首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Exposure of cells to complex mixtures of oxidized lipids such as those found in oxidized low-density lipoprotein (oxLDL) induce reactive oxygen and nitrogen species (ROS/RNS) formation. The source of the ROS/RNS within cells is unknown; it is thought they may be involved in redox cell signaling. Although this possibility was initially overlooked, it is becoming clear that mitochondria, which are a source of superoxide and hydrogen peroxide, may play a critical role in the response of cells on exposure to oxidized lipids. In this study, we tested the possibility that mitochondria are a potential source of oxLDL-dependent formation of ROS/RNS in endothelial cells. Using confocal microscopy, we demonstrated that a significant proportion of oxLDL-dependent dichlorodihydrofluorescein (DCF) fluorescence is colocalized to mitochondria. In support of this concept, rho0 endothelial cells showed a substantial decrease in ROS/RNS formation stimulated by oxLDL. In contrast, mostly nonmitochondrial DCF fluorescence was detected in cells exposed to an extracellular source of hydrogen peroxide. The exposure of cells to a nitric oxide synthase inhibitor and urate resulted in a decrease in oxLDL-induced DCF fluorescence that was restored by addition of nitric oxide donors to the medium. Taken together, these results suggest that oxLDL-dependent DCF fluorescence is mitochondrially associated and may be due to the formation of peroxynitrite.  相似文献   

2.
3.
4.
Peroxynitrite is a strong oxidant produced by rapid interaction between superoxide anion and nitric oxide radicals and induces oxidative stress and cell death. Treatment of PC12 cells with 3-morpholinosydnonimine (SIN-1), a generator of peroxynitrite, induced the expression of heme oxygenase-1 (HO-1), an antioxidant cytoprotective enzyme. Inhibition of the HO activity by zinc protoporphyrin IX or knockdown of HO-1 gene expression with siRNA exacerbated the SIN-1-induced apoptosis. After SIN-1 treatment, there was a time-related increase in nuclear localization and subsequent binding of NF-E2-related factor 2 (Nrf2) to the antioxidant-responsive element (ARE). Transfection of PC12 cells with dominant-negative Nrf2 abolished the SIN-1-induced increase in Nrf2-ARE binding and subsequent upregulation of HO-1 expression, leading to enhanced cell death. Upon exposure of PC12 cells to SIN-1, the phosphatidylinositol 3-kinase (PI3K) activity was increased in a time-dependent manner. Pretreatment of cells with LY294002, a pharmacologic inhibitor of PI3K or transfection with the kinase-dead mutant Akt abrogated the SIN-1-induced Nrf2 activation and HO-1 expression. Taken together, these results suggest that peroxynitrite activates Nrf2 via PI3K/Akt signaling and enhances Nrf2-ARE binding, which leads to upregulation of HO-1 expression. The SIN-1-induced HO-1 upregulation may confer the adaptive survival response against nitrosative stress.  相似文献   

5.
6.
Ischemia (I)/reperfusion (RP)-induced endothelial cell (EC) injury is thought to be due to mitochondrial reactive oxygen species (mtROS) production. MtROS have been implicated in mitochondrial fission. We determined whether cultured EC exposure to simulated I/RP causes morphological changes in the mitochondrial network and the mechanisms behind those changes. Because shear stress results in nitric oxide (NO)-mediated endothelial mtROS generation, we simulated I/RP as hypoxia (H) followed by oxygenated flow over the ECs (shear stress of 10dyn/cm(2)). By exposing ECs to shear stress, H, H/reoxygenation (RO), or simulated I/RP and employing MitoTracker staining, we assessed the differential effects of changes in mechanical forces and/or O(2) levels on the mitochondrial network. Static or sheared ECs maintained their mitochondrial network. H- or H/RO-exposed ECs underwent changes, but mitochondrial fission was significantly less compared to that in ECs exposed to I/RP. I/RP-induced fission was partially inhibited by antioxidants, a NO synthase inhibitor, or an inhibitor of the fission protein dynamin-related protein 1 (Drp1) and was accompanied by Drp1 oligomerization and phosphorylation (Ser616). Hence, shear-induced NO, ROS (including mtROS), and Drp1 activation are responsible for mitochondrial fission in I/RP-exposed ECs, and excessive fission may be an underlying cause of EC dysfunction in postischemic hearts.  相似文献   

7.
Shear stress induces caveolin-1 translocation in cultured endothelial cells   总被引:4,自引:0,他引:4  
Considering that vascular endothelial caveolae could be flow sensors converting mechanical stimuli into chemical signals transmitted into the cell, this work studied, in vitro, the change of caveolin-1 expression and distribution of cultured endothelial cells exposed to laminar flows. Experimental results showed that, in control cells, caveolin-1 were primarily localized on the cell surface, and presented some local concentrations. In cells exposed to laminar flows, caveolin-1 distribution showed a time-dependent variation. After 24 h of shear (1.0 Pa), the expression of caveolin-1 increased and a local caveolin-1 concentration was found, in most cells, at the upstream side of the cell body where the hydrostatic pressure and the spatial gradient of shear stress were at a maximum. As a comparison, tumor necrosis factor-a induced a decrease of caveolin-1 in the cells.  相似文献   

8.
9.
10.
Osteosarcoma is a malignant primary bone tumor that responds poorly to both chemotherapy and radiation therapy. However, because of side effects and drug resistance in chemotherapy and the insufficiency of an effective adjuvant therapy for osteosarcoma, it is necessary to research novel treatments. This study was the first to investigate the anticancer effects of the flavonoid derivative artocarpin in osteosarcoma. Artocarpin induced cell apoptosis in three human osteosarcoma cell lines—U2OS, MG63, and HOS. Artocarpin was also associated with increased intracellular reactive oxygen species (ROS). Mitochondrial dysfunction was followed by the release of cytochrome c from mitochondria and accompanied by decreased antiapoptotic Bcl-2 and Bcl-xL and increased proapoptotic protein Bak and Bax. Artocarpin triggered endoplasmic reticulum (ER) stress, as indicated by changes in cytosol calcium levels and increased glucose-regulated protein 78 and 94 expressions, and also increased calpains expression and activity. Animal studies revealed a dramatic 40% reduction in tumor volume after 18 days of treatment. This study demonstrated a novel anticancer activity of artocarpin against human osteosarcoma cells and in murine tumor models. In summary, artocarpin significantly induced cell apoptosis through ROS, ER stress, mitochondria, and the caspase pathway, and may thus be a novel anticancer treatment for osteosarcoma.  相似文献   

11.
12.
The catalytic role of iron in the Haber-Weiss chemistry, which results in propagation of damaging reactive oxygen species (ROS), is well established. In this review, we attempt to summarize the recent evidence showing the reverse: That reactive oxygen and nitrogen species can significantly affect iron metabolism. Their interaction with iron-regulatory proteins (IRPs) seems to be one of the essential mechanisms of influencing iron homeostasis. Iron depletion is known to provoke normal iron uptake via IRPs, superoxide and hydrogen peroxide are supposed to cause unnecessary iron uptake by similar mechanism. Furthermore, ROS are able to release iron from iron-containing molecules. On the contrary, nitric oxide (NO) appears to be involved in cellular defense against the iron-mediated ROS generation probably mainly by inducing iron removal from cells. In addition, NO may attenuate the effect of superoxide by mutual reaction, although the reaction product—peroxynitrite—is capable to produce highly reactive hydroxyl radicals.  相似文献   

13.

Background

Diabetes is an independent risk factor of osteoarthritis (OA). Angiogenesis is essential for the progression of OA. Here, we investigated the intracellular signaling pathways involved in high glucose (HG)-induced vascular endothelial growth factor (VEGF) expression in human synovial fibroblast cells.

Methods

HG-mediated VEGF expression was assessed with qPCR and ELISA. The mechanisms of action of HG in different signaling pathways were studied using Western blotting. Knockdown of proteins was achieved by transfection with siRNA. Chromatin immunoprecipitation assays were used to study in vivo binding of c-Jun to the VEGF promoter.

Results

Stimulation of OA synovial fibroblasts (OASF) with HG induced concentration- and time-dependent increases in VEGF expression. Treatment of OASF with HG increased reactive oxygen species (ROS) generation. Pretreatment with NADPH oxidase inhibitor (APO or DPI), ROS scavenger (NAC), PI3K inhibitor (Ly294002 or wortmannin), Akt inhibitor, or AP-1 inhibitor (curcumin or tanshinone IIA) blocked the HG-induced VEGF production. HG also increased PI3K and Akt activation. Treatment of OASF with HG increased the accumulation of phosphorylated c-Jun in the nucleus, AP-1-luciferase activity, and c-Jun binding to the AP-1 element on the VEGF promoter.

Conclusions

Our results suggest that the HG increases VEGF expression in human synovial fibroblasts via the ROS, PI3K, Akt, c-Jun and AP-1 signaling pathway.

General significance

We link high glucose on VEGF expression in osteoarthritis.  相似文献   

14.
We postulated that anesthetic preconditioning (APC) is triggered by reactive oxygen/nitrogen species (ROS/RNS). We used the isolated guinea pig heart perfused with L-tyrosine, which reacts with ROS and RNS to form strong oxidants, principally peroxynitrite (ONOO(-)), and then forms fluorescent dityrosine. ROS scavengers superoxide dismutase, catalase, and glutathione (SCG) and NO. synthesis inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) were given 5 min before and after sevoflurane preconditioning stimuli. Drugs were washed out before 30 min of ischemia and 120 min of reperfusion. Groups were control (nontreated ischemia control), APC (two, 2-min periods of perfusion with 0.32 +/- 0.02 mM of sevoflurane; separated by a 6-min period of perfusion without sevoflurane), SCG, APC + SCG, L-NAME, and APC + L-NAME. Effluent dityrosine at 1 min reperfusion was 56 +/- 6 (SE), 15 +/- 5, 40 +/- 5(++), 39 +/- 4(++), 35 +/- 4(++) , and 33 +/- 5(++) units ((++)P< 0.05 vs. APC), respectively; left ventricular pressure (%baseline) at 60 min of reperfusion was 30 +/- 5(++), 60 +/- 4, 35 +/- 5(++), 37 +/- 5(++), 44 +/- 4, and 47 +/- 4; and infarct size (%total heart weight) was 50 +/- 5(++), 19 +/- 2, 48 +/- 3(++), 46 +/- 4(++), 42 +/- 4(++), and 45 +/- 2(++). Thus APC is initiated by ROS as shown by improved function, reduced infarct size, and reduced dityrosine on reperfusion; protective and ROS/RNS-reducing effect of APC were attenuated when bracketed by ROS scavengers or NO* inhibition.  相似文献   

15.
To determine whether polymorphonuclear leukocytes (PMN) modulate the production of tissue factor (TF) by monocytes, PBMC were incubated with increasing concentrations of PMN. PMN did not express any procoagulant activity. After 20-h cocultures, PMN enhanced or inhibited the TF production of PBMC, and this effect depended on the PMN/PBMC ratio. When the ratio increased from 1/1000 to 1/5, without or with LPS, the TF activity of PBMC increased to peak at 2.5-fold the baseline value (p < 0.01). The TF Ag and TF mRNA also increased. This potentiating effect was mediated by reactive oxygen species (ROS) released by PMN during the coculture; it did not require direct cell contact between PMN and PBMC, it was enhanced when PMN were stimulated by fMLP (a chemotactic peptide), and it was inhibited by two antioxidants, N-acetyl cysteine and pyrrolidine dithiocarbamate. In contrast, when the PMN/PBMC ratio was further increased from 1/2 to 2/1, the PBMC TF activity, Ag, and mRNA decreased and were inhibited compared with those of PBMC cultured alone (p < 0.01). This inhibitory effect required direct cell contact between PMN and PBMC, and it was not due to a PMN-mediated cytotoxicity. To confirm the role of ROS, H2O2 enhanced then inhibited the TF activity of PBMC in a dose-dependent manner, similarly to PMN. Thus, PMN may play an important role in the pathogenesis of thrombosis and atherosclerosis by exerting concentration-dependent regulatory effects on the TF production by PBMC via the release of ROS.  相似文献   

16.
17.
18.
2-Styrylchromones are a small group of naturally occurring chromones, vinylogues of flavones (2-phenylchromones). Natural and synthetic 2-styrylchromones have been tested in different biological systems, showing activities with potential therapeutic applications. In particular, the potential and hitherto understudied antioxidant behavior of these compounds has been raised as a matter of interest. Thus the present work consisted in the study of the in vitro scavenging activities for reactive oxygen species (ROS) and reactive nitrogen species (RNS) of various 2-styrylchromone derivatives and structurally similar flavonoids. Some of the studied 2-styrylchromones proved to be extremely efficient scavengers of the different ROS and RNS, showing, in some cases, IC(50)s under 1 microM. The hydroxylation pattern of 2-styrylchromones, especially in the B-ring but also in the A ring, modulates the activity of these compounds, the catecholic derivatives being the most effective scavengers. The styryl pattern also contributes to their observed outstanding antioxidant activity. In conclusion, the scavenging activities for ROS/RNS of 2-styrylchromone derivatives, here shown for the first time, provide novel and most promising compounds to be applied as antioxidants.  相似文献   

19.
The presence of P2X7 on erythroid cells is well established, but its physiological role remains unclear. The current study aimed to determine if P2X7 activation induces reactive oxygen species (ROS) formation in murine erythroleukaemia (MEL) cells, a commonly used erythroid cell line. ATP induced ROS formation in a time- and concentration-dependent fashion. The most potent P2X7 agonist, 2′(3′)-O-(4-benzoylbenzoyl)ATP, but not UTP or ADP, also induced ROS formation. The P2X7 antagonist, A-438079, impaired ATP-induced ROS formation. The ROS scavenger, N-acetyl-l-cysteine, and the ROS inhibitor, diphenyleneiodonium, also impaired P2X7-induced ROS formation, but use of enzyme-specific ROS inhibitors failed to identify the intracellular source of P2X7-induced ROS formation. P2X7-induced ROS formation was impaired partly by physiological concentrations of Ca2+ and Mg2+ and almost completely in cells in N-methyl-d-glucamine chloride medium. The p38 MAPK inhibitors SB202190 and SB203580, and the caspase inhibitor Z-VAD-FMK, but not N-acetyl-l-cysteine, impaired P2X7-induced MEL cell apoptosis. ATP also stimulated p38 MAPK and caspase activation, both of which could be impaired by A-438079. In conclusion, these findings indicate that P2X7 activation induces ROS formation in MEL cells and that this process may be involved in events downstream of P2X7 activation, other than apoptosis, in erythroid cells.  相似文献   

20.
Peroxynitrite has been implicated in the oxidative modification of low-density lipoprotein (LDL) particles, and nitrotyrosine residues in the LDL have been detected in atherosclerotic plaques. Studies have suggested that lipoproteins modified by peroxynitrite lead to the onset of atherosclerotic vascular disease. We therefore prepared in vitro lipoproteins oxidatively modified by peroxynitrite (NO(2)-lipoprotein) and investigated the effect of NO(2)-lipoprotein on the viability of cultured endothelial cells. After exposure of a high-density lipoprotein (HDL) to peroxynitrite, some intermolecular complexes of apolipoproteins in HDL were detected on immunoblotting with monoclonal antibodies against apolipoprotein AI and AII, suggesting that nitration of HDL by peroxynitrite causes intermolecular cross-linking of the apolipoproteins in the particles. Treatment with 1 mM peroxynitrite increased the 3-nitrotyrosine level to 28.5 mmol/mol of tyrosine residues in the prepared NO(2)-HDL, as quantitated by HPLC, and the amount in NO(2)-lipoprotein depended on the peroxynitrite concentration. HDL exhibited a shorter lag phase and the reaction plateaued more rapidly than that with LDL. To clarify whether or not NO(2)-lipoproteins affect the function of endothelial cells, we first examined the viability of cultured human aortic endothelial cells (HAECs) exposed to NO(2)-lipoproteins. Incubation with either NO(2)-HDL or NO(2)-LDL significantly reduced the HAEC viability at 72 h. The results of RT-PCR and Western blotting showed that NO(2)-HDL markedly suppressed at 48 h not only the expressed levels of mRNA and protein but also the activity of catalase in HAECs. In contrast, NO(2)-LDL significantly reduced the expression and activity of Cu(2+),Zn(2+)-superoxide dismutase (CuZn-SOD) in the cells. Neither NO(2)-HDL nor NO(2)-LDL interfered with nitric oxide production or expression of cyclooxygenases and NADPH oxidase in HAECs. Increased radical production in NO(2)-lipoprotein-treated HAECs implied that reactive oxygen species such as superoxide anions and hydroxyl radicals may contribute to the mechanism of the toxic effect induced in endothelial cells by NO(2)-lipoprotein. Overall, NO(2)-lipoprotein may lead to deterioration of the vascular function through these endothelial cell responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号