首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The pheromone-responding conjugative bacteriocin plasmid pPD1 (59 kb) of Enterococcus faecalis was mapped physically by using a relational clone approach, and transposon analysis with Tn917 (Emr) or Tn916 (Tcr) facilitated the location of the bacteriocin-related genes in a segment of about 6.7 kb. Tn917 insertions within a 3-kb region resulted in constitutive clumping. The nucleotide sequence of the region that included the insertions giving rise to constitutive clumping was determined. The region of pPD1 spanned about 8 kb and was found to contain a number of open reading frames, some of which were named on the basis of homologies with two other pheromone-responding plasmids, pAD1 and pCF10. The genes were arranged in the sequence repB-repA-traC-traB-traA-ipd-traE-traF- orfY-sea-1 with all but repB and traA oriented in the same (left-to-right) direction. traC and traB corresponded, respectively, to traC and traB of pAD1 and to prgY and prgZ of pCF10.  相似文献   

2.
Genetic organization of the bacterial conjugative transposon Tn916.   总被引:40,自引:18,他引:22       下载免费PDF全文
Tn916, which encodes resistance to tetracycline, is a 16.4-kilobase conjugative transposon originally identified on the chromosome of Streptococcus faecalis DS16. The transposon has been cloned in Escherichia coli on plasmid vectors, where it expresses tetracycline resistance; it can be reintroduced into S. faecalis via protoplast transformation. We have used a lambda::Tn5 bacteriophage delivery system to introduce Tn5 into numerous sites within Tn916. The Tn5 insertions had various effects on the behavior of Tn916. Some insertions eliminated conjugative transposition but not intracellular transposition, and others eliminated an excision step believed to be essential for both types of transposition. A few inserts had no effect on transposon behavior. Functions were mapped to specific regions on the transposon.  相似文献   

3.
The conjugative plasmid pCF-10 (58 kb) of Streptococcus faecalis has been mapped with restriction enzymes. By restriction mapping and Southern hybridization analysis, a 16-kb segment of the plasmid was shown to resemble closely the conjugative tetracycline resistance transposon, Tn916. Mutagenesis of the plasmid with the erythromycin resistance transposon Tn917 was used to localize a tetracycline resistance determinant and several regions involved in conjugal transfer. Fifty Tn917 insertions (outside the region of the plasmid homologous to Tn916) affecting mating behavior and the ability of donor cells to respond to the sex pheromone cCF-10 were mapped to nine distinct segments, or tra regions. Insertions into tra regions 1-3 and 7-9 led to an enhanced transfer ability of mutant plasmids relative to the transfer frequency obtained for the wild-type plasmid. Cells carrying these mutant plasmids differed in colony morphology or growth in broth culture from cells carrying pCF-10. Insertions into tra regions 4-6 resulted in reduced plasmid transfer, or completely eliminated the mating potential of donor cells. Insertions generating transfer-defective plasmids could be grouped further according to the ability of strains harboring the mutant plasmids to respond to cCF-10. HindIII fragments of pCF-10 coding for transfer functions have been cloned into Escherichia coli.  相似文献   

4.
Streptococcus faecalis strain DS16 harbors the conjugative hemolysin-bacteriocin plasmid pAD1 (35 megadaltons) and the nonconjugative R-plasmid pAD2 determining resistance to streptomycin, kanamycin, and erythromycin; a tetracycline resistance (Tetr) determinant is located on the chromosome. When strain DS16 was mated (on membrane filters) with the plasmid-free strain JH2-2, Tetr transconjugants could be obtained at a frequency of about 10(-6) per recipient. Analyses of transconjugants showed that some contained the Tetr determinant linked to pAD1. Subsequent studies showed that the Tetr determinant was located on a 10-megaldalton transposon, designated Tn916, which could insert into two hemolysin plasmids: pAM gamma 1 and pOB1. In addition, derivatives of DS16 devoid of pAD1 were capable of transferring Tetr to recipient strains. Transconjugants (plasmid-free) from such matings could subsequently act as donors in the transfer of Tetr. Both transposition and transfer were found to be rec independent.  相似文献   

5.
Tn916-dependent mobilization of nonconjugative plasmids pUB110 and its derivative pUB110Deltam was compared. Deleting a 787-bp fragment from the pUB110 mob region created plasmid pUB110Deltam. Deletion of the mob region of pUB110 rendered the plasmid nontransferable by the conjugative plasmids of Bacillus thuringiensis subsp. israelensis. During matings between Bacillus subtilis (Tn916) and B. thuringiensis subsp. israelensis, however, Tn916-dependent mobilization of plasmids pUB110 and pUB110Deltam was observed at a frequency of approximately 2 x 10(-6) transconjugants per donor. The results show that Tn916-mediated conjugal transfer of plasmids is a mob-independent event. Jaworski and Clewell (J. Bacteriol 177; 6644-6651) recently demonstrated the presence of an IncP-like nicking site in the oriT of Tn916. These data suggest that a IncP-like nickling site is essential for Tn916-mediated plasmid transfer.  相似文献   

6.
The conjugative Streptococcus faecalis transposon Tn916 was introduced into Bacillus thuringiensis subsp. israelensis by filter matings with S. faecalis. B. thuringiensis transconjugants resistant to tetracycline (Tetr) were detected at a frequency of approximately 7.0 X 10(-7) per recipient cell during filter matings, whereas transfer of Tn916 was not observed in broth matings. The Tetr phenotype in subsp. israelensis was stable in the absence of antibiotic selection. Southern hybridization analysis revealed that Tn916 had inserted into several different sites on the B. thuringiensis subsp. israelensis chromosome but insertion into plasmid DNA was not observed. Movement of Tn916 was demonstrated when Tetr B. thuringiensis transconjugants were mated with isogenic recipients. Southern hybridizations, however, showed that the resulting Tetr isolates contained Tn916 junction fragments that were nearly identical to the donor, suggesting that this movement resulted from transfer of chromosomal DNA from donor to recipient or from a fusion of mating cells, rather than conjugative transposition of the Tn element.  相似文献   

7.
As part of an effort to develop systems for genetic analysis of strains of Bacillus pumilus which are being used as a microbial hay preservative, we introduced the conjugative Enterococcus faecalis transposon Tn916 into B. pumilus ATCC 1 and two naturally occurring hay isolates of B. pumilus. B. pumilus transconjugants resistant to tetracycline were detected at a frequency of approximately 6.5 x 10(-7) per recipient after filter mating with E. faecalis CG110. Southern hybridization confirmed the insertion of Tn916 into several different sites in the B. pumilus chromosome. Transfer of Tn916 also was observed between strains of B. pumilus in filter matings, and one donor strain transferred tetracycline resistance to recipients in broth matings at high frequency (up to 3.4 x 10(-5) per recipient). Transfer from this donor strain in broth matings was DNase-resistant and was not mediated by culture filtrates. Transconjugants from these broth matings contained derivatives of a cryptic plasmid (pMGD302, approx 60 kb) from the donor strain with Tn916 inserted at various sites. The plasmids containing Tn916 insertions transferred to a B. pumilus recipient strain at frequencies of approx 5 x 10(-6) per recipient. This evidence suggests that pMGD302 can transfer by a process resembling conjugation between strains of B. pumilus.  相似文献   

8.
K M Trotter  G M Dunny 《Plasmid》1990,24(1):57-67
From Enterococcus faecalis cells containing random chromosomal insertions of Tn916, strains resistant to a lytic phage were selected and tested for conjugal mating ability. The phage-resistant strains all showed decreased recipient ability (Con-) in broth matings with donors carrying pheromone-inducible plasmids. These strains were normal with respect to donor ability in broth matings and recipient ability in filter matings. The data suggest that the mutants are deficient in the binding substance receptor for the pheromone-induced donor aggregation substance. These mutants contained multiple insertions of Tn916, and none of the individual insertions from the mutant strains were capable of generating the phenotype. Analysis of cell envelope lipoteichoic acids and protein revealed changes in both associated with the Con- phenotype.  相似文献   

9.
The tetracycline resistance plasmid pCF10 (58 kilobases [kb]) of Streptococcus faecalis possesses two separate conjugation systems. A 25-kb region of the plasmid (designated TRA) was shown previously to determine pheromone response and conjugation functions required for transfer of pCF10 between S. faecalis cells (P. J. Christie and G. M. Dunny, Plasmid 15:230-241, 1986). When S. faecalis cells were mixed with Bacillus subtilis in broth, tetracycline resistance was transferred from S. faecalis. The tetracycline-resistant B. subtilis cells contained a 16-kb region of pCF10 (distinct from TRA) that carried the tetracycline resistance determinant (Tetr). This Tetr element was found to transfer between S. faecalis and B. subtilis strains in the absence of plasmids. Genetic and molecular techniques were used to establish locations of the element at several different sites on the B. subtilis chromosome. The Tetr element could be transferred in filter matings from B. subtilis to S. faecalis strains and between recombination-proficient and -deficient S. faecalis strains in the absence of any plasmid DNA. The transfer required direct cell-to-cell contact and was not inhibited by DNase. The Tetr element was shown to transpose from the S. faecalis chromosome to various locations within the hemolysin plasmid pAD1. Together, the data indicate that the Tetr element, termed transposon Tn925, is very similar to the conjugative transposon Tn916 in both structure and function. A derivative of Tn925, containing transposon Tn917 inserted into a site approximately 3 kb from one end, exhibited elevated transfer frequencies and may provide a useful means for delivering Tn917 by conjugation into various gram-positive species.  相似文献   

10.
A method has been developed for the introduction of Tn5 into Escherichia coli plasmid chimeras containing Streptococcus faecalis DNA. Tn5 could be introduced via a lambda::Tn5 delivery vehicle. The system proved to be particularly efficient and facilitated insertions at numerous sites on DNA containing the 16-kilobase conjugative transposon Tn916. It was possible to introduce some of the resulting Tn916::Tn5 derivatives back into S. faecalis by using a recently developed protoplast transformation procedure. A presumed zygotic induction resulted in insertion of the Tn916 derivatives at multiple sites in the S. faecalis chromosome.  相似文献   

11.
A method has been developed for the introduction of Tn5 into Escherichia coli plasmid chimeras containing Streptococcus faecalis DNA. Tn5 could be introduced via a lambda::Tn5 delivery vehicle. The system proved to be particularly efficient and facilitated insertions at numerous sites on DNA containing the 16-kilobase conjugative transposon Tn916. It was possible to introduce some of the resulting Tn916::Tn5 derivatives back into S. faecalis by using a recently developed protoplast transformation procedure. A presumed zygotic induction resulted in insertion of the Tn916 derivatives at multiple sites in the S. faecalis chromosome.  相似文献   

12.
Streptococcus faecalis RC73 was found to harbor a conjugative plasmid (pAM373) which confers a mating response to a sex pheromone (cAM373) excreted by plasmid-free members of the same species. The pheromone was also detected in culture filtrates of all of 23 Staphylococcus aureus strains but in only 2 of 22 coagulase negative staphylococcus strains. Streptococcus sanguis Challis and G9B also produced the activity, but 10 other Streptococcus sanguis strains did not. The activity was also produced by Streptococcus faecium 9790. A tetracycline resistance (Tc) determinant present in S. faecalis RC73 was not associated with pAM373 but served as a useful marker in efforts to identify pAM373 among other plasmids present in the strain. Analyses of the Tc determinant showed that it was located on a conjugative transposon very similar to Tn916. Designated Tn918, the transposon could insert into pAM373 as well as into two other hemolysin plasmids. Whereas pAM373 derivatives transferred very well between strains of Streptococcus faecalis, the plasmid would not establish in Staphylococcus aureus or Streptococcus sanguis. However, a derivative of pAM373 carrying Tn918 proved to be a useful delivery vehicle for generating transposon insertions into multiple sites on the staphylococcal chromosome.  相似文献   

13.
Members of the Tn916 family of conjugative transposons are able to insert themselves into Enterococcus faecalis hemolysin/bacteriocin plasmid pAD1 (and related elements) in such a way as to generate hyperexpression of the hemolysin/bacteriocin. To examine this phenomenon in more detail, E. faecalis (pAD1::Tn916) derivatives defective or altered in hemolysin expression were isolated and characterized with respect to production of the L (lytic) or A (activator) component (also known as CylA) and the specific location of the transposon. The mutants fell into five classes. Class 1 strains were nonhemolytic, and the related insertions mapped in a location known to affect expression of the L component. The other four classes varied from an inability to express hemolysin (class 2) to different degrees of hyperhemolytic expression (classes 3 to 5); the insertions in these classes mapped in a similar place within cylA, near the 3' end of the determinant. A previous study provided evidence that CylA is also necessary for bacteriocin immunity; however, these insertions did not destroy this function. (A Tn917 insertion in the 5' half of the determinant eliminates immunity.) In mutant classes 3 to 5, the presence of tetracycline enhanced hemolysin expression. In late-exponential-phase broth cultures, hemolysin could not be detected in supernatants of classes 2 to 5, in contrast to a wild-type control strain; however, different amounts of the L component could be detected, with the lowest in class 2 and greater-than-normal amounts in classes 3 to 5. Although nucleotide sequencing showed that the Tn916 insertions in classes 2 to 5 were at identical sites, the transposon junction sequences differed in some cases. The data indicated that cylA translation into the transposon would result in different truncation sites, and these differences were probably related to phenotype differences.  相似文献   

14.
The conjugative transposon Tn916 (15 kilobases), originally identified in Streptococcus faecalis DS16, has been cloned as an intact element on the pBR322-derived vector pGL101 in Escherichia coli. The EcoRI F' (EcoRI F::Tn916) fragment of pAM211 (pAD1::Tn916) was cloned into the single EcoRI site of pGL101 to form the chimera, pAM120, by selecting for the expression of Tn916-encoded tetracycline resistance (Tcr). Interestingly, in the absence of continued selection for Tcr, Tn916 excised from pAM120 at high frequency. This excision event resulted in a plasmid species consisting of the pGL101 vector and a 2.7-kilobase restriction fragment comigrating with the EcoRI F fragment of pAD1 during agarose gel electrophoresis. Filter blot hybridization experiments showed the 2.7-kilobase fragment generated as a result of Tn916 excision to be homologous with the EcoRI F fragment of pAD1. Analogous results were obtained with another chimera, pAM170, generated by ligating the EcoRI D' (EcoRI D::Tn916) fragment of pAM210 (pAD1::Tn916) to EcoRI-digested pGL101. Comparison of the AluI and RsaI cleavage patterns of the EcoRI F fragment isolated after Tn916 excision with those from an EcoRI F fragment derived from pAD1 failed to detect any difference in the two fragments: data in support of a precise Tn916 excision event in E. coli. Subcloning experiments showed that an intact transposon was required for Tn916 excision and located the Tcr determinant near the single HindIII site on Tn916. Although excision occurred with high frequency in E. coli, Tn916 insertion into the E. coli chromosome was a much rarer event. Tcr transformants were not obtained when pAM120 DNA was used to transform a polA1 strain, E. coli C2368.  相似文献   

15.
Plasmids pAD1 (37.8 megadaltons) and pAD2 (17.1 megadaltons) of Streptococcus faecalis strain DS16 have been mapped with restriction enzymes. The location of a hemolysin-bacteriocin determinant on the conjugative pAD1 plasmid was derived from analyses of transposon insertions. Electron microscope and hybridization analyses located Tn917(Em) and the streptomycin (Sm) and kanamycin (Km) resistance determinants on the nonconjugative pAD2 plasmid. It was shown previously that the erythromycin (Em) resistance associated with Tn917 is inducible and that transposition from pAD2 to pAD1 is also stimulated by exposure of cells to low concentrations of Em. Here we show that inducing concentrations of Em also increase the conjugative transfer potential of pAD1; this is possibly related to a mild and short-lived inhibitory stress placed on the cells before full induction of resistance. Selection of Em-resistant transconjugants arising from matings between DS16 and a plasmid-free recipient gave rise to transconjugants which primarily harbor stable pAD1::pAD2 cointegrates. A 30-min exposure of donors to Em (0.5 microgram/ml) before mating resulted in a severalfold increase in the number of such transconjugants. However, a small fraction (e.g., 3 of 40) of these Emr Smr Kmr transconjugants harbored pAD1::Tn917 and pAD2 molecules. Since we believe pAD2 is incapable of being mobilized by pAD1 without being covalently linked, it is likely that transfer in these cases involved cointegrates representing structural intermediates in the transposition of Tn917 from pAD2 to pAD1. It follows that such intermediates probably had two copies of Tn917 and readily resolved after transfer. (These cointegrates are different from the stable cointegrates which were shown to have only a single copy of Tn917; the latter are assumed not to be related to transposition.) Two variants with altered Tn917 transposition properties were derived. One of them transposed at an elevated frequency, whereas the other showed no detectabel transposition. In neither case was transposition influenced by Em exposure; however, both remained inducible for Em resistance.  相似文献   

16.
Transformation and fusion of Streptococcus faecalis protoplasts.   总被引:6,自引:2,他引:4       下载免费PDF全文
Nonconjugative plasmids were transferred by protoplast fusion among Streptococcus faecalis strains and from Streptococcus sanguis to S. faecalis. S. faecalis protoplasts were also transformed with several different plasmids, including the Tn917 delivery vehicle pTV1. Transformation was reproducible, but low in frequency (10(-6) transformants per viable protoplast). A new shuttle vector (pAM610), able to replicate in Escherichia coli and S. faecalis, was constructed and transformed into S. faecalis protoplasts. pAM610 was mobilized by the conjugative plasmid pAM beta 1 in matings among S. faecalis strains and from S. sanguis to S. faecalis. Chimeric derivatives of pAM610 were also transformed into S. faecalis.  相似文献   

17.
The conjugative transfer of the Streptococcus faecalis plasmid pAD1 is characterized by a 10,000-fold increase in frequency following sex pheromone (cAD1) induction. Before the increase in plasmid transfer, donor cells synthesize a proteinaceous adhesin that facilitates the formation of mating aggregates. Four novel surface proteins appearing after exposure of pAD1-containing cells to sex pheromone have been identified. Thirty minutes after induction, a 130-kilodalton (kDa) protein was detectable by Western blotting. A 74-kDa protein, the major species present, and a pair of bands at 153 and 157 kDa were evident 45 min after induction. Induced cells containing another conjugative S. faecalis plasmid, pPD1, gave rise to three high-molecular-weight proteins of the same size (130, 153, and 157 kDa) as those synthesized by pAD1-containing cells. These proteins cross-reacted with antisera raised against induced cells containing pAD1. However, the major protein species produced by pPD1-containing cells had a molecular weight of 78,000 and did not cross-react significantly with the corresponding band of the pAD1 system. Pheromone-induced transfer of the two plasmids, when both were present in the same cell, was independent; induction was limited to the pheromone-specified plasmid. The possibility that lipoteichoic acid might act as a receptor (binding substance) for the induced adhesin protein was also explored. Free lipoteichoic acid (isolated from S. faecalis) inhibited clumping of induced cells, apparently by acting as a competitive inhibitor of the cellular binding substance.  相似文献   

18.
Sequential transposition of Tn916 among Staphylococcus aureus protoplasts   总被引:4,自引:0,他引:4  
S C Yost  J M Jones  P A Pattee 《Plasmid》1988,19(1):13-20
Transposition of the Streptococcus faecalis conjugal tetracycline-resistance transposon Tn916 between S. aureus strains occurred when protoplasts of donor and recipient strains were regenerated together without prior fusion. Under these conditions, only Tn916 was transferred; spontaneous fusion of parental protoplasts is therefore unlikely to be responsible for Tn916 transfer. While the exact nature of this transfer remains unclear, it appears to resemble Tn916 conjugal transposition reported in S. faecalis. Evidence for sequential transpositions of Tn916 was obtained by 3-factorial transformation analyses and confirmed by DNA-DNA hybridizations. The ability of Tn916 to transpose within S. aureus and occupy diverse chromosomal sites demonstrates the value of this transposon in genetic studies of S. aureus.  相似文献   

19.
20.
P Dobrovol'ski  V A Sakanian 《Genetika》1986,22(11):2693-2701
Hydroxylamine-induced mutants of the plasmid pPD6 (8.4 kb) were isolated which are resistant to high doses of tetracycline. One of the plasmids studied--pPD21 is a multicopy mutant, another one, pPD12 is a dimeric form of the pPD6 plasmid. The pPD12 plasmid is very unstable, its derivative, pPD13 spontaneous mutant acquiring stability but not the ability to resolve DNA multimeric forms into monomeric forms. Multicopy bireplicon pPD619 plasmid was constructed by joining in vitro pPD6 and pUC19 plasmids. Removing the replicon pUC19 from the bireplicon plasmid gives a new low-copy plasmid pPD620. All of the plasmids constructed were mobilized by the conjugative pRK2013 plasmid into the strains of Escherichia coli, Pseudomonas aeruginosa and Agrobacterium tumefaciens. The pPD6 plasmid and its derivatives can be used as cloning vectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号