). These data suggest that cultured chick cardiac myocytes have a low basal Cl conductance, which, as in some mammalian cardiac ventricular myocytes, can be activated by cAMP. However, this study shows that the activation process requires physiological free [Ca2+] i .This study was supported by grants from the National Institutes of Health (HL-17670, HL-27105 and HL-07107) for M.L. and by Institutional funds of the University of Arkansas for Medical Sciences for S.L.We thank Meei-Yueh Liu, Kathleen Mitchell, and Shirley Revels for their technical assistance.  相似文献   

16.
The ionic fluxes associated with the ATP-dependent acidification of endocytic vesicles were studied in a preparation isolated from rabbit reticulocytes enriched for transferrin-transferrin receptor complexes. No vesicle acidification was observed in the absence of intra- and extravesicular ions (sucrosein/sucroseout), while maximal acidification was observed with NaClin/KClout·K in + was a poor substitute for Na in + , and Cl out could be replaced by other anions with the following efficacy of acidification: Cl>Br>I>PO 4 3– >gluconate>SO 4 2– . Flux studies using36Cl and22Na+ showed that the vesicles had a permeability for Cl and Na+, and that ATP-dependent H+ pumping was accompanied by a net influx of Cl and a net efflux of Na+ provided that there was a Na+ concentration gradient. After 3 mins, the time necessary to maximal acidification, the electrical charge generated by the entrance of H+ was countered to about 45% by the Cl influx and to about 42% by the Na+ efflux. These studies demonstrated that both Cl and Na+ fluxes are necessary for optimal endocytic vesicle acidification.  相似文献   

17.
Summary Forskolin (i.e, cAMP)-modulation of ion transport pathways in filter-grown monolayers of the Cl-secreting subclone (19A) of the human colon carcinoma cell line HT29 was studied by combined Ussing chamber and microimpalement experiments.Changes in electrophysiological parameters provoked by serosal addition of 10–5 m forskolin included: (i) a sustained increase in the transepithelial potential difference (3.9±0.4 mV). (ii) a transient decrease in transepithelial resistance with 26±3 · cm2 from a mean value of 138±13 · cm2 before forskolin addition, (iii) a depolarization of the cell membrane potential by 24±1 mV from a resting value of –50±1 mV and (iv) a decrease in the fractional resistance of the apical membrane from 0.80±0.02 to 0.22±0.01. Both, the changes in cell potential and the fractional resistance, persisted for at least 10 min and were dependent on the presence of Cl in the medium. Subsequent addition of bumetanide (10–4 m), an inhibitor of Na/K/2Cl cotransport, reduced the transepithelial potential, induced a repolarization of the cell potential and provoked a small increase of the transepithelial resistance and fractional apical resistance. Serosal Ba2+ (1mm), a known inhibitor of basolateral K+ conductance, strongly reduced the electrical effects of forskolin. No evidence was found for a forskolin (cAMP)-induced modulation of basolateral K+ conductance.The results suggest that forskolin-induced Cl secretion in the HT-29 cl.19A colonic cell line results mainly from a cAMP-provoked increase in the Cl conductance of the apical membrane but does not affect K+ or Cl conductance pathways at the basolateral pole of the cell. The sustained potential changes indicate that the capacity of the basolateral transport mechanism for Cl and the basal Ba2+-sensitive K+ conductance are sufficiently large to maintain the Cl efflux across the apical membrane. Furthermore, evidence is presented for an anomalous inhibitory action of the putative Cl channel blockers NPPB and DPC on basolateral conductance rather than apical Cl conductance.  相似文献   

18.
Summary This study is concerned with the short-circuit current,I sc, responses of the Cl-transporting cells of toad skin submitted to sudden changes of the external Cl concentration. [Cl]0. Sudden changes of [Cl]0, carried out under apical membrane depolarization, allowed comparison of the roles of [Cl]0 and [Cl]cell on the activation of the apical Cl pathways. Equilibration of shortcircuited skins symmetrically in K-Ringer's solutions of different Cl concentrations permitted adjustment of [Cl]cell to different levels. For a given Cl concentration (in the range of 11.7 to 117mm) on both sides of a depolarized apical membrane, this structure exhibits a high Cl permeability,P (Cl)apical. On the other hand, for the same range of [Cl]cell but with [Cl]0=0,P (Cl)apical is reduced to negligible values. These observations indicate that when the apical membrane is depolarizedP (Cl)apical is modulated by [Cl]0; in the absence of external Cl ions, intracellular Cl is not sufficient to activateP (Cl)apical. Computer simulation shows that the fast Cl currents induced across the apical membrane by sudden shifts of [Cl]0 from a control equilibrium value strictly follow the laws of electrodiffusion. For each experimental group, the computer-generatedI sc versus ([Cl]cell–[Cl]0) curve which best fits the experimental data can only be obtained by a unique pair ofP (Cl)apical andR b (resistance of the basolateral membrane), thus allowing the calculation of these parameters. The electrodiffusional behavior of the net Cl flux across the apical membrane supports the channel nature of the apical Cl pathways in the Cl-transporting cell. Cl ions contribute significantly to the overall conductance of the basolateral membrane even in the presence of a high K concentration in the internal solution.  相似文献   

19.
Summary An anion channel of sarcoplasmic reticulum vesicle has been incorporated into planar lipid bilayers by means of a fusion method and its basic properties were investigated. Analysis of fusion processes suggested that one SR vesicle contained approximately one anion channel. The conductance of this channel has several substates and shows a flickering behavior. The occupation probability of each substate was voltage dependent, which induced an inward rectification of macroscopic currents. Further, the anion channel was found to have the following properties. (1) The single-channel conductance is about 200 pS at 100mm Cl. (2) The channel does not select among monovalent anions but SO 4 2– hardly permeates through the channel. (3) SO 4 2– added to thecis side (the side to which SR vesicles were added) inhibits Cl current competitively in a voltage-dependent manner. (4) An analysis of this voltage dependence suggests that the binding site of SO 4 2– is located at about 36% of the way across the channel from thecis entrance.  相似文献   

20.
The ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) and two other non-membrane-bound ABC proteins, Rad50 and a structural maintenance of chromosome (SMC) protein, exhibit adenylate kinase activity in the presence of physiologic concentrations of ATP and AMP or ADP (ATP + AMP ⇆ 2 ADP). The crystal structure of the nucleotide-binding domain of an SMC protein in complex with the adenylate kinase bisubstrate inhibitor P1,P5-di(adenosine-5′) pentaphosphate (Ap5A) suggests that AMP binds to the conserved Q-loop glutamine during the adenylate kinase reaction. Therefore, we hypothesized that mutating the corresponding residue in CFTR, Gln-1291, selectively disrupts adenylate kinase-dependent channel gating at physiologic nucleotide concentrations. We found that substituting Gln-1291 with bulky side-chain amino acids abolished the effects of Ap5A, AMP, and adenosine 5′-monophosphoramidate on CFTR channel function. 8-Azidoadenosine 5′-monophosphate photolabeling of the AMP-binding site and adenylate kinase activity were disrupted in Q1291F CFTR. The Gln-1291 mutations did not alter the potency of ATP at stimulating current or ATP-dependent gating when ATP was the only nucleotide present. However, when physiologic concentrations of ADP and AMP were added, adenylate kinase-deficient Q1291F channels opened significantly less than wild type. Consistent with this result, we found that Q1291F CFTR displayed significantly reduced Cl channel function in well differentiated primary human airway epithelia. These results indicate that a highly conserved residue of an ABC transporter plays an important role in adenylate kinase-dependent CFTR gating. Furthermore, the results suggest that adenylate kinase activity is important for normal CFTR channel function in airway epithelia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号