首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 232 毫秒
1.
To evaluate the importance and fate of organic matter inputs in forested streams, we determined the litterfall inputs and the benthic coarse particulate organic matter (CPOM) in one headwater stream flowing through a mixed deciduous forest, during one year. Both vertical traps and the stream bottom were sampled monthly. The material collected was sorted into four main categories: leaves, fruits and flowers, twigs and debris. Litter production was 715 g m−2 y−1 and seasonal, with 73% of the annual total during October–December (autumn). Leaves comprised the largest litter component. Benthic organic matter was 1880 g m−2 y−1, and was also seasonal. Highest accumulation was attained in spring, and twigs and branches comprised the major component. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
The aim of this paper was to study the influence of environmental characteristics of the Mediterranean climate on seasonal variability of particulate organic matter abundance in a mountain stream. Coarse and fine fractions of both suspended and benthic particulate organic matter were determined on 14 occasions between February 1998 and November 1999 in a second‐order Mediterranean stream in Central Spain (Arroyo Mediano). Temporal variability of suspended organic matter followed a seasonal pattern, attributed to litter‐fall inputs, instream processing, and the hydrological regime. Suspended organic matter (SOM) and its seasonal variability fall well within the range reported for streams in temperate non‐Mediterranean deciduous forest. However, we found no seasonal trend in benthic organic matter (BOM) storage, and it seems that the amount of BOM remained fairly constant throughout the year. Reach retention (evaluated as the ratio between BOM and SOM per m2) was higher in summer during reduced stream flow, mainly due to coarse particulate organic matter storage. These observations do not differ from those reported for other headwater streams in temperate forested biomes, from which we conclude that there was no evidence of a Mediterranean influence on particulate organic matter dynamics in the Mediano stream, nor probably in other headwater Mediterranean streams. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
1. Although stream–catchment interactions have been analysed in some detail in temperate environments, little is known about the effects of land‐use changes in the tropics. Here, we analyse differences in benthic communities (macroinvertebrates and fungi) under two contrasting land uses (mature secondary forest and pasture) in montane streams in north‐western Ecuador and their influence on the rates of litter processing. 2. Between 2005 and 2006, we used a combination of coarse and fine mesh bags to study the relative contribution of macroinvertebrates and fungi to processing of two types of litter, Alnus acuminata and Inga spectabilis, in three‐first‐order streams running through mature secondary montane forests and adjacent downstream reaches running through pastures. At the same time, we characterised the assemblages of shreddering macroinvertebrates and fungi communities and the litter processing rates in stream reaches under both vegetation types. 3. Litter processing rates attributable to invertebrate feeding (coarse mesh bags) were significantly slower in streams running through pastures. Nevertheless, shredder diversity and richness were similar between pasture and forest sections, while shredder abundance was significantly higher in forest streams (mainly Phylloicus sp. :Trichoptera). Fungal reproductive activity and litter processing rates were low (fine mesh bags) and did not differ significantly between pasture and forest stream reaches. 4. Phylloicus sp. abundance was the best predictor of the percentage of litter remaining in coarse mesh bags across pasture and forest sites. Neither shredder diversity nor their species richness was a significant predictor of mass loss, as most of the decomposition was performed by a single keystone species. Although litter decomposition by microbial decomposers was low, fungal biomass (but not diversity) was the best variable explaining the percentage of litter remaining in fine mesh bags. 5. Our data suggest that, in these Neotropical montane streams, land use can have a significant impact on the rates of critical ecosystem processes, such as litter decomposition. In this study, this effect was not mediated by a major shift in the structure of the benthos, but by a decrease in the abundance and relative representation of a single species whose life history makes it critical to litter processing. 6. This study highlights the significant role that macroinvertebrate fauna can have in the processing of litter in Neotropical streams and the predominant role that single species can have in terms of controlling stream ecosystem‐level processes. Understanding the extent to which these patterns affect the long‐term and large‐scale functioning of stream ecosystems still needs further research and will become increasingly important in terms of managing lotic ecosystems in the context of rapid land‐use change.  相似文献   

4.
Jon Molinero  Jesus Pozo 《Hydrobiologia》2004,528(1-3):143-165
Litterfall inputs, benthic storage and the transport of coarse particulate organic matter (CPOM) were studied in two headwater streams, one flowing through a mixed deciduous forest and one through a plantation of Eucalyptus globulus. Vertical and lateral traps, transported CPOM and benthic CPOM were sampled monthly to biweekly and sorted into four categories: leaves, twigs and bark, fruits and flowers and debris. The litterfall inputs were about 20% lower at the eucalyptus site but this reduction was unevenly distributed among the litter categories. The reduction of the nitrogen and phosphorus inputs was larger (50%) than that of CPOM because of the low nutrient concentration of the CPOM at the eucalyptus site. Transported CPOM was also lower at the eucalyptus site. Although total CPOM inputs to the stream were reduced in the eucalyptus plantation, benthic storage of CPOM was 50% higher due to (1) high inputs of CPOM and low discharge during summer, (2) more twig and bark inputs, (3) eucalyptus leaves being retained more efficiently in the stream than deciduous leaves (4) a lower discharge, which may in part be attributable to eucalyptus-induced changes in the hydrological cycle. Increased retention balanced lower nitrogen and phosphorus content of CPOM, so benthic storage of nitrogen and phosphorus was similar at both sites. This work demonstrates that the timing, quality and quantity of inputs and benthic storage of CPOM in streams changes substantially because of the substitution of natural deciduous forest with eucalyptus plantation. Maintenance of buffer strips of natural vegetation may be the best way to protect ecological functioning of small, forested streams.  相似文献   

5.
1. The quality of allochthonous organic matter influences the transfer of energy and nutrients through recipient food webs. We investigated the effects of variation in the composition of riparian forests (deciduous, mixed, coniferous) on the elemental imbalance between basal resources and consumers in streams, on consumer feeding and on potential feedbacks to riparian systems via emergent aquatic insects. 2. We tested for differences in elemental stoichiometry (carbon/nitrogen/phosphorus; C/N/P) and stable isotopes (?13C and ?15N) between deciduous (red alder, Alnus rubra) and coniferous litter (western hemlock, Tsuga heterophylla) and among abundant stream invertebrates from streams draining different riparian forests (deciduous, mixed, coniferous). We then assessed shredder feeding preferences (of the trichopteran, Lepidostoma unicolor) for litter incubated in streams with these different forest types and quantified differences in emergence of aquatic and semiaquatic insects among streams. 3. Both initial (non‐incubated) and stream‐incubated A. rubra litter had lower C/N and C/P and were more depleted in ?13C and more enriched in ?15N, than T. heterophylla litter. The stoichiometry of invertebrate tissue did not vary significantly among taxa or with riparian forest composition. A predator (the plecopteran Chloroperlidae) and a collector‐gatherer (the ephemeropteran Paraleptophlebia gregalis) from mixed and coniferous forest streams were more enriched in ?13C and ?15N isotopes than those from deciduous streams, suggesting that low availability of palatable, N‐rich A. rubra litter may constrain energy flow and nutrient fluxes up through the food web in systems with little or no A. rubra. 4. Consumption of A. rubra litter by L. unicolor was most rapid when the litter had been incubated in streams draining deciduous forests, whereas consumption of T. heterophylla litter was not influenced by the composition of the riparian forest. 5. Peak insect emergence from coniferous forest streams occurred 1 month earlier and at 2–3× higher density than from mixed and deciduous‐forest streams, but total biomass of emerging insects throughout the study period was not different between forest types. Assemblages of emerging insects were different between deciduous and coniferous forest streams, and taxon richness and diversity were nearly 2× greater from deciduous than from coniferous forest streams. 6. Forest composition influences stream invertebrate feeding and could have reciprocal feedbacks onto riparian systems via altered insect emergence.  相似文献   

6.
Spatial dispersal patterns of fine litter were analyzed in relation to forest structure within a temperate mixed stand, in northeastern Japan. The canopy layer was a mosaic of two types of patches, those of shade-tolerant Abies firma (estimated age being 81–146 yrs.) and early successional deciduous broad-leaved trees (about 45 yrs. of age). Litter input to the forest floor was observed for a period of three years using 38 traps set at a height of 1.2 m. The average annual total of fine litter was 6.233 (dw.) metric tons hectare-1, 85.7% of the total litterfall. Fine litter was mostly leaves from the overstory (about 64%). Litter distribution maps were drawn, using the Davis's grid method, of the total fine litter and its two main elements, namely A. firma (a 36.1% share) and deciduous broad-leaved species (36.7%). The mosaic distribution of heterogeneous patches of litter was seem to corresponded with distribution of the canopy structure.  相似文献   

7.
Human activities that modify land cover can alter the structure and biogeochemistry of small streams but these effects are poorly known over large regions of the humid tropics where rates of forest clearing are high. We examined how conversion of Amazon lowland tropical forest to cattle pasture influenced the physical and chemical structure, organic matter stocks and N cycling of small streams. We combined a regional ground survey of small streams with an intensive study of nutrient cycling using 15N additions in three representative streams: a second-order forest stream, a second-order pasture stream and a third-order pasture stream. These three streams were within several km of each other and on similar soils. Replacement of forest with pasture decreased stream habitat complexity by changing streams from run and pool channels with forest leaf detritus (50% cover) to grass-filled (63% cover) channel with runs of slow-moving water. In the survey, pasture streams consistently had lower concentrations of dissolved oxygen and nitrate (NO3 ?) compared with similar-sized forest streams. Stable isotope additions revealed that second-order pasture stream had a shorter NH4 + uptake length, higher uptake rates into organic matter components and a shorter 15NH4 + residence time than the second-order forest stream or the third-order pasture stream. Nitrification was significant in the forest stream (19% of the added 15NH4 +) but not in the second-order pasture (0%) or third-order (6%) pasture stream. The forest stream retained 7% of added 15N in organic matter compartments and exported 53% (15NH4 +?=?34%; 15NO3 ??=?19%). In contrast, the second-order pasture stream retained 75% of added 15N, predominantly in grasses (69%) and exported only 4% as 15NH4 +. The fate of tracer 15N in the third-order pasture stream more closely resembled that in the forest stream, with 5% of added N retained and 26% exported (15NH4 +?=?9%; 15NO3 ??=?6%). These findings indicate that the widespread infilling by grass in small streams in areas deforested for pasture greatly increases the retention of inorganic N in the first- and second-order streams, which make up roughly three-fourths of total stream channel length in Amazon basin watersheds. The importance of this phenomenon and its effect on N transport to larger rivers across the larger areas of the Amazon Basin will depend on better evaluation of both the extent and the scale at which stream infilling by grass occurs, but our analysis suggests the phenomenon is widespread.  相似文献   

8.
Although the importance of stream condition for leaf litter decomposition has been extensively studied, little is known about how processing rates change in response to altered riparian vegetation community composition. We investigated patterns of plant litter input and decomposition across 20 boreal headwater streams that varied in proportions of riparian deciduous and coniferous trees. We measured a suite of in‐stream physical and chemical characteristics, as well as the amount and type of litter inputs from riparian vegetation, and related these to decomposition rates of native (alder, birch, and spruce) and introduced (lodgepole pine) litter species incubated in coarse‐ and fine‐mesh bags. Total litter inputs ranged more than fivefold among sites and increased with the proportion of deciduous vegetation in the riparian zone. In line with differences in initial litter quality, mean decomposition rate was highest for alder, followed by birch, spruce, and lodgepole pine (12, 55, and 68% lower rates, respectively). Further, these rates were greater in coarse‐mesh bags that allow colonization by macroinvertebrates. Variance in decomposition rate among sites for different species was best explained by different sets of environmental conditions, but litter‐input composition (i.e., quality) was overall highly important. On average, native litter decomposed faster in sites with higher‐quality litter input and (with the exception of spruce) higher concentrations of dissolved nutrients and open canopies. By contrast, lodgepole pine decomposed more rapidly in sites receiving lower‐quality litter inputs. Birch litter decomposition rate in coarse‐mesh bags was best predicted by the same environmental variables as in fine‐mesh bags, with additional positive influences of macroinvertebrate species richness. Hence, to facilitate energy turnover in boreal headwaters, forest management with focus on conifer production should aim at increasing the presence of native deciduous trees along streams, as they promote conditions that favor higher decomposition rates of terrestrial plant litter.  相似文献   

9.
The abundance and taxonomic richness of adult caddisfly faunas were determined at varing distances (up to 200 m) away from three North Island, New Zealand, streams to help define appropriate forested riparian zone widths for adult aquatic insects. Adults were collected using sticky traps and ultraviolet light traps on four occasions over summer. Light traps were more effective at catching caddisflies than sticky traps, but both methods gave similar patterns of declining abundance and taxonomic richness with distance from the stream edge. Abundances of total caddisflies at 20 m were <21% of those caught at the stream edge for both trapping techniques. The same trends were evident for abundances of most common species in light traps, whereas bimodal peaks were evident with distance from the channel edge for percentage females of three common species. More than 30% of species caught at the stream edge was found in light traps at least 70 m into forest at all sites. A faster rate of decline for abundance than richness with distance away from the stream reflected the relatively large distances travelled by representatives of many species. Similar results from the three sites for numbers and species richness indicate that the main area of activity for adult Trichoptera in forested riparian zones was within 30 m of the stream edge at these sites.  相似文献   

10.
Tropical montane ecosystems of the Andes are critically threatened by a rapid land‐use change which can potentially affect stream variables, aquatic communities, and ecosystem processes such as leaf litter breakdown. However, these effects have not been sufficiently investigated in the Andean region and at high altitude locations in general. Here, we studied the influence of land use (forest–pasture–urban) on stream physico‐chemical variables (e.g., water temperature, nutrient concentration, and pH), aquatic communities (macroinvertebrates and aquatic fungi) and leaf litter breakdown rates in Andean streams (southern Ecuador), and how variation in those stream physico‐chemical variables affect macroinvertebrates and fungi related to leaf litter breakdown. We found that pH, water temperature, and nutrient concentration increased along the land‐use gradient. Macroinvertebrate communities were significantly different between land uses. Shredder richness and abundance were lower in pasture than forest sites and totally absent in urban sites, and fungal richness and biomass were higher in forest sites than in pasture and urban sites. Leaf litter breakdown rates became slower as riparian land use changed from natural to anthropogenically disturbed conditions and were largely determined by pH, water temperature, phosphate concentration, fungal activity, and single species of leaf‐shredding invertebrates. Our findings provide evidence that leaf litter breakdown in Andean streams is sensitive to riparian land‐use change, with urban streams being the most affected. In addition, this study highlights the role of fungal biomass and shredder species (Phylloicus; Trichoptera and Anchytarsus; Coleoptera) on leaf litter breakdown in Andean streams and the contribution of aquatic fungi in supporting this ecosystem process when shredders are absent or present low abundance in streams affected by urbanization. Finally, we summarize important implications in terms of managing of native vegetation and riparian buffers to promote ecological integrity and functioning of tropical Andean stream ecosystems.  相似文献   

11.
Leaf breakdown in streams differing in catchment land use   总被引:1,自引:0,他引:1  
1. The impact of changes in land use on stream ecosystem function is poorly understood. We studied leaf breakdown, a fundamental process of stream ecosystems, in streams that represent a range of catchment land use in the Piedmont physiographic province of the south‐eastern United States. 2. We placed bags of chalk maple (Acer barbatum) leaves in similar‐sized streams in 12 catchments of differing dominant land use: four forested, three agricultural, two suburban and three urban catchments. We measured leaf mass, invertebrate abundance and fungal biomass in leaf bags over time. 3. Leaves decayed significantly faster in agricultural (0.0465 day?1) and urban (0.0474 day?1) streams than in suburban (0.0173 day?1) and forested (0.0100 day?1) streams. Additionally, breakdown rates in the agricultural and urban streams were among the fastest reported for deciduous leaves in any stream. Nutrient concentrations in agricultural streams were significantly higher than in any other land‐use type. Fungal biomass associated with leaves was significantly lower in urban streams; while shredder abundance in leaf bags was significantly higher in forested and agricultural streams than in suburban and urban streams. Storm runoff was significantly higher in urban and suburban catchments that had higher impervious surface cover than forested or agricultural catchments. 4. We propose that processes accelerating leaf breakdown in agricultural and urban streams were not the same: faster breakdown in agricultural streams was due to increased biological activity as a result of nutrient enrichment, whereas faster breakdown in urban streams was a result of physical fragmentation resulting from higher storm runoff.  相似文献   

12.
To test the hypothesis whether afforestation with Eucalyptus globulus affects litter dynamics in streams and the structure of macroinvertebrate aquatic communities, we compared streams flowing through eucalyptus and deciduous forests, paying attention to: (i) litterfall dynamics, (ii) accumulation of organic matter, (iii) processing rates of two dominant leaf species: eucalyptus and chestnut, and (iv) macroinvertebrate community structure. The amount of allochthonous inputs was similar in both vegetation types, but the seasonality of litter inputs differed between eucalyptus and natural deciduous forests. Eucalyptus forest streams accumulated more organic matter than deciduous forest streams. Decomposition of both eucalyptus and chestnut leaf litter was higher in streams flowing through deciduous forests. The eucalyptus forest soils were highly hydrophobic resulting in strong seasonal fluctuations in discharge. In autumn the communities of benthic macroinvertebrates of the two stream types were significantly different. Deciduous forest streams contained higher numbers of invertebrates and more taxa than eucalyptus forest streams. Mixed forest streams (streams flowing through eucalyptus forests but bordered by deciduous vegetation) were intermediate between the two other vegetation types in all studied characteristics (accumulation of benthic organic matter, density and diversity of aquatic invertebrates). These results suggest that monocultures of eucalyptus affect low order stream communities. However, the impact may be attenuated if riparian corridors of original vegetation are kept in plantation forestry.  相似文献   

13.
Lecerf A  Dobson M  Dang CK  Chauvet E 《Oecologia》2005,146(3):432-442
Riparian vegetation is closely connected to stream food webs through input of leaf detritus as a primary energy supply, and therefore, any alteration of plant diversity may influence aquatic ecosystem functioning. We measured leaf litter breakdown rate and associated biological parameters in mesh bags in eight headwater streams bordered either with mixed deciduous forest or with beech forest. The variety of leaf litter types in mixed forest results in higher food quality for large-particle invertebrate detritivores (‘shredders’) than in beech forest, which is dominated by a single leaf species of low quality. Breakdown rate of low quality (oak) leaf litter in coarse mesh bags was lower in beech forest streams than in mixed forest streams, a consequence of lower shredder biomass. In contrast, high quality (alder) leaf litter broke down at similar rates in both stream categories as a result of similar shredder biomass in coarse mesh bags. Microbial breakdown rate of oak and alder leaves, determined in fine mesh bags, did not differ between the stream categories. We found however aquatic hyphomycete species richness on leaf litter to positively co-vary with riparian plant species richness. Fungal species richness may enhance leaf litter breakdown rate through positive effects on resource quality for shredders. A feeding experiment established a positive relationship between fungal species richness per se and leaf litter consumption rate by an amphipod shredder (Gammarus fossarum). Our results show therefore that plant species richness may indirectly govern ecosystem functioning through complex trophic interactions. Integrating microbial diversity and trophic dynamics would considerably improve the prediction of the consequences of species loss.  相似文献   

14.
1. The organic matter dynamics of streams dominated by herbs and grass on their banks are poorly understood, despite the fact that such streams are common worldwide. Further, herbs and grasses can provide large quantities of detritus to stream food webs, and particularly small streams can be heavily shaded by overhanging vegetation, perhaps limiting in‐stream primary production. 2. We quantified the standing crop of edge vegetation and associated macroinvertebrate communities along three headwater streams with herbaceous and grass riparian vegetation on agricultural land in the Piedmont of Maryland, U.S.A., measured the decomposition of four common species of herbs and grasses using experimental leaf packs, and removed edge vegetation experimentally to determine the effect of shading on benthic algal production. 3. Large standing crops of plant material (average range: 68–276 g ash‐free dry mass per m−2), composed largely of monocotyledons, were found at all three study streams. These values are similar to those for coarse particulate organic matter in deciduous forested streams in the eastern U.S.A. In addition, diverse assemblages of shredding macroinvertebrates were observed at all three study sites. 4. Decomposition of the herbs was faster than that of the grasses, and both decomposed faster than most deciduous tree leaf litter. The decomposition rates of the herbs and grasses were significantly related to leaf quality as measured by leaf nitrogen content. Macroinvertebrate shredders colonized all experimental leaf packs, and the colonization of the herbs was faster than that of the grasses. 5. The accrual of chlorophyll‐a after the removal of shading vegetation was faster than that measured prior to removal as well as that in an unmanipulated control reach. 6. Given that the standing crop of organic matter in streams with herbs and grass along their banks was similar to that in forested streams, that the organic matter was rich in nitrogen and used by detritivores, and riparian shading limited algal growth, we suggest that herbaceous and grass plant material may be an important allochthonous food resource in such systems.  相似文献   

15.
利用连续收获法研究了川西亚高山老龄林(VF)、桦木林(BF)、次生针阔混交林(MF)、人工云杉林(AF)及高山栎灌丛(AO) 5种主要森林类型的凋落物组成及其动态,目的在于探索不同恢复途径对森林凋落物组成和产量的影响。结果表明,5种森林类型的全年凋落产量大小依次为VF(4.32 t/hm~2)、MF(4.10 t/hm~2)、BF(3.52 t/hm~2)、AO(3.01 t/hm~2)、AF(2.34 t/hm~2)。AF全年凋落量显著小于其他3种乔木森林类型(VF,BF,MF)(P 0. 05)。各森林类型的叶片年凋落量占总量比例均超过70%。VF、AF、AO均在生长前期(前一年10月至当年5月)达到最大凋落量2.41,1.29,1.63 t/hm~2; BF、MF凋落产量在生长季后期(当年7月至10月)到达最大值,分别为1.34,1.80 t/hm~2。常绿针叶树为主的VF、AF叶片凋落物样地间变异显著高于落叶阔叶树为主的BF、MF,表明其对立地条件的响应更为敏感。林分密度与胸高断面积组合因子更能反映凋落物特征。  相似文献   

16.
Land‐use changes such as conversion of natural forest to rural and urban areas have been considered as main drivers of ecosystem functions decline, and a large variety of indicators has been used to investigate these effects. Here, we used a replicated litter‐bag experiment to investigate the effects of land‐use changes on the leaf‐litter breakdown process and leaf‐associated invertebrates along the forest–pasture–urban gradient located in a subtropical island (Florianópolis, SC, Brazil). We identified the invertebrates and measured the litter breakdown rates using the litter bags approach. Litter bags containing 3 g of dry leaf of Alchornea triplinervia were deployed on forest rural and urban streams. Principal component analysis, based on physico‐chemical variables which, confirmed a gradient of degradation from forest to urban streams with intermediate values in rural areas. In accordance, shredder richness and abundance were lower in rural and urban than in forest streams. The land‐use changes led also to the dominance of tolerant generalist taxa (Chironomidae and Oligochaeta) reducing the taxonomic and functional diversity in these sites. Leaf‐litter breakdown rates decreased from forest to rural and finally to urban areas and were associated with changes in pH, water velocity, dissolved oxygen and abundance of leaf‐shredding invertebrates, although global decomposition rates did not differ between rural and urban streams. Overall, this study showed that land‐use changes, namely to rural and urban areas, have a strong impact on tropical streams ecosystems, in both processes and communities composition and structure. Despite of being apparently a smaller transformation of landscape, rural land use is comparable to urbanisation in terms of impact in stream functioning. It is thus critical to carefully plan urban development and maintain forest areas in the island of Florianópolis in order to preserve its natural biodiversity and aquatic ecosystems functioning.  相似文献   

17.
Melody  K. Jill  Richardson  John S. 《Hydrobiologia》2004,519(1-3):197-206
Forest harvesting alters leaf litter inputs and shading of small streams. Most of the previous studies of harvesting effects are limited to coastal or deciduous forests, so here we consider a sub-boreal forest stream. To test the hypothesis that changes in light and litter inputs would affect the benthic community in these streams, we experimentally manipulated these variables in stream mesocosms. We used a 2 × 2 factorial design with light (shaded or full light) and leaf litter inputs (equivalent to a forested stream or one quarter that rate) as factors. The high leaf litter treatment resulted in differences in macroinvertebrate community composition and higher densities of two shredders, Limnephilus sp. and Podmosta sp., suggesting food limitation. Algal filaments were longer in the high light treatments indicating a change in periphyton composition. There were no significant differences in chlorophyll a or ash-free dry mass, suggesting that light was not limiting to periphyton. The community structure clearly shifted in response to both resources, although primarily to detrital inputs. These results provide evidence that changes to shading and leaf inputs to small streams can affect the benthos and may limit secondary production.  相似文献   

18.
1. Eucalyptus globulus, a tree species planted worldwide in many riparian zones, has been reported to affect benthic macroinvertebrates negatively. Although there is no consensus about the effects of Eucalyptus on aquatic macrobenthos, its removal is sometimes proposed as a means of ecological restoration. 2. We combined the sampling of macroinvertebrates with measurement of the colonisation of leaf packs in mesh bags, to examine the effects of riparian Eucalyptus and its litter on benthic macroinvertebrates in three small streams in California, U.S.A. Each stream included one reach bordered by Eucalyptus (E‐site) and a second bordered by native vegetation (N‐site). 3. The macrobenthos was sampled and two sets of litter bags were deployed at each site: one set with Eucalyptus litter (Euc‐bags) and one with mixed native tree litter (Nat‐bags) containing Quercus, Umbellularia, Acer and Alnus. Bags were exposed for 28, 56 and 90 days and this experiment was repeated in the autumn, winter and spring to account for effects of changing stream flow and insect phenology. 4. Litter input (average dry mass: 950 g m?2 year?1 in E‐sites versus 669 g m?2 year?1 in N‐sites) was similar, although in‐stream litter composition differed between E‐ and N‐sites. Litter broke down at similar rates in Euc‐bags and Nat‐bags (0.0193 day?1 versus 0.0134 day?1), perhaps reflecting the refractory nature of some of the leaves of the native trees (Quercus agrifolia). 5. Summary metrics for macroinvertebrates (taxon richness, Shannon diversity, pollution tolerance index) did not differ significantly between the E and N sites, or between Euc‐bags and Nat‐bags. No effect of exposure time or site was detected by ordination of the taxa sampled. However, distinct seasonal ordination clusters were observed in winter, spring and autumn, and one of the three streams formed a separate cluster. 6. The presence of Eucalyptus was less important in explaining the taxonomic composition of the macrobenthos than either ‘season’ or ‘stream’. Similarly, these same two factors (but not litter species) also helped explain the variation in leaf breakdown. We conclude that patches of riparian Eucalyptus and its litter have little effect on stream macrobenthos in this region.  相似文献   

19.
We investigated the influences of forest or pasture land use and stream size on particulate and dissolved material concentrations in a network of second to third order streams in Rondônia, in the Brazilian Amazon. During the dry season, a second order stream originating in pasture had lower concentrations of dissolved oxygen and nitrate, higher concentrations of chlorophyll, total suspended solids, particulate organic carbon, particular organic nitrogen, ammonium, and phosphate than a second order stream originating in forest. Where the second order forest stream exited forest and entered pasture, concentrations of dissolved oxygen dropped from 6 mg/L to almost 0 mg/L and nitrate concentrations dropped from 12 M to 2 M over a reach of 2 km. These changes indicated a strong influence of land use. During the rainy season, differences among reaches of all particulate and dissolved materials were diminished. Concentrations of oxygen, chlorophyll, total suspended solids, particulate organic carbon and nitrogen, nitrate, ammonium, and phosphate in the third order pasture stream more closely resembled the second order forest stream than the second order pasture stream, suggesting that conditions in the channels of larger pasture streams more strongly control concentrations of these materials. If this pattern is widespread in stream networks of regions that consist of a mosaic of forest and pasture lands, it may have important consequences for understanding the effects of deforestation on larger rivers of the Amazon Basin. This would indicate that the effects of forest clearing on the concentrations of many suspended and dissolved materials will be most easily detected in very small streams but potentially difficult to detect in larger streams and rivers.  相似文献   

20.
Since terrestrial invertebrates are often consumed by stream fishes, land-use practices that influence the input of terrestrial invertebrates to streams are predicted to have consequences for fish production. We studied the effect of riparian land-use regime on terrestrial invertebrate inputs by estimating the biomass, abundance and taxonomic richness of terrestrial invertebrate drift from 15 streams draining catchments with three different riparian land-use regimes and vegetation types: intensive grazing — exotic pasture grasses (4 streams), extensive grazing — native tussock grasses (6 streams), reserve — native forest (5 streams). Terrestrial invertebrate drift was sampled from replicated stream reaches enclosed by two 1 mm mesh drift nets that spanned the entire channel. The mean biomass of terrestrial invertebrates that entered tussock grassland (12 mg ash-free dry mass m–2 d–1) and forest streams (6 mg AFDM m–2 d–1) was not significantly different (p > 0.05). However, biomass estimated for tussock grassland and forest streams was significantly higher than biomass that entered pasture streams (1 mg AFDM m–2 d–1). Mean abundance and richness of drifting terrestrial invertebrates was not significantly different among land-use types. Winged insects contributed more biomass than wingless invertebrates to both pasture and tussock grassland streams. Winged and wingless invertebrates contributed equally to biomass entering forest streams. Land use was a useful variable explaining landscape-level patterns of terrestrial invertebrate input for New Zealand streams. Evidence from this study suggests that riparian land-use regime will have important influences on the availability of terrestrial invertebrates to stream fishes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号