首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The aim of this study was to compare the effects of two nonsteroidal anti-inflammatory drugs (NSAID), members of the same family with a different cyclooxygenase (COX) inhibition selectivity, meloxicam, preferent COX-2 inhibitor, and piroxicam, preferent COX-1 inhibitor, on oxygen radical generation in rat gastric mucosa. Therefore, the activity of oxidative stress-related enzymes such as xanthine oxidase (XO), superoxide dismutase (SOD) and glutathione (GSH) homeostasis were studied in rats. Gastric prostaglandins (PG) were also assessed as a measure of COX-1 inhibition. Both oxicams produced a similar extent of the gastric mucosal damage and a significant decrease in PGE 2 synthesis, however only piroxicam induced an increase of both myeloperoxidase (MPO) activity and tumor necrosis factor (TNF)- &#102 content in the gastric mucosa, indicating that neutrophil-derived free radicals were involved in gastric injury. Furthermore, both compounds reduced SOD activity and increased XO activity in gastric mucosa. Our results also revealed modifications in GSH metabolism: although glutathione peroxidase (GSH-px) activity was unaffected by meloxicam or piroxicam administration, both glutathione reductase (GSSG-rd) activity and total GSH content were significantly decreased after dosing. These results suggest that under our experimental conditions, meloxicam, preferential COX-2 inhibitor causes rates of gastric lesion in rats comparable to those seen with the traditional NSAID piroxicam, preferential COX-1 inhibitor. In addition to suppression of systemic COX activity, oxygen radicals, probably derived via the XO, and neutrophils play an important role in the production of damage induced by both oxicams. Moreover, the decrease in SOD activity and changes in glutathione homeostasis in gastric mucosa may also contribute to pathogenesis of meloxicam- or piroxicam-induced gastropathy.  相似文献   

2.
Nonsteroidal anti-inflammatory drugs (NSAID) are well known to induce gastric mucosal damage including bleeding, ulceration and perforation in humans and animals too. These effects are related with the inhibition of the enzyme cyclooxygenase, which is the main established mechanism of action for these drugs. Fasted rats were given piroxicam, preferential COX-1 inhibitor (10-20 mg/kg) or meloxicam, preferential COX-2 inhibitor (7.5-15 mg/kg) orally. Six or nine hours (h) later, respectively, the stomach was excised, the severity of the damage assessed and myeloperoxidase (MPO) activity measured, as well as prostaglandin PGE(2) content. Furthermore, in order to assess the effects of these oxicams over previously damaged gastric mucosa, 1 ml of 0.6 N HCl was administered p.o. followed, 1 h after, of the correspondent dose of each NSAID, and the same parameters were determined. Oral administration of both drugs dose-dependently caused acute gastric haemorrhage erosions. Myeloperoxidase activity was significantly increased by piroxicam administration. In addition, PGE(2) content was significantly reduced. The association between the administration of the acid and NSAID caused a worsening of the damage and, while myeloperoxidase activity did not modify by both piroxicam and meloxicam, PGE(2) levels were reduced. These results suggest that the PG derived from both COX-1 and COX-2 pathway plays a beneficial role in the gastroprotection, and thus caution should be exercise in the clinical use of preferential COX-2 inhibitors.  相似文献   

3.
The energetics and models of COX-2 complexed with nonsteroidal anti-inflammatory drugs (NSAIDs) having different degrees of selectivity for two isoforms of COX (COX-2 and COX-1) have been studied using computer modelling approach. The models are obtained for complexes of NS398 (NS), a selective COX-2 inhibitor; indoprofen (Ind), a non-selective inhibitor; di-tert-butylbenzofurans (DHDMBFs) with substituents at the 5th position: CONH(CH2)2OMe (BF1), CONH-c-Pr (BF2), 3-methylene-gamma-butyrolactonyl (BF3) and oxicams namely, meloxicam (Mel), piroxicam (Pir) and tenoxicam (Ten). These were optimized using molecular mechanics (MM) and molecular dynamics (MD) techniques. The binding energies and structures were compared with pharmacological parameters and available results with COX-1. In case of NS a larger difference in the binding energies between COX-2 and COX-1 was noticed as compared to that of Ind. It also had stronger interaction with His90 and Tyr355 which is considered important for COX-2 selectivity. There was a difference in the compactness at the channel entrance between COX-2 selective and non-selective ligands. Models with DHDMBFs and oxicams showed a similar correlation. The results were used to design a peptide inhibitor, Tyr-Arg-Cys-Ala-delta Phe-Cys (Pept) which could fit better in the COX-2 cavity. As per our MD simulation results this peptide inhibitor showed both higher activity and COX-2 selectivity.  相似文献   

4.
Non-steroidal anti-inflammatory drugs (NSAIDs) achieve their anti-inflammatory actions through an inhibitory effect on cyclooxygenase (COX). Two COX subtypes, COX-1 and COX-2, are responsible for the majority of COX activity at the gastrointestinal mucosa and in tissues with inflammation, respectively. We previously suggested that both gastric mucosal cell death due to the membrane permeabilization activity of NSAIDs and COX-inhibition at the gastric mucosa are involved in NSAID-induced gastric lesions. We have also reported that loxoprofen has the lowest membrane permeabilization activity among the NSAIDs we tested. In this study, we synthesized a series of loxoprofen derivatives and examined their membrane permeabilization activities and inhibitory effects on COX-1 and COX-2. Among these derivatives, 2-{4'-hydroxy-5-[(2-oxocyclopentyl)methyl]biphenyl-2-yl}propanoate 31 has a specificity for COX-2 over COX-1. Compared to loxoprofen, oral administration of 31 to rats produced fewer gastric lesions but showed an equivalent anti-inflammatory effect. These results suggest that 31 is likely to be a therapeutically beneficial and safer NSAID.  相似文献   

5.
Alcohol dehydrogenase (ADH) was used as a marker molecule to clarify the mechanism of gastric mucosal damage as a side effect of using piroxicam. Piroxicam inactivated ADH during interaction of ADH with horseradish peroxidase and H2O2 (HRP-H2O2). The ADH was more easily inactivated under aerobic than anaerobic conditions, indicating participation by oxygen. Superoxide dismutase, but not hydroxyl radical scavengers, inhibited inactivation of ADH, indicating participation by superoxide. Sulfhydryl (SH) groups in ADH were lost during incubation of piroxicam with HRP-H2O2. Adding reduced glutathione (GSH) efficiently blocked ADH inactivation. Other SH enzymes, including creatine kinase and glyceraldehyde-3-phosphate dehydrogenase, were also inactivated by piroxicam with HRP-H2O2. Thus SH groups in the enzymes seem vulnerable to piroxicam activated by HRP-H2O2. Spectral change in piroxicam was caused by HRP-H2O2. ESR signals of glutathionyl radicals occurred during incubation of piroxicam with HRP-H2O2 in the presence of GSH. Under anaerobic conditions, glutathionyl radical formation increased. Thus piroxicam free radicals interact with GSH to produce glutathionyl radicals. Piroxicam peroxyl radicals or superoxide, or both, seem to inactivate ADH. Superoxide may be produced through interaction of peroxyl radicals with H2O2. Thus superoxide dismutase may inhibit inactivation of ADH through reducing piroxicam peroxyl radicals or blocking interaction of SH groups with O2-, or both. Other oxicam derivatives, including isoxicam, tenoxicam and meloxicam, induced ADH inactivation in the presence of HRP-H2O2.  相似文献   

6.
生长抑素对胃粘膜的保护作用可能与清除自由基有关   总被引:13,自引:1,他引:12  
李铁  张席锦 《生理学报》1994,46(4):369-374
本文观察到生长抑素对大鼠冷冻-束缚应激性胃粘膜损伤具有明显的保护作用,同时显著地抑制应激引起的胃粘膜丙二醛含量的升高。应激时大鼠胃粘膜内黄嘌呤氧化酶的生增高,同时谷胱甙肽过氧化物酶的活性降低,但超氧化物歧化酶的活性未见明显变化,生长抑素预处理可使应激时GSH-PX活性的降低恢复到正常水平,但对XO和SOD未见明显影响。上述结果提示,生长抑素对应激性胃粘膜损伤的保护作用似与增强胃粘膜对自由基的清除有  相似文献   

7.
Prostaglandins (PG) derived from COX-1 play an important role in the maintenance of mucosal integrity but the role of COX-2-derived products in mucosal defence mechanism has not been fully explained. Mild stress is known to prevent gastric mucosal lesions induced by severe stress via the phenomenon of adaptive cytoprotection but it remains unknown which COX is involved in this adaptation. In this study, the mucosal expression of COX-1 and COX-2 was examined and the inhibitors of these enzymes were used to determine the contribution of these enzymes in adaptive cytoprotection induced by mild stress. Male Wistar rats were exposed to mild water immersion and restraint stress (WRS) at various time intervals ranging from 5 min up to 2 h followed 1 h later by exposure to severe 3.5 h WRS with or without pretreatment with: 1) NS-398 (10 mg x kg(-1) i.g.), a selective COX-2 inhibitor; 2) resveratrol (5 mg x kg(-1) i.g.), a selective COX-1 inhibitor; 3) meloxicam (2 mg x kg(-1) i.g.), preferential COX-2 inhibitor; and 4) indomethacin (5 mg x kg(-1) i.p), non-selective inhibitor of COX. The number of WRS lesions was counted, gastric blood flow (GBF) was measured by H2-gas clearance technique, mucosal biopsy samples were taken for the assessment of PGE2 by radioimmunoassay, and the expression of COX-1 and COX-2 mRNA by RT-PCR. WRS for 3.5 h produced numerous gastric lesions, decreased GBF by 48% and inhibited formation of PGE2 by 68% as compared to intact mucosa. Exposure to mild WRS during 5-30 min by itself failed to affect mucosal integrity but significantly attenuated gastric lesions induced by exposure to severe 3.5 h stress; the maximal protective effect being achieved with mild WRS during 15 min. This protective effect was accompanied by the rise in GBF and the generation of PGE2 in the gastric mucosa. After extension of mild WRS from 15 min up to 1 or 2 h before more severe 3.5 h WRS, the loss of cytoprotective effect of mild WRS against severe stress accompanied by significant fall in the GBF were observed. Pretreatment with NS-398 (10 mg x kg(-1) i.g.) that failed to affect mucosal PGE2 generation, reduced significantly the protection and accompanying rise in GBF produced by mild WRS whereas resveratrol partly reduced the protection and the rise in GBF induced by mild WRS. Meloxicam or indomethacin significantly inhibited PGE2 generation and completely abolished the hyperemia and protection induced by mild WRS against more severe stress. The protective and hyperemic effects of mild WRS were completely restored by the addition of 16,16 dm PGE2 (5 microg x kg(-1) i.g.) to NS-398 or resveratrol, while the deleterious effects of meloxicam and indomethacin were significantly attenuated by the concomitant treatment with this PGE2 analogue. We conclude that PG derived from both, COX-1 and COX-2 appear to be involved in adaptive cytoprotection developed in response to mild stressors.  相似文献   

8.
We studied whether NS-398, a selective cyclo-oxygenase-2 (COX-2) enzyme inhibitor, and piroxicam, an inhibitor of COX-2 and the constitutively expressed COX-1, protect neurones against hypoxia/reoxygenation injury. Rat spinal cord cultures were exposed to hypoxia for 20 h followed by reoxygenation. Hypoxia/reoxygenation increased lactate dehydrogenase (LDH) release, which was inhibited by piroxicam (180-270 microM) and NS-398 (30 microM). Cell counts confirmed the neuroprotection. Western blotting revealed no COX-1 or COX-2 proteins even after hypoxia/reoxygenation. Production of prostaglandin E2 (PGE2), a marker of COX activity, was barely measurable and piroxicam and NS-398 had no effect on the negligible PGE2 production. Hypoxia/reoxygenation increased nuclear factor-kappa B (NF-kappaB) binding activity, which was inhibited by piroxicam but not by NS-398. AP-1 binding activity after hypoxia/reoxygenation was inhibited by piroxicam but strongly enhanced by NS-398. However, both COX inhibitors induced activation of extracellular signal-regulated kinase (ERK) in neurones and phosphorylation of heavy molecular weight neurofilaments, cytoskeletal substrates of ERK. It is concluded that piroxicam and NS-398 protect neurones against hypoxia/reperfusion. The protection is independent of COX activity and not solely explained by modulation of NF-kappaB and AP-1 binding activity. Instead, piroxicam and NS-398-induced phosphorylation through ERK pathway may contribute to the increased neuronal survival.  相似文献   

9.
Traditional NSAIDs, selective cyclooxygenase (COX)-2 inhibitors, and inhibitors of nitric oxide synthase (NOS) impair the healing of preexisting gastric ulcers. However, the role of COX-1 (with or without impairment of COX-2) and the interaction between COX and NOS isoforms during healing are less clear. Thus we investigated healing and regulation of COX and NOS isoforms during ulcer healing in COX-1 and COX-2 deficiency and inhibition mouse models. In this study, female wild-type COX-1(-/-) and COX-2(-/-) mice with gastric ulcers induced by cryoprobe were treated intragastrically with vehicle, selective COX-1 (SC-560), COX-2 (celecoxib, rofecoxib, and valdedoxib), and unselective COX (piroxicam) inhibitors. Ulcer healing parameters, mRNA expression, and activity of COX and NOS were quantified. Gene disruption or inhibition of COX-1 did not impair ulcer healing. In contrast, COX-2 gene disruption and COX-2 inhibitors moderately impaired wound healing. More severe healing impairment was found in dual (SC-560 + rofecoxib) and unselective (piroxicam) COX inhibition and combined COX impairment (in COX-1(-/-) mice with COX-2 inhibition and COX-2(-/-) mice with COX-1 inhibition). In the ulcerated repair tissue, COX-2 mRNA in COX-1(-/-) mice, COX-1 mRNA in COX-2(-/-) mice, and, remarkably, NOS-2 and NOS-3 mRNA in COX-impaired mice were more upregulated than in wild-type mice. This study demonstrates that COX-2 is a key mediator in gastric wound healing. In contrast, COX-1 has no significant role in healing when COX-2 is unimpaired but becomes important when COX-2 is impaired. As counterregulatory mechanisms, mRNA of COX and NOS isoforms were increased during healing in COX-impaired mice.  相似文献   

10.
11.
We examined the gastric ulcerogenic property of selective COX-1 and/or COX-2 inhibitors in rats, and investigated whether COX-1 inhibition is by itself sufficient for induction of gastric damage. Animals fasted for 18 h were given various COX inhibitors p.o., either alone or in combination, and they were killed 8 h later. The nonselective COX inhibitors such as indomethacin, naproxen and dicrofenac inhibited PG production, increased gastric motility, and provoked severe gastric lesions. In contrast, the selective COX-2 inhibitor rofecoxib did not induce any damage in the stomach, with no effect on the mucosal PGE(2) contents and gastric motility. Likewise, the selective COX-1 inhibitor SC-560 also did not cause gastric damage, despite causing a significant decrease in PGE(2) contents. The combined administration of SC-560 and rofecoxib, however, provoked gross damage in the gastric mucosa, in a dose-dependent manner. SC-560 also caused a marked gastric hypermotility, whereas rofecoxib had no effect on basal gastric motor activity. On the other hand, the COX-2 mRNA was expressed in the stomach after administration of SC-560, while the normal gastric mucosa expressed only COX-1 mRNA but not COX-2 mRNA. These results suggest that the gastric ulcerogenic property of conventional NSAIDs is not accounted for solely by COX-1 inhibition and requires the inhibition of both COX-1 and COX-2. The inhibition of COX-1 up-regulates the COX-2 expression, and this may counteract the deleterious influences, such as gastric hypermotility and the subsequent events, due to a PG deficiency caused by COX-1 inhibition.  相似文献   

12.
Occurrence of gastrointestinal damage and delayed healing of pre-existing ulcer are commonly observed in association with clinical use of nonsteroidal antiinflammatory drugs (NSAIDs). We examined the effects of NS-398, the cyclooxygenase (COX)-2 selective inhibitor, and nitric oxide (NO)- releasing aspirin (NCX-4016) on gastric mucosal ulcerogenic and healing responses in experimental animals, in comparison with those of nonselective COX inhibitors such as indomethacin and aspirin. Indomethacin and aspirin given orally were ulcerogenic by themselves in rat stomachs, while either NS-398 or NCX-4016 was not ulcerogenic at the doses which exert the equipotent antiinflammatory action with indomethacin or aspirin. Among these NSAIDs, only NCX-4016 showed a dose-dependent protection against gastric lesions induced by HCl/ethanol in rats. On the other hand, the healing of gastric ulcers induced in mice by thermal-cauterization was significantly delayed by repeated administration of these NSAIDs for more than 7 days, except NCX-4016. Gastric mucosal prostaglandin contents were reduced by indomethacin, aspirin and NCX-4016 in both normal and ulcerated mucosa, while NS-398 significantly decreased prostaglandin generation only in the ulcerated mucosa. Oral administration of NCX-4016 in pylorus-ligated rats and mice increased the levels of NO metabolites in the gastric contents. In addition, both NS-398 and NCX-4016 showed an equipotent anti-inflammatory effect against carrageenan-induced paw edema in rats as compared with indomethacin and aspirin. These results suggest that both indomethacin and aspirin are ulcerogenic by themselves and impair the healing of pre-existing gastric ulcers as well. The former action is due to inhibition of COX-1, while the latter effect may be accounted for by inhibition of COX-2 and mimicked by NS-398, the COX-2 selective NSAID. NCX-4016, despite inhibiting both COX-1 and COX-2, protects the stomach against damage and preserves the healing response of gastric ulcers, probably because of the beneficial action of NO.  相似文献   

13.
It has been proposed that neutrophil and oxygen dependent microvascular injuries may be important prime events in gastrointestinal (GI) toxicity of nonsteroidal antiinflammatory drugs (NSAIDs). l-arginine (l-ARG) is an essential amino acid which participates in many important biochemical reactions associated to the normal physiology of the organism. In these experimentations, we studied the role of l-ARG, aminoacid precursor of NO synthesis, on ibuprofen (IB) induced gastric lesions, and also on the inflammatory and oxidative mechanisms related to mucosal damage. Oral administration of IB (100 mg kg-1), produced severe damage on gastric mucosa, which was more important after 6 h test-period, and was accompanied by a significant increment in myeloperoxidase (MPO) activity, as index of neutrophil activation, as well as lipid peroxidation (LP) levels and xanthine oxidase (XO) activity. However, no changes were observed in total mucosal glutathione (tGSH), nor glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activity. Simultaneous treatment with equimolar doses of l-ARG (oral and i.p.), considerably reduced the number and intensity of lesions, and at the same time (6 h) the maximum protection was also observed. In addition, l-ARG inhibited the IB-induced LP and XO enhancement, but did not produce changes in leukocyte infiltration, tGSH, GSH-Px and SOD activity. These findings suggest that (1) l-ARG protective effect on gastric mucosa against IB-induced mucosal lesions could be explained by a local effect and also might be due to the systemic action of the aminoacid; (2) the active oxygen species, derived both from XO and activated neutrophils, could play a role in the pathogenesis of gastric injury induced by IB, (3) l-ARG exhibit a protective effect against IB-induced mucosal damage, probably through the inhibition of oxidative stress derived via xanthine-XO, but it does not block the oxygen free radical production through polymorphe nuclear leukocytes.  相似文献   

14.
Role of cyclooxygenase isoforms in gastric mucosal defence.   总被引:7,自引:0,他引:7  
A complex system of interacting mediators exists in the gastric mucosa to strengthen its resistance against injury. In this system prostaglandins play an important role. Prostaglandin biosynthesis is catalysed by the enzyme cyclooxygenase (COX), which exists in two isoforms, COX-1 and COX-2. Initially the concept was developed that COX-1 functions as housekeeping enzyme, whereas COX-2 yields prostaglandins involved in pathophysiological reactions such as inflammation. In the gastrointestinal tract, the maintenance of mucosal integrity was attributed exclusively to COX-1 without a contribution of COX-2 and ulcerogenic effects of non-steroidal anti-inflammatory drugs (NSAIDs) were believed to be the consequence of inhibition of COX-1. Recent findings, however, indicate that both COX-1 and COX-2 either alone or in concert contribute to gastric mucosal defence. Thus, in normal rat gastric mucosa specific inhibition of COX-1 does not elicit mucosal lesions despite near-maximal suppression of gastric prostaglandin formation. When a selective COX-2 inhibitor which is not ulcerogenic when given alone is added to the COX-1 inhibitor, severe gastric damage develops. In contrast to normal gastric mucosa which requires simultaneous inhibition of COX-1 and COX-2 for breakdown of mucosal resistance, in the acid-challenged rat stomach inhibition of COX-1 alone results in dose-dependent injury which is further increased by additional inhibition of COX-2 enzyme activity or prevention of acid-induced up-regulation of COX-2 expression by dexamethasone. COX-2 inhibitors do not damage the normal or acid-challenged gastric mucosa when given alone. However, when nitric oxide formation is suppressed or afferent nerves are defunctionalized, specific inhibition of COX-2 induces severe gastric damage. Ischemia-reperfusion of the gastric artery is associated with up-regulation of COX-2 but not COX-1 mRNA. COX-2 inhibitors or dexamethasone augment ischemia-reperfusion-induced gastric damage up to four-fold, an effect abolished by concurrent administration of 16,16-dimethyl-PGE(2). Selective inhibition of COX-1 is less effective. Furthermore, COX-2 inhibitors antagonize the protective effect of a mild irritant or intragastric peptone perfusion in the rat stomach, whereas the protection induced by chronic administration of endotoxin is mediated by COX-1. Finally, an important function of COX-2 is the acceleration of ulcer healing. COX-2 is up-regulated in chronic gastric ulcers and inhibitors of COX-2 impair the healing of ulcers to the same extent as non-selective NSAIDs. Taken together, these observations show that both COX isoenzymes are essential factors in mucosal defence with specific contributions in various physiological and pathophysiological situations.  相似文献   

15.
氧自由基在应激性胃溃疡中的发病学意义   总被引:25,自引:1,他引:24  
李铁  张席锦 《生理学报》1993,45(3):286-291
本工作研究了氧自由基在大鼠冷冻束缚应激性胃溃疡中的发病学意义。实验结果如下:(1)以超氧自由基清除剂超氧化物歧化酶(SOD)或羟自由基清除剂二甲亚砜和甘露醇预先处理大鼠,均可显著地减轻胃粘膜损伤;(2)应激时,胃粘膜内的脂质过氧化分解产物丙二醛的含量显著升高;(3)组织化学的研究显示,胃粘膜层含有丰富的黄嘌呤氧化酶,其活性在应激时明显升高,预先用别嘌呤醇处理大鼠以抑制黄嘌呤氧化酶的活性,可使胃粘膜损伤显著减轻。上述结果提示,氧自由基是应激性胃溃疡的重要致病因子,而黄嘌呤氧化酶活性的升高似可能为应激时氧自由基生成增加的重要原因。  相似文献   

16.
Basic fibroblast growth factor (bFGF) serves as a modulator of survival in breast cancer cells. The mechanisms by which bFGF transduces the anti-apoptotic signal and interacts with COX inhibitors were investigated. bFGF reduced apoptosis in MCF-7 breast cancer cells and up-regulated the expression of mitocondrial Bcl-2, whereas COX inhibitors meloxicam (selective COX-2) and aspirin (non-selective), induced apoptosis. bFGF up-regulated survivin protein expression and induced cdc-2 phosphorylation moderately at early (2-6 h), and substantially at late (24 h), time-points. Survivin mRNA expression was up-regulated only at the later time-point. COX inhibitors prevented up-regulation of survivin protein expression at both 2 and 24 h and prevented early modest increases in cdc-2 phosphorylation. Up-regulation of survivin mRNA was not found to be modulated by the COX-2 inhibitor meloxicam. bFGF regulation of survivin expression was found to be ERK1/2 kinase dependent and bFGF-induced phosphorylation of c-raf was prevented by the COX-2 inhibitor. bFGF was, however, unable to induce COX-2 protein expression or modulate COX-2 activity in MCF-7 cells as evidenced by unaltered PGE(2) production. These results indicate that bFGF regulates survivin expression in MCF-7 breast cancer cells by signaling through an ERK1/2 dependent pathway. COX-2 inhibitors can modulate bFGF-induced survivin expression in a COX-2 independent manner.  相似文献   

17.
Tashima K  Fujita A  Takeuchi K 《Life sciences》2000,67(14):1707-1718
We examined the influence of diabetes on ischemia/reperfusion-induced gastric damage in rats, in relation to the antioxidative system. Animals were injected with streptozotocin (STZ: 70 mg/kg, i.p.) and used after 5 weeks of diabetes with blood glucose levels of >350 mg/dl. Gastric mucosal blood flow (GMBF) was measured before, during and after 20 min of ischemia (1.5 ml bleeding per 100 g body weight from the carotid artery) followed by a 15-min reperfusion in the presence of acid (100 mM HCI). At the end of each experiment, gastric damage was observed macroscopically. GMBF was reduced by ischemia in all groups of rats, followed by a gradual return after reperfusion. Ischemia/reperfusion produced hemorrhagic lesions in normal rat stomachs in the presence of 100 mM HCl. These lesions were significantly aggravated when the animals were pretreated with diethyldithiocarbamate, an inhibitor of superoxide dismutase (SOD). Ischemia/reperfusion-induced damage was also markedly exacerbated in STZ-diabetic rats, but this aggravation was significantly suppressed by pretreatment with exogenous SOD or glutathione (GSH). Diabetic rat stomachs showed significantly less SOD activity as well as GSH content than normal rat stomachs. In addition, the deleterious influence of diabetes on the gastric ulcerogenic response to ischemia/reperfusion was significantly mitigated by decreasing the blood glucose levels by daily insulin treatment. These results suggest that the gastric mucosa of diabetic rats is more vulnerable to ischemia/reperfusion-induced injury, and the mechanism may be partly accounted for by impairment of the antioxidative system associated with a reduced SOD activity and GSH content.  相似文献   

18.
Reactive oxygen species and lipid peroxidation play a role in the pathogenesis induced by the non-steroidal anti-inflammatory drug indomethacin. Melatonin (MLT) protection against indomethacin-induced oxidative tissue injury was investigated in gastric mucosa and testis of rats. MLT was administered intragastrically (i.g.) 30 min before the administration to fasted rats of 20 mg indomethacin/kg rat given i.g.. The area of gastric lesion as well as thiobarbituric acid reactive substances (TBARS) and lactate dehydrogenase (LDH) activity were found to be significantly increased 4 h after administration of indomethacin in rat gastric mucosa and testis indicating acute oxidative injury. MLT pretreatment reduced gastric lesion area to 80% of the indomethacin-treated rats and reduced the rise in TBARS concentration. MLT treatment reduced the LDH activity increase in testis but not in gastric mucosa. In indomethacin-treated rats, both the cytosolic Cu,Zn superoxide dismutase (Cu,Zn-SOD) and mitochondrial Mn-SOD activities were significantly diminished in gastric mucosa as well as the total SOD activity in testis. In addition, glutathione (GSH) content in both tissues was markedly decreased following indomethacin treatment. Pretreatment with MLT significantly ameliorated both the inhibition of SOD activity and the decreased GSH content in both tissues. Thus, these results show the effective antiperoxidative and preventive actions of MLT against indomethacin-induced gastric mucosal damage and testicular oxidative injury and we propose that this action might be relevant for its use with other free radical generating drugs.  相似文献   

19.
Oxicams are widely used nonsteroidal anti-inflammatory drugs (NSAIDs), but little is known about the molecular basis of the interaction with their target enzymes, the cyclooxygenases (COX). Isoxicam is a nonselective inhibitor of COX-1 and COX-2 whereas meloxicam displays some selectivity for COX-2. Here we report crystal complexes of COX-2 with isoxicam and meloxicam at 2.0 and 2.45 angstroms, respectively, and a crystal complex of COX-1 with meloxicam at 2.4 angstroms. These structures reveal that the oxicams bind to the active site of COX-2 using a binding pose not seen with other NSAIDs through two highly coordinated water molecules. The 4-hydroxyl group on the thiazine ring partners with Ser-530 via hydrogen bonding, and the heteroatom of the carboxamide ring of the oxicam scaffold interacts with Tyr-385 and Ser-530 through a highly coordinated water molecule. The nitrogen atom of the thiazine and the oxygen atom of the carboxamide bind to Arg-120 and Tyr-355 via another highly ordered water molecule. The rotation of Leu-531 in the structure opens a novel binding pocket, which is not utilized for the binding of other NSAIDs. In addition, a detailed study of meloxicam·COX-2 interactions revealed that mutation of Val-434 to Ile significantly reduces inhibition by meloxicam due to subtle changes around Phe-518, giving rise to the preferential inhibition of COX-2 over COX-1.  相似文献   

20.
Chronic arthritis induces cachexia associated with an inhibition of the growth hormone (GH)-insulin-like growth factor-I (IGF-I) system and an activation of the E3 ubiquitin-ligating enzymes muscle atrophy F-box (MAFbx) and muscle Ring finger 1 (MuRF1) in the skeletal muscle. The aim of this work was to study the role of cyclooxygenase (COX)-2 in chronic arthritis-induced cachexia. Arthritis was induced in rats by Freund's adjuvant injection, and the effects of two COX inhibitors (indomethacin, a nonspecific inhibitor, and meloxicam, a selective COX-2 inhibitor on pituitary GH and on liver and serum IGF-I levels) were tested. Arthritis decreased body weight gain and GH and liver IGF-I gene expression. In the arthritic rats, both inhibitors, indomethacin and meloxicam, prevented the inhibitory effect of arthritis on body weight gain. Indomethacin and meloxicam administration to arthritic rats increased pituitary GH and liver IGF-I mRNA as well as serum levels of IGF-I. These data suggest that induction of COX-2 during chronic inflammation is involved in the inhibition of the GH-IGF-I axis and in the body weight loss. In the gastrocnemius muscle, arthritis increased the gene expression of tumor necrosis factor (TNF)-alpha, the E3 ubiquitin-ligating enzymes MAFbx and MuRF1, as well as of IGF-I and IGF-binding protein-5 (IGFBP-5). Inhibition of COX-2 by meloxicam administration increased gastrocnemius weight and decreased MAFbx, MuRF1, TNF-alpha, and IGFBP-5 gene expression. In summary, our data indicate that chronic arthritis-induced cachexia and muscle wasting are mediated by the COX-2 pathway resulting in a decreased GH-IGF-I secretion and increased expression of MAFbx and MuRF1 mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号