首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental conditions have been defined that allow bovine corneal endothelial (BCE) cells to grow in the complete absence of serum. Low density BCE cell cultures maintained on extracellular matrix (ECM)-coated dishes and plated in the total absence of serum proliferate actively when exposed to a synthetic medium supplemented with high density lipoprotein (HDL 500 μg protein/ml), transferrin (10 μg/ml), insulin (5 μg/ml), and fibroblast (FGP) or epidermal growth factor (EGF) added at concentrations of 100 or 50 ng/ml, respectively. Omission of any of these components results in a lower growth rate and/or final cell density of the cultures. BCE cell cultures plated on plastic dishes and exposed to the same synthetic medium grow very poorly. The longevity of BCE cultures maintained on plastic versus ECM and exposed to serum-free versus serum-containing medium has been studied. The use of ECM-coated dishes extended the life span of BCE cultures maintained in serum-supplemented medium to over 120 generations, as compared to less than 20 generations for cultures maintained on plastic. Likewise, BCE cells maintained on ECM and exposed to a synthetic medium supplemented with optimal concentrations of HDL, transferrin, insulin, and FGF underwent 85 generations, whereas control cultures maintained on plastic could not be passaged. The enhancing effect of ECM on BCE cell growth and culture longevity clearly illustrates the importance of the cell substrate in the control of proliferation of these cells.  相似文献   

2.
Bovine adrenal and brain cortex and corpus luteum-derived capillary endothelial cells have been established in culture, taking advantage of their ability to proliferate at clonal density when maintained on extracellular matrix (ECM) coated dishes in the presence of serum supplemented medium. All three cell types formed at confluency a monolayer of small, tightly packed, contact inhibited cells that express factor VIII related antigen. Their proliferative response to basic and acidic FGF when cells were maintained on plastic and exposed to serum supplemented medium was similar to that previously reported for endothelial cells derived from large vessels, with acidic FGF being 30-fold less potent than basic FGF. Their requirement for high density lipoproteins and transferrin in order to proliferate actively when maintained on ECM-coated dishes and exposed to serum-free conditions was also similar to that previously reported for endothelial cells derived from large vessels. Heparin strongly reduced the proliferative response of capillary endothelial cells to either basic or acidic FGF, as well as their response to serum alone, regardless of whether cells were maintained on plastic or on ECM-coated dishes. The present data indicate that bovine endothelial cells derived from large or small vessels are indistinguishable in so far as their response to growth factors, plasma factors, and substrata are concerned.  相似文献   

3.
Low density vascular smooth muscle (VSM) cell cultures maintained on extracellular-matrix(ECM)-coated dishes and plated in the presence of either plasma or serum will proliferate actively when serum-containing medium is replaced by a synthetic medium supplemented with three factors: high density lipoprotein (HDL, 250 micrograms protein/ml); insulin (2.5 micrograms/ml) or somatomedin C (10 ng/ml); and fibroblast growth factor (FGF, 100 ng/ml) or epidermal growth factor (EGF, 50 ng/ml). The omission of any of these three factors from the synthetic medium results in a lower growth rate of the cultures, as well as in a lower final cell density once cultures reach confluence. When cells are plated in the total absence of serum, transferrin (10 micrograms/ml) is also required to induce optimal cell growth. The effects of the substrate and medium supplements on the life span of VSM cultures have also been analyzed. Cultures maintained on plastic and exposed to medium supplemented with 5% bovine serum underwent 15 generations. However, when maintained on ECM-coated dishes the serum-fed cultures had a life span of at least 88 generations. Likewise, when cultures were maintained in a synthetic medium supplemented with HDL and either FGF or EGF, an effect on the tissue culture life span by the substrate was observed. Cultures maintained on plastic underwent 24 generations, whereas those maintained on ECM-coated dishes could be passaged repeatedly for 58 generations. These experiments demonstrate the influence of the ECM-substrate only in promoting cell growth but also in increasing the longevity of the cultures.  相似文献   

4.
Bovine adrenal cortex cells maintained on extracellular matrix (ECM)-coated dishes will proliferate actively when serum is replaced by HDL (25 micrograms protein/ml), insulin (10 ng/ml), and FGF (100 ng/ml). The cells have an absolute requirement for HDL in order to survive and grow. The omission of insulin, FGF, or both results in a slower growth rate and lower final cell density of the cultures. A requirement for transferrin (1 microgram/ml) becomes apparent only when cells have been grown for at least four generations in the absence of serum. Early passage (P1-P3) bovine adrenal cortex cells cultured in serum-free medium responded to ACTH (10(-8)M) with increased 11-deoxycortisol production; this effect was not observed in later passage cells (P7-P15). The cells' ability to utilize LDL-derived cholesterol and to respond to db cAMP (1mM) by increased steroid release was preserved in cells cultured for over 60 generations in the serum-free medium. HDL, although also able to increase steroid production in early-passage cultures exposed to ACTH or to ACTH and dibutyryl cyclic AMP (db cAMP), was 10 fold less potent than LDL. It did not support steroidogenesis in cultures not exposed to these trophic agents. The life span of bovine adrenal cortex cells grown in the serum-free medium on fibronectin (FN)- versus ECM-coated dishes was compared. Cells seeded in serum-containing medium and grown in serum-free medium had a life span of 34 versus 60 generations when maintained on fibronectin- or ECM-coated dishes, respectively. Cells seeded in the complete absence of serum in the serum-free medium on ECM- or fibronectin-coated dishes could be passaged for 26 or 13 generations, respectively. While FGF was an absolute requirement for cells cultured on fibronectin-coated dishes, it was not required when cells were maintained on ECM. These observations demonstrate the influence of the ECM not only in promoting cell growth and differentiation but also on the life span of cultured cells.  相似文献   

5.
The factors required for the active proliferation of low-density rabbit costal chondrocytes exposed to 9:1 (v/v) mixture of Dulbecco's modified Eagle's medium and Ham's F12 medium have been defined. Low-density primary cultures of rabbit costal chondrocytes proliferated actively when the medium was supplemented with high-density lipoprotein (300 micrograms/ml), transferrin (60 micrograms/ml), fibroblast growth factor (FGF) (1 ng/ml), hydrocortisone (10(-6) M), and epidermal growth factor (EGF) (30 ng/ml). Insulin, although it slightly decreased the final cell density, was required for reexpression of the cartilage phenotype at confluence. Optimal proliferation of low-density chondrocyte cultures was only observed when dishes were coated with an extracellular matrix (ECM) produced by cultured corneal endothelial cells, but not on plastic. Furthermore, serum-free chondrocyte cultures seeded at low density and maintained on ECM-coated dishes gave rise to a homogeneous cartilage-like tissue composed of spherical cells. These chondrocytes therefore seem to provide a good experimental system for analyzing factors involved in supporting proliferation of chondrocytes and their phenotypic expression.  相似文献   

6.
Glycosaminoglycans synthesized by cultured bovine corneal endothelial cells   总被引:5,自引:0,他引:5  
Bovine corneal endothelial (BCE) cells seeded and grown on plastic dishes were labeled with 35S-sulfate or 3H-glucosamine for 48 h at various phases of growth of the cultures. Newly synthesized proteoglycans were isolated from the culture medium and from the extracellular matrix (ECM) produced by the BCE cells, and the glycosaminoglycan (GAG) component of the proteoglycans was analyzed. Cells actively proliferating on plastic surfaces secreted an ECM that contained heparan sulfate as the major 35S-labeled GAG (86%) and dermatan sulfate as a minor component (13%). Upon reaching confluence, the BCE cells incorporated 35S-labeled chondroitin sulfate (20%), as well as heparan sulfate (66%) and dermatan sulfate (14%), into the EC. Seven-day postconfluent cells incorporated newly synthesized heparan sulfate and dermatan sulfate into the matrix in approximately equal proportions. Dermatan sulfate was the main 35S-labeled GAG (60-65%) in the medium of both confluent and postconfluent cultures. 35S-Labeled chondroitin sulfate (20-25%) and heparan sulfate (15%) were also secreted into the culture medium. The type of GAG incorporated into newly synthesized ECM was affected when BCE cells were seeded onto ECM-coated dishes instead of plastic. BCE cells actively proliferating on ECM-coated dishes incorporated newly synthesized heparan sulfate and dermatan sulfate into the ECM in a ratio that was very similar to the ratio of these GAGs in the underlying ECM. Addition of mitogens such as fibroblast growth factor (FGF) to the culture medium altered the type of GAG synthesized and incorporated into the ECM by BCE cells seeded onto ECM-coated dishes if the cells were actively growing, but had no effect on postconfluent cultures.  相似文献   

7.
The possibilities that the growth-promoting effect of the extracellular matrix (ECM) produced by cultured bovine corneal endothelial (BCE) cells could be due to: (1) adsorbed cellular factors released during the cell lysis process leading to the denudation of the ECM; (2) adsorbed serum or plasma factors: or (3) adsorbed exogenous growth factors have been examined. Exposure of confluent BCE cultures to 2 M urea in medium supplemented with 0.5% calf serum denudes the ECM without cell lysis. The ECM prepared by this procedure supports cell growth just as well as ECM prepared by denudation involving cell lysis. Thus, it is unlikely that the growth-promoting properties of ECM are due to adsorbed cellular factors. When the ECM produced by BCE cells grown in defined medium supplemented with high-density lipoprotein, transferrin, and insulin was compared to the ECMs produced by cells grown in the presence of serum- or plasma-supplemented medium, all were found to be equally potent in stimulating cell growth. It is therefore unlikely that the growth-promoting ability of the ECM is due to adsorbed plasma or serum components. When fibroblast growth factor (FGF)-coated and ECM-coated plastic dishes were submitted to a heat treatment (70 degrees C, 30 min) which results in the inactivation of FGF, the growth-supporting ability of FGF-coated dishes was lost, while the comparable ability of ECM-coated dishes was not affected significantly. This observation tends to demonstrate that the active factor present in the ECM is not FGF. Nor is it platelet-derived growth factor (PDGF), since treatment known to destroy the activity of PDGF, such as exposure to dithiothreitol (0.1 M, 30 min, 22 degrees C) or to beta-mercaptoethanol (10%) in the presence or absence of 6 M urea for 30 min at 22 degrees C, does not affect the growth-promoting activity of ECM. It is therefore unlikely that the growth-promoting effect of ECM is due to cellular growth-promoting agents or to plasma or serum factors adsorbed onto the ECM.  相似文献   

8.
Bovine vascular endothelial cells can be maintained in a highly differentiated state in vitro, either by the addition of fibroblast growth factor (FGF) to the culture medium or by plating the cells on extracellular matrix (ECM)-coated dishes. Under these conditions the cells proliferate actively and at confluence form a tightly packed monolayer composed of nonoverlapping polarized cells. A fluorescence recovery after photobleaching method was used to determine the lateral mobility coefficient D of the lipophilic fluorescent probe, 5N-(hexadecanoyl)-aminofluorescein (HEDAF), in the basal and apical plasma membranes of endothelial cells under various culture conditions (cells on glass coverslips in the presence or absence of FGF, or cells plated on ECM in the exponential growth phase or at confluence). A heterogeneous distribution of lateral diffusion coefficients D was found in a given cell population. Nevertheless, for the basal membrane, a "mean" D value close to 2.0 x 10(-9) cm2/s was found for all the culture conditions. The "mean" D value of HEDAF in the apical pole was slightly higher when sparse cells were exposed to FGF (D = 2.2 x 10(-9) cm2/s) and was further enhanced when cells were growing or confluent on ECM-coated coverslips (D = 2.7 x 10(-9) cm2/s). On the other hand, when the cells were maintained in the absence of FGF on glass coverslips, similar "mean" D values were found in both cell poles (D = 2.0 x 10(-9) cm2/s). These results show that lateral mobility of lipids in endothelial plasmalemma varies in response to external factors such as FGF and the ECM.  相似文献   

9.
We examined the influence of glucocorticoid hormones on the proliferation of cultured adult bovine aortic smooth muscle cells (BASM) using both primary mass cultures and a cloned strain. Cloned BASM cells maintained on plastic culture dishes were inhibited by approximately 40% by dexamethasone treatment but showed no inhibition when grown of homologous extracellular matrix (ECM) coated dishes. Dexamethasone inhibited growth of primary cultures by 73% on plastic and by 45% on ECM. The inhibitory effect was specific for the glucocorticoids, dexamethasone, corticosterone, and cortisol and was not observed with progesterone, aldosterone, estradiol or 17-alpha OH progesterone. In cloned cells, the abolition of glucocorticoid inhibition by ECM was independent of seeding density and serum concentration. The inhibition on plastic was dependent on serum concentrations greater than 1% and resulted in both a slow rate of proliferation and a lower saturation density. A specific subset of peptides detected on two-dimensional gels was induced by glucocorticoids under growth inhibitory conditions but was not induced when the cells were grown on ECM. Primary cultures grown on ECM and exposed to Dulbecco's modified Eagle's Medium (DME) containing high density lipoprotein and transferrin grew at 40% of the rate observed for cultures exposed to DME with 10% serum. Both conditions showed growth inhibition of 70% in the presence of dexamethasone. The addition of epidermal and platelet-derived growth factors in DME containing high density lipoprotein and transferrin to cells grown on ECM resulted in growth rates comparable to that observed with cultures exposed to 10% serum and were inhibited 45% by dexamethasone. These results suggest that glucocorticoids inhibit smooth muscle proliferation by decreasing the sensitivity of the cells to mitogenic stimulation by high density lipoprotein when the cells are maintained on a homologous substrate.  相似文献   

10.
Hemopoiesis in spleen and bone marrow cultures   总被引:1,自引:0,他引:1  
Four endothelial cell clones derived from adult bovine aorta were examined with respect to their proliferative characteristics in vitro. Three of these clones, derived in the absence of fibroblast growth factor (FGF), displayed variable basal proliferative rates. One of these non-FGF derived clones grew at a maximal rate which could not be further enhanced with FGF. The other two clones grew at a suboptimal rate which was stimulated by low doses of FGF (10-50 ng/ml) and inhibited by higher doses (100-250 ng/ml). The fourth clone, derived in the presence of FGF, was stimulated by FGF in a dose-dependent manner (10-250 ng/ml) and was not growth inhibited at high FGF concentrations (250-1,000 ng/ml). Growth of all four clones on extracellular matrix (ECM) derived from bovine aortic smooth muscle (BASM) cells was optimal in the absence of FGF. ECM-coated dishes also significantly increased the sensitivity of all clones by at least fivefold to mitogenic stimulation by serum. The proliferative lifespans of the clones ranged between 60 and 120 generations with the most actively proliferating clones attaining the greatest lifespan. Continuous subculture of two of the endothelial clones in the presence of FGF or on ECM-coated dishes did not induce a dependence of the cells on either factor for subsequent growth in its absence. The results indicate that aortic endothelial cells display considerable clonal variability in ther basal proliferative rate and in their response to FGF. This clonal variability is not observed when the cells are maintained on ECM-coated dishes derived from vascular smooth muscle cells.  相似文献   

11.
Liposomes made by sonication of egg yolk phosphatidyl choline support the proliferation of low-density bovine vascular and corneal endothelial cells, and vascular smooth muscle cells maintained on basement laminacoated dishes and exposed to a defined medium supplemented with transferrin. The optimal growth-promoting effect of phosphatidyl choline was observed at concentrations of 25 μg/ml for low-density cultures of vascular smooth muscle cells, and 100 μg/ml for vascular and corneal endothelial cells. The growth rate and final cell density of vascular endothelial cells exposed to a synthetic medium supplemented with transferrin and either high-density lipoproteins or phosphatidyl choline has been compared. Although cultures exposed to phosphatidyl choline reached a final cell density similar to that of cultures exposed to high-density lipoproteins, they had a longer average doubling time (17 h vs. 12 h) during their logarithmic growth phase and a shorter lifespan (17 generations vs. 30 generations). Similar observations were made in the case of vascular smooth muscle cells or bovine corneal endothelial cells maintained in medium supplemented with transferrin, fibroblast growth factor (FGF) or epidermal growth factor (EGF), and insulin and exposed to either high-density lipoproteins or phosphatidyl choline. Since phosphatidyl choline can, for the most part, replace highdensity lipoproteins in supporting the proliferation of various cell types, it is likely that the growth stimulating signal conveyed by high-density lipoproteins is associated with its polar lipid fraction, which is composed mostly of phosphatidyl cholines.  相似文献   

12.
The growth-promoting activity of human high-density lipoproteins (HDL) and of their apolipoprotein components on bovine vascular endothelial cells in vitro has been compared. When maintained on plastic culture dishes and exposed to medium containing lipoprotein-deficient serum and fibroblast growth factor, these cells do not proliferate. Addition of either HDL or the total HDL apolipoproteins induces significant cell proliferation. Apolipoprotein CI, purified by chromatography on the ion-exchanger resin Polybuffer exchanger 94, has an effect on the cell growth similar to that of the total apolipoproteins of HDL.  相似文献   

13.
Tissue specimens from 105 human gliomas and 57 human meningiomas were obtained at surgery, dissociated into single cells and small cell aggregates and then plated onto plain plastic tissue culture dishes and dishes which had been precoated with an extracellular matrix (ECM) derived from bovine corneal endothelium. In 80% of the glioma cases we observed a marked improvement in initial plating efficiency, colony formation and speed of attachment when cells were plated on ECM. In 5 cases cells attached only to the ECM-coated dishes but remained afloat in the untreated dishes. In addition it could be noted that over the first 2 days, those cells which had been initiated on ECM showed more signs of morphological differentiation, i.e., extension of cytoplasmic processes or formation of fiber networks between cell groups. If adaptation occurred and proliferation began in vitro, either immediately or after a several days' lag phase, both the ECM-cultured cells as well as those which slowly had adapted to culture on plastic could be passed on to untreated culture ware and perpetuated thereon. In the case of well-differentiated low-grade gliomas where no growth in culture took place, the cultures on ECM could at least be used for initial experiments in the primary cultures (P0). Meningiomas usually attached well to both, plastic or ECM. In 50% of our cases the plating efficiency was higher on ECM but after successful initial culture, the delay until the cells on plastic reached confluence in comparison with those on ECM was 1 or 2 days. Again there were 2 cases in which the cells would not plate on plastic. Here the cells which after 1 day were still afloat plated to more than 80% within the first 2 h after transfer to ECM. In all cases the cells from plastic and ECM cultures were indistinguishable and could be passed onto untreated dishes henceforth. In later culture stages ECM offers several advantages: It is easier to shift cells to serum-free defined culture conditions, the cells will grow at a faster rate on ECM when in higher passages and the maximal number of passages possible is higher on ECM.  相似文献   

14.
Baby hamster kidney-derived cells (BHK-21 cell line), seeded at low density on gelatin coated dishes and exposed to a 1:1 (v/v) mixture of Dulbecco's modified Eagle's medium and Ham's F-12 medium, proliferate actively when exposed to high density lipoproteins (HDL), transferrin, and basic or acidic fibroblast growth factor (FGF). This serum free medium combination supported cell multiplication at a rate equal to that of serum supplemented medium, and at low cell input (10(3) cells/35-mm dish). Epidermal growth factor (EGF), although mitogenic for BHK-21 cells, was less efficient than either basic or acidic FGF in supporting cell growth. When the potency of basic and acidic FGF were compared, acidic FGF was 10-fold less potent than basic FGF. The requirement of BHK-21 cells for transferrin appears to be minimal since cells exposed to HDL and basic FGF could be serially transferred for at least 50 cumulative population doublings in the absence of transferrin.  相似文献   

15.
Summary BC3H1 myoblast cells seeded at low density on gelatin-coated dishes and exposed to a 1∶1 (vol/vol) mixture of Dulbecco’s modified Eagle’s medium and Ham’s F12 medium, proliferate actively when exposed to high density lipoproteins (HDL), transferrin, insulin, and basic or acidic fibroblast growth factor (FGF). This serum-free medium combination supported cell multiplication at a rate equal to that of serum-supplemented medium, and at low cell input (103 cells/35-mm dish). It also allowed serial transfer of the cultures under serum-free conditions. HDL seems to promote cell survival and to act as progression factor allowing cells to divide when exposed to either basic or acidic FGF. When the potency of basic and acidic FGF were compared, acidic FGF was 20-fold less potent than basic FGF.  相似文献   

16.
Summary The culturing of human endometrium in conventional plastic dishes and media is only partially successful, mainly because a growth of a heterogeneous population of cells is achieved. Naturally produced extracellular matrix closely resembles the subepithelial basement membrane and seems to affect both growth and differentiation of cells. These qualities of the extracellular matrix (ECM) were applied for obtaining endometrial epithelial cultures. Endometrial tissue specimens were plated after slicing on ECM-coated dishes and kept for up to 8 d. The growth of a confluent homogeneous tissue composed of polygonal epithelial-like cells was demonstrated. To further characterize these cells, cultures were examined by scanning electron microscopy and transmission electron microscopy. Scanning electron microscopy revealed flattened polygonal cells covered with microvilli, among which ciliated cells were observed. By transmission electron microscopy the cells were seen as a monolayer, with some cells overlapping, closely adherent to the matrix. Microvilli, as well as intracellular vacuoles and glycogen granules were observed. Cell type specific cytoskeletal markers were demonstrated by antibodies to intermediate filament proteins (keratin and epithelial membrane antigen). Taken together, the morphologic and immunohistochemical studies indicate that a selective growth of the epithelial component of endometrial tissue was obtained after plating unprocessed endometrial tissue fragments on ECM-coated culture dishes. This work was supported by PHS grant no. CA 30289 to J.V.  相似文献   

17.
Optimization of culture conditions for human corneal endothelial cells   总被引:5,自引:0,他引:5  
Summary Long-term cultivation of human corneal endothelial cells (HCEC) was optimized with respect to different components of the culture system: 25 different nutrient media, different sera, 6 mitogens and various substrates were tested in their ability to influence clonal growth and morphology of HCEC. F99, a 1∶1 mixture of the two media M199 and Ham’s F12, was the most effective basal medium in promoting clonal growth of HCEC. Among various sera, human serum and fetal bovine serum showed optimal growth promoting activities in combination with F99, whereas newborn bovine serum (NBS) was by far superior for the development of a typically corneal endothelial morphology. Crude fibroblast growth factor (FGF), or alternatively endothelial cell growth supplement, was absolutely essential for clonal growth of HCEC at low serum concentrations, for example 5% NBS. Formation of a monolayer with a morphology similar to corneal endothelium in vivo was observed only on culture dishes coated with basal membrane components such as collagen type IV, laminin, or fibronectin. The most pronounced effect on morphologic appearance was obtained by culturing the cells on the extracellular matrix (ECM) produced by bovine corneal endothelial cells. Moreover, ECM could substitute for crude FGF in clonal growth assays.  相似文献   

18.
We examined the effect of fibroblast growth factor (FGF) on proteoglycan synthesis by rabbit costal chondrocyte cultures maintained on plastic tissue culture dishes. Low density rabbit costal chondrocyte cultures grown in the absence of FGF gave rise at confluency to a heterogeneous cell population composed of fibroblastic cells and poorly differentiated chondrocytes. When similar cultures were grown in the presence of FGF, the confluent cultures organized into a homogenous cartilage-like tissue composed of rounded cells surrounded by a refractile matrix. The cell ultrastructure and that of the pericellular matrix were similar to those seen in vivo. The expression of the cartilage phenotype in confluent chondrocyte cultures grown from the sparse stage in the presence vs. absence of FGF was reflected by a fivefold increase in the rate of incorporation of [35S]sulfate into proteoglycans. These FGF effects were only observed when FGF was present during the cell logarithmic growth phase, but not when it was added after chondrocyte cultures became confluent. High molecular weight, chondroitin sulfate proteoglycans synthesized by confluent chondrocyte cultures grown in the presence of FGF were slightly larger in size than that produced by confluent cultures grown in the absence of FGF. The major sulfated glycosaminoglycans associated with low molecular weight proteoglycan in FGF-exposed cultures were chondroitin sulfate, while in cultures not exposed to FGF they were chondroitin sulfate and dermatan sulfate. Regardless of whether or not cells were grown in the presence or absence of FGF, the 6S/4S disaccharide ratio of chondroitin sulfate chains associated with high and low molecular weight proteoglycans synthesized by confluent cultures was the same. These results provide evidence that when low density chondrocyte cultures maintained on plastic tissue culture dishes are grown in the presence of FGF, it results in a stimulation of the expression and stabilization of the chondrocyte phenotype once cultures become confluent.  相似文献   

19.
Summary The purpose of this study is to identify optimal culture conditions to support the proliferation of human macrovascular endothelial cells. Two cell lines were employed: human saphenous vein endothelial cells (HSVEC) and human umbilical vein endothelial cells (HUVEC). The influence of basal nutrient media (14 types), fetal bovine serum (FBS), and mitogens (three types) were investigated in relation to cell proliferation. Additionally, a variety of extracellular matrix (ECM) substrate-coated culture dishes were also tested. The most effective nutrient medium in augmenting cell proliferation was MCDB 131. Compared to the more commonly used M199 medium, MCDB 131 resulted in a 2.3-fold increase in cell proliferation. Media containing 20% FBS increased cell proliferation 7.5-fold compared to serum-free media. Among the mitogens tested, heparin (50 μg/ml) and endothelial cell growth supplement (ECGS) (50μg/ml) significantly improved cell proliferation. Epithelial growth factor (EGF) provided no improvement in cell proliferation. There were no statistical differences in cell proliferation or morphology when endothelial cells were grown on uncoated culture plates compared to plates coated with ECM proteins: fibronectin, laminin, gelatin, or collagen types I and IV. The culture environment yielding maximal HSVEC and HUVEC proliferation is MCDB 131 nutrient medium supplemented with 2 mM glutamine, 20% FBS, 50 μg/ml heparin, and 50 μg/ml ECGS. The ECM substrate-coated culture dishes offer no advantage.  相似文献   

20.
Human ovarian tumors metastasize by direct extension into the peritoneal cavity leading to tumor cell implantation onto peritoneal surfaces. Successful formation of peritoneal implants is dependent on the ability of ascitic tumor cells to infiltrate the mesothelium, and become firmly adherent to the underlying extracellular matrix (ECM). In order to investigate this process in more detail, an in vitro model system was developed employing human mesothelial cells grown on ECM-coated culture dishes. The ability of human ovarian carcinoma cells derived from ascitic fluid to attach to the mesothelial cell monolayer grown on ECM, ECM alone or plastic was quantitated with the use of 51Cr radio-labelled tumor cells. Tumor cells exhibited a more rapid and firmer attachment to ECM than to the mesothelial cells or to plastic. Using agitation to stimulate peritoneal fluid dynamics and shear forces in vivo, tumor cell arrest was found to be limited to the ECM, but it occurred at a slower rate than it did without agitation. Tumor cell attachment was also restricted to areas of exposed ECM in wounded mesothelium as assessed by phase-contrast microscopy. Morphologic alterations of the mesothelium induced by tumor cells were observed with the use of scanning electron microscopy (SEM) and immunohistochemical staining which included disruption of intercellular junctions leading to retraction of mesothelial cells, exposure of underlying ECM, subsequent attachment and proliferation on ECM. This model system would appear to be useful for elucidating mechanisms of ovarian tumor cell adhesion and proliferation, and for assessing various therapeutic modalities for their ability to block tumor cell implantation, invasion and growth on peritoneal surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号