首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Asthma is a chronic inflammatory disorder of the airways interacting with altered structure and function of the formed elements including smooth muscle. While atopy and polarization of the airway T-cell response toward a Th-2 phenotype are important factors in asthma pathogenesis, there is increasing realization that remodeling events are also important. Evidence is presented that inflammation and altered airway structure in asthma interact through the epithelium and underlying mesenchyme. As in other chronic inflammatory disorders, a dynamic interplay between mediators, cytokines, and growth factors provides a broader base on which to identify novel preventative and therapeutic strategies in asthma.  相似文献   

2.
Chronic airway inflammation is one of the main features of asthma. Release of mediators from infiltrating inflammatory cells in the airway mucosa has been proposed to contribute directly or indirectly to changes in airway structure and function. The airway smooth muscle, which has been regarded as a contractile component of the airways responding to various mediators and neurotransmitters, has recently been recognised as a rich source of pro-inflammatory cytokines, chemokines and growth factors. In this review, we discuss the role of airway smooth muscle cells in the regulation and perpetuation of airway inflammation that contribute to the pathogenesis of asthma.  相似文献   

3.
Chronic airway inflammation is one of the main features of asthma. Release of mediators from infiltrating inflammatory cells in the airway mucosa has been proposed to contribute directly or indirectly to changes in airway structure and function. The airway smooth muscle, which has been regarded as a contractile component of the airways responding to various mediators and neurotransmitters, has recently been recognised as a rich source of pro-inflammatory cytokines, chemokines and growth factors. In this review, we discuss the role of airway smooth muscle cells in the regulation and perpetuation of airway inflammation that contribute to the pathogenesis of asthma.  相似文献   

4.
It is now accepted that a host of cytokines, chemokines, growth factors, and other inflammatory mediators contributes to the development of nonspecific airway hyperresponsiveness in asthma. Yet, relatively little is known about how inflammatory mediators might promote airway structural remodeling or about the molecular mechanisms by which they might exaggerate smooth muscle shortening as observed in asthmatic airways. Taking a deep inspiration, which provides relief of bronchodilation in normal subjects, is less effective in asthmatic subjects, and some have speculated that this deficiency stems directly from an abnormality of airway smooth muscle and results in airway hyperresponsiveness to constrictor agonists. Here, we consider some of the mechanisms by which inflammatory mediators might acutely or chronically induce changes in the contractile apparatus that in turn might contribute to hyperresponsive airways in asthma.  相似文献   

5.
Eosinophils produce and release various proinflammatory mediators and also show immunomodulatory and tissue remodeling functions; thus, eosinophils may be involved in the pathophysiology of asthma and other eosinophilic disorders as well as host defense. Several major questions still remain. For example, how do human eosinophils become activated in diseased tissues or at the site of an immune response? What types of host immunity might potentially involve eosinophils? Herein, we found that human eosinophils react vigorously to a common environmental fungus, Alternaria alternata, which is implicated in the development and/or exacerbation of human asthma. Eosinophils release their cytotoxic granule proteins, such as eosinophil-derived neurotoxin and major basic protein, into the extracellular milieu and onto the surface of fungal organisms and kill the fungus in a contact-dependent manner. Eosinophils use their versatile beta(2) integrin molecule, CD11b, to adhere to a major cell wall component, beta-glucan, but eosinophils do not express other common fungal receptors, such as dectin-1 and lactosylceramide. The I-domain of CD11b is distinctively involved in the eosinophils' interaction with beta-glucan. Eosinophils do not react with another fungal cell wall component, chitin. Because human eosinophils respond to and kill certain fungal organisms, our findings identify a previously unrecognized innate immune function for eosinophils. This immune response by eosinophils may benefit the host, but, in turn, it may also play a role in the development and/or exacerbation of eosinophil-related allergic human diseases, such as asthma.  相似文献   

6.
Allergic asthma is a chronic airway inflammatory disease in which exposure to allergens causes intermittent attacks of breathlessness, airway hyper-reactivity, wheezing, and coughing. Allergic asthma has been called a "syndrome" resulting from a complex interplay between genetic and environmental factors. Worldwide, >300 million individuals are affected by this disease, and in the United States alone, it is estimated that >35 million people, mostly children, suffer from asthma. Although animal models, linkage analyses, and genome-wide association studies have identified numerous candidate genes, a solid definition of allergic asthma has not yet emerged; however, such studies have contributed to our understanding of the multiple pathways to this syndrome. In contrast with animal models, in which T-helper 2 (T(H)2) cell response is the dominant feature, in human asthma, an initial exposure to allergen results in T(H)2 cell-dependent stimulation of the immune response that mediates the production of IgE and cytokines. Re-exposure to allergen then activates mast cells, which release mediators such as histamines and leukotrienes that recruit other cells, including T(H)2 cells, which mediate the inflammatory response in the lungs. In this minireview, we discuss the current understanding of how associated genetic and environmental factors increase the complexity of allergic asthma and the challenges allergic asthma poses for the development of novel approaches to effective treatment and prevention.  相似文献   

7.
8.
9.
10.
Corticosteroids and Leukotrienes: Chronobiology and Chronotherapy   总被引:2,自引:0,他引:2  
Corticosteroids and leukotrienes play opposite roles in asthma. Corticosteroids, both endogenously secreted and exogenously administered, are antiinflammatory and are very effective in the treatment of asthma. They have also been evaluated chronotherapeutically and have been found to be very effective in reducing the enhanced airway inflammation and decrement in lung function associated with nocturnal worsening of asthma. Leukotrienes are potent proinflammatory and spasmogenic mediators that have been shown to be increased at night in patients with nocturnal asthma (NA). Leu-kotriene modifiers, a new class of medications to treat asthma, improve, but do not abolish, the symptoms and decrement in lung function associated with nocturnal asthma. However, they have not been evaluated chronotherapeutically. This article addresses the roles of corticosteroids and leukotrienes in nocturnal asthma and their position as therapeutic agents or targets for therapy.  相似文献   

11.
Corticosteroids and leukotrienes play opposite roles in asthma. Corticosteroids, both endogenously secreted and exogenously administered, are antiinflammatory and are very effective in the treatment of asthma. They have also been evaluated chronotherapeutically and have been found to be very effective in reducing the enhanced airway inflammation and decrement in lung function associated with nocturnal worsening of asthma. Leukotrienes are potent proinflammatory and spasmogenic mediators that have been shown to be increased at night in patients with nocturnal asthma (NA). Leu-kotriene modifiers, a new class of medications to treat asthma, improve, but do not abolish, the symptoms and decrement in lung function associated with nocturnal asthma. However, they have not been evaluated chronotherapeutically. This article addresses the roles of corticosteroids and leukotrienes in nocturnal asthma and their position as therapeutic agents or targets for therapy.  相似文献   

12.
《ImmunoMethods》1993,2(3):273-278
The role of mast cell activation and the generation of mediator release are important factors in determining the reactivity of lung tissue during allergic reactions and asthma. In this article, the advantages of our procedure for isolating mast cells from lung tissue over other methods are discussed. Our studies have demonstrated the importance of cross talk between mast cells and other cell types that also release mediators of bronchoconstriction during activation, thus amplifying the response. In addition, it has been found that inositol phospholipid turnover in response to various mast cell mediators is enhanced in hyperresponsive lung tissue. The consequences to the contractility of the tissue of such alterations in the cellular signaling system in lung tissue are discussed.  相似文献   

13.
14.

Background

While many of the contributing cell types and mediators of allergic asthma are known, less well understood are the factors that induce allergy in the first place. Amongst the mediators speculated to affect initial allergen sensitization and the development of pathogenic allergic responses to innocuous inhaled antigens and allergens are exogenously or endogenously generated reactive oxygen species (ROS) and reactive nitrogen species (RNS).

Scope of review

The interactions between ROS/RNS, dendritic cells (DCs), and CD4+ T cells, as well as their modulation by lung epithelium, are of critical importance for the genesis of allergies that later manifest in allergic asthma. Therefore, this review will primarily focus on the initiation of pulmonary allergies and the role that ROS/RNS may play in the steps therein, using examples from our own work on the roles of NO2 exposure and airway epithelial NF-κB activation.

Major conclusions

Endogenously generated ROS/RNS and those encountered from environmental sources interact with epithelium, DCs, and CD4+ T cells to orchestrate allergic sensitization through modulation of the activities of each of these cell types, which quantitiatively and qualitatively dictate the degree and type of the allergic asthma phenotype.

General significance

Knowledge of the effects of ROS/RNS at the molecular and cellular levels has the potential to provide powerful insight into the balance between inhalational tolerance (the typical immunologic response to an innocuous inhaled antigen) and allergy, as well as to potentially provide mechanistic targets for the prevention and treatment of asthma.  相似文献   

15.
Atopic diseases and asthma are increasing at a remarkable rate on a global scale. It is now well recognized that asthma is a chronic inflammatory disease of the airways. The inflammatory process in many patients is driven by an immunoglobulin E (IgE)-dependent process. Mast cell activation and release of mediators, in response to allergen and IgE, results in a cascade response, culminating in B lymphocyte, T lymphocyte, eosinophil, fibroblast, smooth muscle cell and endothelial activation. This complex cellular interaction, release of cytokines, chemokines and growth factors and inflammatory remodeling of the airways leads to chronic asthma. A subset of patients develops severe airway disease which can be extremely morbid and even fatal. While many treatments are available for asthma, it is still a chronic and incurable disease, characterized by exacerbation, hospitalizations and associated adverse effects of medications. Omalizumab is a new option for chronic asthma that acts by binding to and inhibiting the effects of IgE, thereby interfering with one aspect of the asthma cascade reviewed earlier. This is a humanized monoclonal antibody against IgE that has been shown to have many beneficial effects in asthma. Use of omalizumab may be influenced by the cost of the medication and some reported adverse effects including the rare possibility of anaphylaxis. When used in selected cases and carefully, omalizumab provides a very important tool in disease management. It has been shown to have additional effects in urticaria, angioedema, latex allergy and food allergy, but the data is limited and the indications far from clear. In addition to decreasing exacerbations, it has a steroid sparing role and hence may decrease adverse effects in some patients on high-dose glucocorticoids. Studies have shown improvement in quality of life measures in asthma following the administration of omalizumab, but the effects on pulmonary function are surprisingly small, suggesting a disconnect between pulmonary function, exacerbations and quality of life. Anaphylaxis may occur rarely with this agent and appropriate precautions have been recommended by the Food and Drug Administration (FDA). As currently practiced and as suggested by the new asthma guidelines, this biological agent is indicated in moderate or severe persistent allergic asthma (steps 5 and 6).  相似文献   

16.
P M Renzi 《CMAJ》1999,160(2):217-223
THE PERSISTENCE OF AIRWAY INFLAMMATION is believed to cause the mechanical changes and symptoms of asthma. After decades of research, a new class of medication has emerged that focuses on leukotrienes, mediators of inflammation. These substances are potent inducers of bronchoconstriction, increased vascular permeability and mucus production, and they potentiate the influx of inflammatory cells in the airways of patients with asthma. In this article the author reviews the development, mechanism of action, and clinical and toxic effects of the leukotriene synthesis inhibitors and receptor antagonists that are entering the North American market. These agents can decrease airway response to antigen, airway hyperresponsiveness and exercise-induced asthma. They are also effective inhibitors of ASA-induced symptoms. Although few published studies are available, the antileukotrienes seem almost as effective in the management of chronic asthma as low-dose inhaled corticosteroids, and their use permits a decrease in the frequency of use or dose of corticosteroids. Further evaluation and clinical experience will determine the position of targeted inhibition of the leukotriene pathway in the treatment of asthma.  相似文献   

17.

Background

Allergic rhinitis and asthma are conditions of airway inflammation that often coexist.

Discussion

In susceptible individuals, exposure of the nose and lungs to allergen elicits early phase and late phase responses. Contact with antigen by mast cells results in their degranulation, the release of selected mediators, and the subsequent recruitment of other inflammatory cell phenotypes. Additional proinflammatory mediators are released, including histamine, prostaglandins, cysteinyl leukotrienes, proteases, and a variety of cytokines, chemokines, and growth factors. Nasal biopsies in allergic rhinitis demonstrate accumulations of mast cells, eosinophils, and basophils in the epithelium and accumulations of eosinophils in the deeper subepithelium (that is, lamina propria). Examination of bronchial tissue, even in mild asthma, shows lymphocytic inflammation enriched by eosinophils. In severe asthma, the predominant pattern of inflammation changes, with increases in the numbers of neutrophils and, in many, an extension of the changes to involve smaller airways (that is, bronchioli). Structural alterations (that is, remodeling) of bronchi in mild asthma include epithelial fragility and thickening of its reticular basement membrane. With increasing severity of asthma there may be increases in airway smooth muscle mass, vascularity, interstitial collagen, and mucus-secreting glands. Remodeling in the nose is less extensive than that of the lower airways, but the epithelial reticular basement membrane may be slightly but significantly thickened.

Conclusion

Inflammation is a key feature of both allergic rhinitis and asthma. There are therefore potential benefits for application of anti-inflammatory strategies that target both these anatomic sites.
  相似文献   

18.
19.
Chronic inflammation predisposes toward many types of cancer. Chronic bronchitis and asthma, for example, heighten the risk of lung cancer. Exactly which inflammatory mediators (e.g., oxidant species and growth factors) and lung wound repair processes (e.g., proangiogenic factors) enhance pulmonary neoplastic development is not clear. One approach to uncover the most relevant biochemical and physiological pathways is to identify genes underlying susceptibilities to inflammation and to cancer development at the same anatomic site. Mice develop lung adenocarcinomas similar in histology, molecular characteristics, and histogenesis to this most common human lung cancer subtype. Over two dozen loci, called Pas or pulmonary adenoma susceptibility, Par or pulmonary adenoma resistance, and Sluc or susceptibility to lung cancer genes, regulate differential lung tumor susceptibility among inbred mouse strains as assigned by QTL (quantitative trait locus) mapping. Chromosomal sites that determine responsiveness to proinflammatory pneumotoxicants such as ozone (O3), particulates, and hyperoxia have also been mapped in mice. For example, susceptibility QTLs have been identified on chromosomes 17 and 11 for O3-induced inflammation (Inf1, Inf2), O3-induced acute lung injury (Aliq3, Aliq1), and sulfate-associated particulates. Sites within the human and mouse genomes for asthma and COPD phenotypes have also been delineated. It is of great interest that several susceptibility loci for mouse lung neoplasia also contain susceptibility genes for toxicant-induced lung injury and inflammation and are homologous to several human asthma loci. These QTLs are described herein, candidate genes are suggested within these sites, and experimental evidence that inflammation enhances lung tumor development is provided.  相似文献   

20.
Five to 10% of the human population have a disorder of the respiratory tract called 'asthma'. It has been known as a potentially dangerous disease for over 2000 years, as it was already described by Hippocrates and recognized as a disease entity by Egyptian and Hebrew physicians. At the beginning of this decade, there has been a fundamental change in asthma management. The emphasis has shifted from symptom relief with bronchodilator therapies (e.g. beta(2)-agonists) to a much earlier introduction of anti-inflammatory treatment (e.g. corticosteroids). Asthma is now recognized to be a chronic inflammatory disease of the airways, involving various inflammatory cells and their mediators. Although asthma has been the subject of many investigations, the exact role of the different inflammatory cells has not been elucidated completely. Many suggestions have been made and several cells have been implicated in the pathogenesis of asthma, such as the eosinophils, the mast cells, the basophils and the lymphocytes. To date, however, the relative importance of these cells is not completely understood. The cell type predominantly found in the asthmatic lung is the eosinophil and the recruitment of these eosinophils can be seen as a characteristic of asthma. In recent years much attention is given to the role of the newly identified chemokines in asthma pathology. Chemokines are structurally and functionally related 8-10 kDa peptides that are the products of distinct genes clustered on human chromosomes 4 and 17 and can be found at sites of inflammation. They form a superfamily of proinflammatory mediators that promote the recruitment of various kinds of leukocytes and lymphocytes. The chemokine superfamily can be divided into three subgroups based on overall sequence homology. Although the chemokines have highly conserved amino acid sequences, each of the chemokines binds to and induces the chemotaxis of particular classes of white blood cells. Certain chemokines stimulate the recruitment of multiple cell types including monocytes, lymphocytes, basophils, and eosinophils, which are important cells in asthma. Intervention in this process, by the development of chemokine antagonists, might be the key to new therapy. In this review we present an overview of recent developments in the field of chemokines and their role in inflammations as reported in literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号