首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phosphatidyl-N,N-dimethylethanolamine (PDME), an intermediate in the formation of phosphatidylcholine (PC) by the sequential methylation of phosphatidylethanolamine (PE), was purified from rat brain and its fatty acid (FA) composition compared with those of brain PC and PE. The proportion of polyunsaturated fatty acids (PUFAs) in the PDME (29.8%) was similar to that of PE (27.7%) and much greater than in PC (2.8%). Like the PUFAs of PE, the major PUFAs found in PDME were arachidonic acid (20:4) and docosahexaenoic acid (22:6). An isotopic method was developed to quantify the PDME purified from brain; a tritiated methyl group from CH3I was transferred to the PDME in the presence of cyclohexylamine to form [3H]PC, and the radioactivity of the PC was then counted. The concentration of rat brain PDME obtained using this method (33.0 +/- 1.8 micrograms/g brain) was very similar to that obtained using quantitative GLC analysis of its FAs (36.9 +/- 1.8 micrograms/g). The FAs in the PE and PC of rat brain synaptosomes were also analyzed; too little PDME was present in synaptosomes to permit similar analysis. The percentage of unsaturated FAs insynaptosomal PE was even higher (43.4 vs. 27.7) than that in PE prepared from whole brain. Since synaptosomes have a very high activity of phosphatidyl-N-methyltransferase, the enzyme complex that methylates PE to form PC, this enzyme may serve, in nerve endings, to produce a particular pool of PC, rich in PUFAs, which may have a distinct physiological function.  相似文献   

2.
3.
Abstract: In a previous work, we calculated the dietary α-linolenic requirements (from vegetable oil triglycerides) for obtaining and maintaining a physiological level of (n-3) fatty acids in developing animal membranes as determined by the cervonic acid content [22:6(n-3), docosahexaenoic acid]. The aim of the present study was to measure the phospholipid requirement, as these compounds directly provide the very long polyunsaturated fatty acids found in membranes. Two weeks before mating, eight groups of female rats (previously fed peanut oil deficient in α-linolenic acid) were fed different semisynthetic diets containing 6% African peanut oil supplemented with different quantities of phospholipids obtained from bovine brain lipid extract, so as to add (n-3) polyunsaturated fatty acids to the diet. An additional group was fed peanut oil with rapeseed oil, and served as control. Pups were fed the same diet as their respective mothers, and were killed at weaning. Forebrain, sciatic nerve, retina, nerve endings, myelin, and liver were analyzed. We conclude that during the combined maternal and perinatal period, the (n-3) fatty acid requirement for adequate deposition of (n-3) polyunsaturated fatty acids in the nervous tissue (and in liver) of pups is lower if animals are fed (n-3) very long chain polyunsaturated fatty acids found in brain phospholipids [this study, ˜60 mg of (n-3) fatty acids/100 g of diet, i.e., ˜130 mg/1,000 kcal] rather than α-linolenic acid from vegetable oil triglycerides [200 mg of (n-3) fatty acids/100 g of diet, i.e., ˜440 mg/1,000 kcal].  相似文献   

4.
Fatty acids are essential for numerous cellular functions. They serve as efficient energy storage molecules, make up the hydrophobic core of membranes, and participate in various signaling pathways. Caenorhabditis elegans synthesizes all of the enzymes necessary to produce a range of omega-6 and omega-3 fatty acids. This, combined with the simple anatomy and range of available genetic tools, make it an attractive model to study fatty acid function. In order to investigate the genetic pathways that mediate the physiological effects of dietary fatty acids, we have developed a method to supplement the C. elegans diet with unsaturated fatty acids. Supplementation is an effective means to alter the fatty acid composition of worms and can also be used to rescue defects in fatty acid-deficient mutants. Our method uses nematode growth medium agar (NGM) supplemented with fatty acidsodium salts. The fatty acids in the supplemented plates become incorporated into the membranes of the bacterial food source, which is then taken up by the C. elegans that feed on the supplemented bacteria. We also describe a gas chromatography protocol to monitor the changes in fatty acid composition that occur in supplemented worms. This is an efficient way to supplement the diets of both large and small populations of C. elegans, allowing for a range of applications for this method.  相似文献   

5.
The degree to which fatty acids modulate brain function beyond periods of rapid brain growth is poorly understood. Nevertheless, recent evidence suggests that dietary fatty acid composition influences numerous behaviors including body temperature regulation, pain sensitivity, feeding behavior including macronutrient selection, and cognitive performance. Importantly, alterations are observed in the absence of essential fatty acid (EFA) deficiency, beyond periods of rapid brain development, and at levels similar to those consumed by the North American population. Data suggest that the content of saturated fatty acids (SFAs), and not that of the EFAs, may be the important component of dietary fat mediating macronutrient selection and cognition under these experimental conditions. Yet, a direct role of SFAs in modulating brain functions has not been elucidated. A discussion of potential mechanisms which may directly involve the central nervous system, or may indirectly influence central processes via peripheral pathway(s) is presented.  相似文献   

6.
Early recognition of pathological processes in CNS by the biotesting method allows correcting these processes since the prenatal period. A natural product, epaden, produced from fat of marine hydrobionts ( -3-polyunsaturated fatty acids) has an antiaggregation and antioxidant activity, as well as a pronounced adaptogenic, protective, and reducing action. Addition of epaden to diet of pregnant rats decreases twofold fetal lethality under effect of peptide factors causing disturbances of motor activity in newborns, increases viability index, leads to normalization of simple motor acts, and prevents from development of severe motor disorders in rat pups. A preliminary administration of epaden and its simultaneous administration with pathogenic factors produce a more pronounced positive effect than the subsequent treatment of induced embryological and motor disturbances.  相似文献   

7.
ABSTRACT

Polyunsaturated fatty acids like EPA and DHA have attracted a great attention due to their beneficial effects on human health. At present, fish oil is the major source of EPA and DHA. Various alternative sources are being explored to get these essential fatty acids. Genes encoding enzymes involved in the biosyntheses of PUFAs have been identified, cloned and gene prospecting becomes a novel method for enhanced PUFA production. Desaturase and elongase genes have important biotechnological appeal from genetic engineering point of view. This review highlights the research and results on such enzymes.  相似文献   

8.
Polyunsaturated fatty acids (PUFAs) are essential nutrients for animals and necessary for the normal functioning of the nervous system. A lack of PUFAs can result from the consumption of a deficient diet or genetic factors, which impact PUFA uptake and metabolism. Both can cause synaptic dysfunction, which is associated with numerous disorders. However, there is a knowledge gap linking these neuronal dysfunctions and their underlying molecular mechanisms. Because of its genetic manipulability and its easy, fast, and cheap breeding, Drosophila melanogaster has emerged as an excellent model organism for genetic screens, helping to identify the genetic bases of such events. As a first step towards the understanding of PUFA implications in Drosophila synaptic physiology we designed a breeding medium containing only very low amounts of PUFAs. We then used the fly’s visual system, a well-established model for studying signal transmission and neurological disorders, to measure the effects of a PUFA deficiency on synaptic function. Using both visual performance and eye electrophysiology, we found that PUFA deficiency strongly affected synaptic transmission in the fly’s visual system. These defects were rescued by diets containing omega-3 or omega-6 PUFAs alone or in combination. In summary, manipulating PUFA contents in the fly’s diet was powerful to investigate the role of these nutrients on the fly´s visual synaptic function. This study aims at showing how the first visual synapse of Drosophila can serve as a simple model to study the effects of PUFAs on synapse function. A similar approach could be further used to screen for genetic factors underlying the molecular mechanisms of synaptic dysfunctions associated with altered PUFA levels.  相似文献   

9.
Free Fatty Acids in the Rat Brain in Moderate and Severe Hypoxia   总被引:4,自引:16,他引:4  
Abstract: The effects of mild, moderate, and severe hypoxia on cerebral cortical concentrations of free fatty acids (FFAs) were investigated in artificially ventilated rats under nitrous oxide anaesthesia. No change occurred during either mild (arterial Po2 35–40 mm Hg) or moderate (Po2 25–30 mm Hg) hypoxia. The effects of severe hypoxia (Po2 about 20 mm Hg) combined with hypotension (mean arterial blood pressure 80–85 mm Hg) varied with the EEG pattern and the tissue energy state. Thus, a major increase in total as well as in individual FFAs occurred first when EEG was severely depressed (almost isoelectric) and energy homeostasis disrupted. On a relative basis the greatest change occurred in free arachidonic acid. It is concluded that hypoxia is associated with an increase in the concentrations of FFAs in brain tissue, provided that tissue oxygen deficiency is severe enough to cause tissue energy failure. However, an increase in FFAs does not invariably accompany minor reductions in the adenylate energy charge (EC) of the tissue.  相似文献   

10.

Aim

To evaluate the influence of dietary lipid quality on the body mass, carbohydrate metabolism and morphology of the rat ventral prostate.

Materials and Methods

Wistar rats were divided into four groups: SC (standard chow), HF-S (high-fat diet rich in saturated fatty acids), HF-P (high-fat diet rich in polyunsaturated fatty acids) and HF-SP (high-fat diet rich in saturated and polyunsaturated fatty acids). We analyzed body mass, fat mass deposits, plasma blood, insulin resistance and the ventral prostate structure.

Results

Groups that received high-fat diets were heavier and presented larger fat deposits than SC group. The HF-S and HF-SP groups had higher glucose, insulin and total cholesterol serum levels and insulin resistance compared with the SC. The acinar area, epithelium height and area density of the lumen were higher in the HF-SP than in the other groups. The epithelium area density and epithelial cell proliferation were greater in the HF-P and HF-SP than in the SC group. All of the groups that received high-fat diets had greater area density of the stroma, area density of smooth muscle cells and stromal cell proliferation compared with the SC group.

Conclusion

Diets rich in saturated and/or polyunsaturated fatty acids induced overweight. Independently of insulin resistance, polyunsaturated fatty acids increased prostate stromal and epithelial cell proliferation. Saturated fatty acids influenced only stromal cellular proliferation. These structural and morphometric alterations may be considered risk factors for the development of adverse remodeling process in the rat ventral prostate.  相似文献   

11.
Abstract: Biochemical characteristics of brain microsomal membranes were examined before and after the brightness-discrimination learning tasks in rats that were fed either safflower oil (α-linolenate-deficient) or perilla oil (α-linolenate-sufficient) diets. We detected small changes in the chain elongation system for polyunsaturated fatty acids in microsomes, whereas no significant difference was detected in the inositol trisphosphate-induced calcium release and ATP-induced calcium uptake profiles of microsomes between the two dietary groups. The calcium ion-induced aggregation rate of microsomes was determined in both groups. We found that the aggregation rate of microsomes in the safflower oil group was significantly greater than that in the perilla oil group. The difference in susceptibility of microsomal membrane phospholipids to phospholipase A2 between the groups was obvious, and the amount of released fatty acids by phospholipase A2 from the perilla oil group microsomes was nearly half of that from the safflower oil group microsomes after the learning task. Susceptibility of sialic acids on the brain microsomal membranes to exogenous sialidase was different only after the learning task in the safflower and perilla oil groups. These results suggest that the biochemical characteristics of membrane surfaces of brain microsomes are affected significantly by the learning task itself in a dietary oil-dependent manner.  相似文献   

12.
Modification of endogenous eicosanoid synthesis by dietary n-3 fatty acid supplementation reduces febrile responses, but the mechanisms underlying these effects in vivo have not been determined. In the present study, local inflammation was induced by intramuscular injection ofturpentine in rats fed control or n-3 supplemented diets for 8-9 weeks. In animals fed the control diet, turpentine induced fever, hypermetabolism, marked local inflammation (oedema), increased plasma IL-6 concentrations and raised cerebrospinal fluid (CSF) concentrations of PGE2. N-3 fatty acid supplementation significantly inhibited the rise in CSF PGE2, fever and hypermetaboHsm induced by turpentine. Local inflammation and increased plasma IL-6 concentrations were not affected by n-3 supplementation. These findings suggest that modification of dietary fat intake inhibits fever via reduced release of prostaglandins, probably within the brain, but does not affect the local or afferent signals involved in fever generation.  相似文献   

13.
The Polyunsaturated Fatty Acids of Marine Dinoflagellates   总被引:1,自引:0,他引:1  
SYNOPSIS. Eight photosynthetic and one heterotrophic, marine dinoflagellates were cultured axenically in chemically defined media and their fatty acids characterized. Palmitic, octadecatetraenoic and docosahexaenoic were the most typical fatty acids. Photosynthetic forms also contained the polyunsaturates icosapentaenoic acid and α-linolenic acid, the latter as a relatively minor component. The galactolipids of one photosynthetic species, Glenodinium sp., were isolated and their fatty acids analyzed. Octadecatetraenoic acid was the predominant fatty acid, particularly of the monogalactosyl diglyceride fraction.
The relationship of these findings to the body of knowledge of the photosynthesis-associated lipids of eucaryotic microbes and to the ecology of polyunsaturated fatty acids in marine food chains is discussed.  相似文献   

14.
Abstract: This study was undertaken to explore the metabolic fate of acetyl- l -carnitine in rat brain. To measure the flux of carbon atoms into anabolic processes occurring at regional levels, we have injected [1-14C]acetyl- l -carnitine into the lateral brain ventricle of conscious rats. After injection of [1-14C]acetyl- l -carnitine, the majority of radioactivity was recovered as 14CO2 expired (60% of that injected). The percentage of radioactivity recovered in brain was 1.95, 1.60, 1.30, and 0.93% at 1, 3, 6, and 22 h, respectively. Radioactivity distribution in various lipid components indicated that the fatty acid moiety of phospholipid contained the majority of radioactivity. The radioactive profile of these fatty acids showed that the acetyl moiety of acetyl- l -carnitine was incorporated into saturated (60%), monounsaturated (15%), and polyunsaturated (25%) fatty acids [mainly present in 20:4 (5.2%) and 22:6 (7.8%)]. Injection in the brain ventricle of radioactive glucose, the major source of acetyl-CoA in the CNS, revealed that glucose was a precursor of saturated (85%) and monounsaturated (15%) but not of polyunsaturated fatty acids. Thus, this study demonstrated distinct fates of glucose and acetyl- l -carnitine following intracerebroventricular injection. In summary, these data implicate acetyl- l -carnitine as an important member of a complex acetate trafficking system in brain lipid metabolism.  相似文献   

15.
The acylation of rat brain proteolipid protein (PLP) with tritiated palmitic, oleic, and myristic acids was studied in vivo and in vitro and compared with the acylation of lipids. Twenty-four hours after intracranial injection of [3H]myristic acid, only 16% of the PLP-bound label appeared as myristic acid, with 66% as palmitic, 9% as stearic, and 6% as oleic acid, whereas greater than 63% of the label in total or myelin phospholipid was in the form of myristic acid. In contrast, after labelling with [3H]palmitic or oleic acids, 75% and 86%, respectively, of the radioactivity in PLP remained in the original form. When brain tissue slices were incubated for short periods of time, the incorporation of palmitic and oleic acids into PLP exceeded that of myristic acid by a factor of 8. In both systems and with all precursors studied, the label associated with PLP was shown to be in ester linkage. The results suggest a preferential acylation of PLP with palmitic and oleic acids as compared with myristic acid. This is consistent with the fatty acid composition of the isolated PLP.  相似文献   

16.
17.
The polar lipids and fatty acids of the microalgae Pavlova lutheriwere analyzed. The principal polar lipid components were monogalactosyldiacylglycerol(MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol(SQDG), 1,2-diacylglyceryl-O-2'-hydroxymethyl-(N,N,N-trimethyl)-rß-alanine(DGTA) and 1,2-diacylglyceryl-3-O-carboxyhydroxymethylcholine(DGCC). Each polar lipid had a different set of combinationsof fatty acids, the most characteristic feature being the localizationof polyunsaturated fatty acids in the betaine lipids. The percentagesof polyunsaturated fatty acids in DGTA and DGCC were 70% and50%, respectively, and these fatty acids were localized at theC-2 position in the betaine lipids. An analysis of the incorporationof 14C-labelled compounds into the algal cells indicated theinvolvement of DGCC in acyl exchange. (Received October 17, 1994; Accepted October 2, 1995)  相似文献   

18.
Journal of Ichthyology - The review considers probable ways to overcome the deficiency of eicosapentaenoic and docosahexaenoic acids in the human diet through the rational development of...  相似文献   

19.
微生物多不饱和脂肪酸的研究进展   总被引:8,自引:1,他引:8  
介绍了多不饱和脂肪酸(PUFAs)的微生物来源在微生物体内的代谢途径、分子生物学研究进展以及微生物的发酵生产状况。重点论述了微生物PUFAs的最新分子生物学研究进展。  相似文献   

20.
Abstract: The biochemical and morphological effects of polyunsaturated fatty acids on fetal brain cells grown in a chemically defined medium were studied. Fetal brain cells were dissociated from mouse cerebral hemispheres taken on the 16th day of gestation. After cells had grown in chemically defined medium for 8 days, the proportion of polyunsaturated fatty acids of cultured cells was only one-half of that observed at day 0 and about 1.5 times less than that of cells grown in serum-supplemented medium. Fatty acid 20:3(n-9) was present in cultured cells grown in either chemically defined or serum-supple-mented medium. demonstrating the deficiency of essential fatty acids. The reduced amount of polyunsaturated fatty acids in cells grown in the chemically defined medium was balanced by an increase in monounsaturated fatty acids. The saturated fatty acids were not affected. When added at the seeding time, linoleic, linolenic, arachidonic, or docosahexaenoic acid stimulated the proliferation of small dense cells. Besides, we demonstrate that each of the four fatty acids studied was incorporated into phospholipids. Adding fatty acids of the n-6 series increased the content of n-6 fatty acids in the cells, but also provoked an increase in the n-3 fatty acids. Among several combinations of fatty acids, only 20:4 and 22:6, when added to the culture in a ratio of 2:1, restored a fatty acid profile similar to controls (i.e. in vivo tissue taken at post- natal dav 5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号