首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The marble trout, a lineage of the Salmo trutta complex, is endemic to the Southern Alpine region. Although it is endangered throughout its entire distribution range, population genetic data were lacking for the central area, including the upper Etsch/Adige River system (South Tyrol, Northern Italy). A total of 672 Salmo trutta specimens, comprising phenotypic marble trout and phenotypic brown trout, from 20 sampling sites throughout South Tyrol were analysed by sequencing the complete mitochondrial DNA control region. Thirteen distinct haplotypes were identified, which clustered within three major genetic lineages: the Marmoratus (MA), the Atlantic (AT) and the Danubian (DA) lineage. 41.7% of the investigated individuals carried haplotypes of the MA lineage, 47.9% of the AT lineage and 10.4% of the DA lineage. It is noticeable that AT haplotypes were present at all sampling sites and no “pure” marble trout population with exclusively MA haplotypes was found. This points to a considerable impact of stocking with allochthonous brown trout, given that there is no evidence for natural colonisation by individuals of the AT lineage. However, our data indicate, for at least four localities, a limited gene flow between the native marble trout and hatchery-reared strains. Future conservation and rehabilitation measures will thus have to concentrate on the identification of remnant pure marble trout individuals from such mixed populations. Handling editor: C. Sturmbauer  相似文献   

2.
Understanding the processes underlying diversification can aid in formulating appropriate conservation management plans that help maintain the evolutionary potential of taxa, particularly under human-induced activities and climate change. Here we assessed the microsatellite genetic diversity and structure of three salmonid species, two native (Arctic charr, Salvelinus alpinus and brown trout, Salmo trutta) and one introduced (brook charr, Salvelinus fontinalis), from an alpine lake in sub-arctic Sweden, Lake Ånn. The genetic diversity of the three species was similar and sufficiently high from a conservation genetics perspective: corrected total heterozygosity, H’T = 0.54, 0.66, 0.60 and allelic richness, AR = 4.93, 5.53 and 5.26 for Arctic charr, brown trout and brook charr, respectively. There were indications of elevated inbreeding coefficients in brown trout (GIS = 0.144) and brook charr (GIS = 0.129) although sibling relationships were likely a confounding factor, as a high proportion of siblings were observed in all species within and among sampling locations. Overall genetic structure differed between species, Fst = 0.01, 0.02 and 0.04 in Arctic charr, brown trout and brook charr respectively, and there was differentiation at only a few specific locations. There was clear evidence of hybridisation between the native Arctic charr and the introduced brook charr, with 6% of individuals being hybrids, all of which were sampled in tributary streams. The ecological and evolutionary consequences of the observed hybridisation are priorities for further research and the conservation of the evolutionary potential of native salmonid species.  相似文献   

3.
The spatial and temporal genetic structure of brown trout populations from three small tributaries of Lake Hald, Denmark, was studied using analysis of variation at eight microsatellite loci. From two of the populations temporal samples were available, separated by up to 13 years (3.7 generations). Significant genetic differentiation was observed among all samples, however, hierarchical analysis of molecular variance (AMOVA) showed that differentiation among populations accounted for a non-significant amount of the genetic differentiation, whereas differentiation among temporal samples within populations was highly significant (0.0244, P<0.001). Estimates of effective population size (N e) using a maximum-likelihood based implementation of the temporal method, yielded small values (N e ranging from 33 to 79). When a model was applied that allows for migration among populations, N e estimates were even lower (24–54), and migration rates were suggested to be high (0.13–0.36). All samples displayed a clear signal of a recent bottleneck, probably stemming from a period of unfavourable conditions due to organic pollution in the 1970–1980’s. By comparison to other estimates of N e in brown trout, Lake Hald trout represent a system of small populations linked by extensive gene flow, whereas other populations in larger rivers exhibit much higher N e values and experience lower levels of immigration. We suggest that management considerations for systems like Lake Hald brown trout should focus both on a regional scale and at the level of individual populations, as the future persistence of populations depends both on maintaining individual populations and ensuring sufficient migration links among these populations.  相似文献   

4.
Admixture between wild and captive populations is an increasing concern in conservation biology. Understanding the extent of admixture and the processes involved requires identification of admixed and non-admixed individuals. This can be achieved by statistical methods employing Bayesian clustering, but resolution is low if genetic differentiation is weak. Here, we analyse stocked brown trout populations represented by historical (1943–1956) and contemporary (2000s) samples, where genetic differentiation between wild populations and stocked trout is weak (pairwise FST of 0.047 and 0.053). By analysing a high number of microsatellite DNA markers (50) and making use of linkage map information, we achieve clear identification of admixed and non-admixed trout. Moreover, despite strong population-level admixture by hatchery strain trout in one of the populations (70.8%), non-admixed individuals nevertheless persist (7 out of 53 individuals). These remnants of the indigenous population are characterized by later spawning time than the majority of the admixed individuals. We hypothesize that isolation by time mediated by spawning time differences between wild and hatchery strain trout is a major factor rescuing a part of the indigenous population from introgression.  相似文献   

5.
SUMMARY 1. The large microgeographical differentiation revealed by allozyme studies in brown trout ( Salmo trutta) populations is one of the most striking features of this species. Additionally, allozymes showed great genetic differences between Atlantic and Mediterranean populations on a macrogeographical scale.
2. This study was carried out in order to assess whether the great differences observed between Atlantic and Mediterranean populations persisted where the two are geographically close (the 'microgeographical scale'). Sixteen populations of brown trout, S. trutta , were screened for genetic variation at 25 allozyme loci. The sampling sites, which occupied a relatively small geographical area, were distributed across Cantabrian (Atlantic) and Mediterranean drainages in Northern Spain.
3. The neighbour-joining tree, inferred from Nei's genetic distance, showed that brown trout populations clustered into two different groups. These groups corresponded to the Cantabrian and the Mediterranean groups of populations, although no clear geographical pattern emerged within each of the groups. This geographical pattern is basically caused by significant differences in the frequency distribution of the CK-A1 * locus, with a higher frequency of * 115 in Cantabrian samples (0.586 ± 0.091) while allele * 100 was more frequent in Mediterranean samples (0.931 ± 0.038). In addition, this study revealed alleles exclusive to the Mediterranean and Cantabrian populations, agreeing with previous findings.
4. Genetic differentiation between Cantabrian and Mediterranean regions (14.19%) was similar to that estimated in Spain at a larger scale (13%), showing that most of the differences between the regions can be observed even in a small geographical area.  相似文献   

6.
The identification of pure indigenous fish from hybridised populations represents a key issue in fisheries management and conservation biology. In the present study an approach for selection of purebred marble trout (Salmo trutta marmoratus C.) individuals out of admixed populations was set up and assessed. In a first step, baseline data sets of pure marble trout and pure brown trout specimens based on twelve microsatellite loci were used to simulate five consecutive generations of admixture. The baseline and the resulting simulation data sets were then combined with data of a ‘real’ hybridised marble trout population to perform a single individual assignment test as implemented in STRUCTURE. By this procedure the assignment approach was calibrated and it was possible to compare admixture coefficients obtained for individuals from different populations. The ranking of individual admixture coefficients on a plot and comparison with simulated data revealed that the test population was composed of pure marble trout individuals, first generation hybrids between marble trout and brown trout, and hybrid backcross specimens between both groups. However, by defining a critical q-value of 0.1 and additionally integrating individual sequence data of the mtDNA control region, it was possible to indicate individuals, which could be selected for the establishment of a pure marble trout strain.  相似文献   

7.
Conservation of species should be based on knowledge of effective population sizes and understanding of how breeding tactics and selection of recruitment habitats lead to genetic structuring. In the stream‐spawning and genetically diverse brown trout, spawning and rearing areas may be restricted source habitats. Spatio–temporal genetic variability patterns were studied in brown trout occupying three lakes characterized by restricted stream habitat but high recruitment levels. This suggested non‐typical lake‐spawning, potentially representing additional spatio–temporal genetic variation in continuous habitats. Three years of sampling documented presence of young‐of‐the‐year cohorts in littoral lake areas with groundwater inflow, confirming lake‐spawning trout in all three lakes. Nine microsatellite markers assayed across 901 young‐of‐the‐year individuals indicated overall substantial genetic differentiation in space and time. Nested gene diversity analyses revealed highly significant (≤P = 0.002) differentiation on all hierarchical levels, represented by regional lakes (FLT = 0.281), stream vs. lake habitat within regional lakes (FHL = 0.045), sample site within habitats (FSH = 0.010), and cohorts within sample sites (FCS = 0.016). Genetic structuring was, however, different among lakes. It was more pronounced in a natural lake, which exhibited temporally stable structuring both between two lake‐spawning populations and between lake‐ and stream spawners. Hence, it is demonstrated that lake‐spawning brown trout form genetically distinct populations and may significantly contribute to genetic diversity. In another lake, differentiation was substantial between stream‐ and lake‐spawning populations but not within habitat. In the third lake, there was less apparent spatial or temporal genetic structuring. Calculation of effective population sizes suggested small spawning populations in general, both within streams and lakes, and indicates that the presence of lake‐spawning populations tended to reduce genetic drift in the total (meta‐) population of the lake.  相似文献   

8.
Joy N  Prasanth VP  Soniya EV 《Genetica》2011,139(8):1033-1043
The genotypes of black pepper are morphologically and genotypically highly diverse and carry all the cumulative variations inherited and maintained through generations. The present study describes the Simple Sequence Repeat (SSR) or microsatellite based assessment of genetic diversity among forty popular genotypes and four different species of black pepper in Southern region of India. For isolation of SSR primers, our earlier attempts with enrichment strategies like ‘Triplex affinity capture’ did not extract a single SSR primer due to close proximity of restriction sites to the SSR motif. Hence we developed a ‘Sequential Reverse Genome Walking (SRGW)’ strategy with better enrichment efficiency of 72% that generated seven new SSR primers. Genotyping precisely discriminated majority of genotypes which indicated that the SSR primers are very informative. A total of 62 alleles with an average of 15.5 alleles over 4 loci were identified. All the SSR primers showed an average Polymorphism Information Content (PIC) value of 0.85. The estimated average Shared Allele Frequency ranged between 1.57 and 20.12%. The PCA plot revealed four closely related individual groups and identified Karimunda, Wild pepper and a local landrace ‘local b’ as the most divergent genotypes. Cluster analysis exposed the genetic relatedness between hybrids and selections with other known cultivars. The introduction of black pepper from South India to Malaysia was emphasized from the observation of genetic similarity of Malaysian cultivar ‘Kuching’ with other indigenous popular cultivars. The study was first to portray the precise genetic relatedness among the major indigenous genotypes of black pepper.  相似文献   

9.
Synopsis Many recognised species of coral reef fishes exhibit two or more colour variants, but it is unknown whether these represent genetically identical phenotypes, genetic polymorphisms or closely related species. We tested between these alternatives for two colour morphs of the coral reef fish, Pseudochromis fuscus, from Lizard Island (Great Barrier Reef). A molecular analysis using mtDNA did not detect any genetic differentiation between co-occurring ‘yellow’ and ‘brown’ colour morphs. A previous study proposed that these two colour morphs are aggressive mimics of yellow and brown damselfishes. Here, a manipulative field experiment was used to evaluate whether the colour dimorphism in P. fuscus is a phenotypic response to the presence of two different model species. Colonies of either yellow or brown damselfish species were established on different patch reefs, and each of the two different P. fuscus morphs was then placed on the different reefs. Contrary to expectations, all yellow individuals that stayed on the reefs changed to brown, regardless of the model species. No brown individuals changed to the yellow colouration. However, P. fuscus were more likely to emigrate from, or suffer higher mortality on, patch reefs where they were not matched with similarly coloured models. Clearly, yellow and brown P. fuscus are members of a single species with sufficient phenotypic plasticity to switch from yellow to brown colouration.  相似文献   

10.
Reyes A  Ochando MD 《Genetica》1998,104(1):59-66
Ceratitis capitata is one of the most important pest species in the tropical and temperate regions of the world, however, genetic knowledge of this species is still very limited. In the present study, we have attempted for the first time an analysis of the genetic variability in seven natural populations of C. capitata by means of abundant soluble proteins, combining high resolution techniques such as polyacrylamide gel electrophoresis and silver staining methods. A total of 66 polypeptides have been analyzed. The results show the existence of a decreasing trend in the ‘levels’ of polymorphism from the southern areas to the northern that is correlated with the latitude of the sampling areas, most probably due to the colonization process of the Iberian Peninsula. On the other hand, and with relation to the ‘pattern’ of the variability, a geographic differentiation (not strictly latitudinal) is detected when an UPGMA clustering method was applied to the data. Moreover, principal component anaysis has revealed that a part of this differentiation could be explained in relation with environmental factors such as annual rainfall and minimum temperature in winter months. This is suggesting that selection (added to the historical process) could be playing an important role in the process of geographic differentiation, ‘shaping’ the pattern of that variability. No host-related differentiation has been observed in these samples. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
We combine evidence from small-scale experiments with a large-scale field survey to clarify the roles of biotic resistance and pre-adapted habitat niche segregation to the invasion success of the North American brook trout (Salvelinus fontinalis) in North European streams previously dominated by brown trout (Salmo trutta). Interspecific aggressions among the two species were negligible, yet there was distinct habitat niche segregation between them: brook trout occupied mainly pool habitats while brown trout tended to reside in fast-flowing riffles. Habitat niche segregation among brook trout and brown trout prevailed across a wide array of scales from experimental flumes to entire drainage systems, although the segregation pattern was weaker in the field. Habitat differentiation among the two species reflected their differential habitat requirements, suggesting that a match between a species’ niche requirements in its native range and habitat availability in the new environment is a prerequisite for understanding invasion success.  相似文献   

12.
When an indigenous insect becomes a pest, comparisons of performance of pest and non-pest populations on crop plants and of genetic variation in that performance may provide insight into the evolution of pest populations. To measure such genetic variation, 8–15 clones of the grape phylloxera (Daktulosphaira vitifoliae Fitch) were collected from wild grapevines in each of 3 geographically isolated sites (populations) and from commercial vineyards in northern California. A complete life table was made for clonal replicates from populations collected from wild grapevines on each of two commercial grape cultivars, the susceptibleVitis vinifera (L.) cultivar Cabernet Sauvignon, and the phylloxera-resistant rootstock ‘AxR # 1’. Variation in mean performance on these two hosts was partitioned among clones within collection sites and among sites. Performance measures included an individual analog to the intrinsic rate of increase (r), age at first oviposition, fecundity in the first ten days of reproduction, total fecundity, and longevity. The overall performance of phylloxera from the wild grapevines on the resistant cultivar AxR # 1 was greater than or equal to that on the susceptible cultivar Cabernet Sauvignon. There was significant variation among clones within populations from wild grapes in the rate of increase on ‘AxR # 1’ and marginally significant clonal variation in some of the component paramters. There was no significant variation among clones within populations on ‘Cabernet Sauvignon’ and no significant differences between populations on either crop in any trait. In a second experiment we compared the relative performance of 15–17 clones from wild grapevines and from commercial vineyards when reared on ‘Cabernet Sauvignon’ and ‘AxR # 1’. Phylloxera from commercial vineyards had much higher overall performance on ‘Cabernet Sauvignon’ than did phylloxera from the wild grapevines. Phylloxera from the commercial vineyard also had higher performance on ‘Cabernet Sauvignon’ than on ‘AxR′ 1’ but the performance of the phylloxera from wild and commercial grapes did not differ on ‘AxR # 1’. Our results show that there is genetic variation in traits related to performance on a resistant rootstock within these indigenous non-pest populations of phylloxera, but not among them. The pattern of performance of pest and non-pest populations on two commercial cultivars suggests that current levels of phylloxera performance on crop cultivars are the result of adaptation to those cultivars which has occurred while phylloxera has been associated with viticulture. Implications of these results for understanding the recent adaptation of phylloxera to ‘AxR # 1’ in California are also discussed.  相似文献   

13.
 Isozyme analysis of seed samples derived from natural and managed populations of the tropical pine Pinus caribaea vars ‘bahamensis’ and ‘caribaea’ was used to assess population genetic structure in its native range and to detect changes occurring during early domestication of the species. Baseline data from natural populations of the two varieties showed that populations sampled as seed are characterized by high gene diversity (mean He=0.26) and a low level of inbreeding ( mean Fis=0.15). A UPGMA tree of genetic relatedness among populations indicates that the two varieties represent distinct evolutionary units. Within each variety there is significant differentiation among populations, and this is greater for the more fragmented populations of var ‘bahamensis’ (Fst=0.08) than for var ‘caribaea’ (Fst=0.02). Seed from a seed orchard population of var ‘caribaea’ established within its natural range showed no change in genetic diversity but did show a reduced inbreeding coefficient (Fis=0.09) compared with its progenitor populations, suggesting a decrease in selfing and/or biparental inbreeding. A bulked seed sample from an exotic plantation of var ‘bahamensis’ in Australia displayed a large increase in the inbreeding coefficient (Fis=0.324) compared with that found in natural populations, possibly due to elevated self-fertilization. Finally, a bulked seed sample from an exotic plantation population of var ‘caribaea’ from China showed enhanced genetic diversity, an increase in the inbreeding coefficient and more linkage disequilibrium than its presumed progenitor populations. It was also genetically divergent from them. RFLP analysis of chloroplast DNA variation in the Chinese sample suggested that seeds of the related taxa P. elliottii and P. taeda, or seeds derived from hybridization with these taxa growing in the seed production area, had been included in the seed crop during harvesting. We conclude that monitoring of appropriate genetic markers may be an effective means of identifying potentially deleterious genetic changes occurring during forest tree domestication. Received: 10 August 1998 / Accepted: 8 September 1998  相似文献   

14.
This paper reports about the occurrence of soft-muzzled trout in Montenegro. It was found only in the Zeta River, at three localities, always in low abundance. Results of genetic investigation on twelve microsatellite loci (i.e., high Fst and high heterozygozity values) as well as lack of hybridization with the putative brown trout unequivocally confirm that the soft-muzzled trout from the Zeta River is a species distinct from the putative brown (Salmo cf. farioides) and marble (Salmo marmoratus) trout that live in sympatry with it. This paper also confirms high genetic diversity of Zeta River soft - muzzled trout population. Habitat and feeding analyses revealed that soft-muzzled trout reduce the competition with syntopic putative brown trout by displacing as the bottom-dweller in their common type of habitat, as well as by narrowing its feeding niche and feeding dominantly with the benthic macroinvertebrates, the Gammarus shrimps as their far dominant feeding item. Results also revealed that they did not share the same habitat with marble trout. Due to this population low abundance and their importance on species level, Zeta River soft-muzzled trout conservation needs are urgent in terms of in situ protection and repopulation measures.  相似文献   

15.
Populations of the marble trout (Salmo marmoratus) have declined critically due to introgression by brown trout (Salmo trutta) strains. In order to define strategies for long-term conservation, we examined the genetic structure of the 8 known pure populations using 15 microsatellite loci. The analyses reveal extraordinarily strong genetic differentiation among populations separated by < 15 km, and extremely low levels of intrapopulation genetic variability. As natural recolonization seems highly unlikely, appropriate management and conservation strategies should comprise the reintroduction of pure populations from mixed stocks (translocation) to avoid further loss of genetic diversity.  相似文献   

16.
Genetic variability in random amplified polymorphic DNA (RAPD) was studied in 90 individuals of Caragana microphylla, an outcrossing perennial shrub species, from five natural populations sampled in Inner Mongolia steppe of China on a small scale. Nineteen selected primers were used to amplify DNA samples, and totally 225 bands were detected. The percentage of polymorphic bands within populations ranged form 58.22% to 63.56%, with an average of 60% at the population level and 71.11% at the species level, indicating relatively high genetic variations in C. microphylla species. Shannon’s information index (l) and Nei’s gene diversity (h) showed the similar trend with each other. According to the analysis of Nei’s gene diversity, the percentage of genetic variation among populations was 7.13%, indicating a low level of genetic differentiation among populations. There existed a strong gene flow (N m = 3.26) among populations. Although AMOVA analysis also revealed most variation was within populations (ΦST = 4.1%), a significant proportion was observed among populations (P < 0.001) in the present study, suggesting genetic differentiation occurred among populations at a certain extent. Based on Mantel’s tests and the results of previous studies, the genetic structure pattern of C. microphylla accorded with the isolation-by-distance model on a very large scale, however, on a small scale, the significant genetic differentiation among populations might be enhanced by the micro-environmental divergence among the sampling sites, rather than by geographic factors. Analysis of the genetic variations of C. microphylla populations provided useful information for the adaptive strategy of Caragana species.  相似文献   

17.
Temporal and spatial distribution patterns of lotic larval trichopteran assemblages in relation to environmental variables were investigated in Madeiran streams using multivariate analyses. TWINSPAN classification detected distinct faunal assemblages related to spatial factors between non-polluted high altitude sites and lower lying enriched sites where tolerant taxa were predominant but showed strong seasonal shifts in species composition and abundance. The 15 TWINSPAN end groups were grouped into five arbitrary clusters based upon the seasonal and spatial changes in the trichopteran assemblages detected by the analysis. Significant differences between environmental variables (distance from source, altitude, temperature, conductivity, alkalinity and nitrate) and the trichopteran assemblages (using trichopteran based metrics) of these clusters were confirmed by the Kruskal-Wallis test (H) and Dunn’s test. Chemical classification of samples within the clusters revealed a strong association between trichopteran assemblages and water quality. Canonical Correspondence Analysis and Monte Carlo global permutation tests also identified significant associations between the larval assemblages and physicochemical variables such as temperature and conductivity along a strong physical gradient (altitude, slope) and nitrate along a weaker seasonal gradient. Analysis of functional feeding group distribution patterns clearly showed that mid to high altitude indigenous woodland sites were trophically diverse whilst the lower reaches of the islands streams are trophically impoverished with strong seasonal shifts between two feeding groups of enrichment tolerant taxa. Trichopteran shredders are exclusive to indigenous woodland sites, indicating a limited distribution associated with land use, allochthonous input and habitat destruction. The results indicate that several ‘environmental filters’ operate at different levels upon the islands trichopteran fauna, producing temporally and spatially distinct ‘subsets’ of species best able to exploit conditions and resources at a given site or time, confounding the direct comparison of these insular systems with the findings of the River Continuum Concept, traditionally associated with unaffected continental lotic systems.  相似文献   

18.
Comparisons of the genetic composition of brown trout Salmo trutta captured by anglers and by electrofishing based on three diagnostic microsatellite loci provided strong evidence that angling is selective in a stocked brown trout population. At two sites, anglers caught significantly younger trout and proportionally more introduced hatchery trout and hybrids than were observed in electrofishing surveys. Selective angling, in combination with a small legal catch size, may have considerably eliminated introduced trout and hybrids before spawning at the study sites, and thus may have reduced the introgression of alien genes into the local gene pool. Angling can be an important factor influencing the genetic structure of fish populations and should be taken into account in studies of introgressive hybridization in stocked fish populations and their management. In this study, demographic consequences of stocking were not assessed. Thus, even though the genetic consequences of stocking may be minimal or largely reversible through angling, resource competition between native and introduced trout, until they reach legal catch size, is expected to have a negative effect on the productivity of the indigenous trout population.  相似文献   

19.
Invasions occurring in natural environments provide the opportunity to study how vital rates change and life histories evolve in the presence of a competing species. In this work, we estimate differences in reproductive traits, individual growth trajectories, survival, life histories and population dynamics between a native species living in allopatry and in sympatry with an invasive species of the same taxonomic Family. We used as a model system marble trout Salmo marmoratus (native species) and rainbow trout Oncorhynchus mykiss (non-native) living in the Idrijca River (Slovenia). An impassable waterfall separates the stream into two sectors only a few 100 meters apart: a downstream sector in which marble trout live in sympatry with rainbow trout and an upstream sector in which marble trout live in allopatry. We used an overarching modelling approach that uses tag-recapture and genetic data (>2,500 unique marble and rainbow trout were sampled and genotyped) to reconstruct pedigrees, test for synchrony of population dynamics and model survival and growth, while accounting for individual heterogeneity. The population dynamics of the two marble trout populations and of rainbow trout were synchronous. We found higher prevalence of younger parents, higher mortality and lower population density in marble trout living in sympatry with rainbow trout than in marble trout living in allopatry. There were no differences in the average individual growth trajectories between the two marble trout populations. Faster life histories of marble trout living in sympatry with rainbow trout are consistent with predictions of life history theory.  相似文献   

20.
In order to devise adequate conservation and management strategies for endangered species, it is important to incorporate a reliable understanding of its spatial population structure, detecting the existence of demographic partitions throughout its geographical range and characterizing the distribution of its genetic diversity. Moreover, in species that occupy fragmented habitats it is essential to know how landscape characteristics may affect the genetic connectivity among populations. In this study we use eight microsatellite markers to analyze population structure and gene flow patterns in the complete geographic range of the endangered rodent Ctenomys porteousi. Also, we use landscape genetics approaches to evaluate the effects of landscape configuration on the genetic connectivity among populations. In spite of geographical proximity of the sampling sites (8–27 km between the nearest sites) and the absence of marked barriers to individual movement, strong population structure and low values of gene flow were observed. Genetic differentiation among sampling sites was consistent with a simple model of isolation by distance, where peripheral areas showed higher population differentiation than those sites located in the central area of the species’ distribution. Landscape genetics analysis suggested that habitat fragmentation at regional level has affected the distribution of genetic variation among populations. The distance of sampling sites to areas of the landscape having higher habitat connectivity was the environmental factor most strongly related to population genetic structure. In general, our results indicate strong genetic structure in C. porteousi, even at a small spatial scale, and suggest that habitat fragmentation could increase the population differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号