首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 283 毫秒
1.
Ehrlich ascites cells were pulse-labeled with [3H]thymidine and subjected to prolonged labeling with [14C]thymidine. The isolated nuclei were digested with the restriction endonuclease BspRI and then processed to yield a 'matrix fraction' and a 'non-matrix fraction'. The DNA fragments purified from these fractions and from whole digested nuclei were examined for nitrocellulose-binding sites before and after digestion with single-strand-specific (S1) nuclease. Both, pulse-labeled and long-time-labeled fragments, isolated from the matrix fraction, exhibited a significantly increased content of nitrocellulose-binding sites. The major portion of these sites were rendered non-binding by digestion with single-strand-specific nuclease and consisted most probably of structures exposing relatively small stretches of non-base-paired DNA. The nature of the minor portion of binding sites which was insensitive to single-strand-specific nuclease is not clear. Both types of binding sites are possible candidates for mediating the attachment of DNA to the nuclear matrix.  相似文献   

2.
3.
A rapid and reproducible method for the purification of the Ca/Mg-endonuclease from porcine and rat liver and for the stabilization of the enzyme activity is presented. The optimum conditions for enzyme activity were determined. The enzyme degrades double-stranded DNA endonucleolytically. In the course of digestion of form I closed circular SV 40 DNA, the form II nicked circular DNA is the prominent intermediate product. Digestion of hen erythrocyte nuclei with added endonuclease produces a ladder of mono- and oligonucleosomal fragments similar to that generated by micrococcal nuclease digestion. Determination of the 5'-terminal nucleotides indicates the absence of a significant base specificity. Analyzing the cleavage pattern of end-labeled pBR322 restriction fragments on sequencing gels shows that the enzyme exhibits a weak preference for dinucleotides with A in the 5'-position; dinucleotides with 5%-C are less readily cleaved. Digestion of end-labeled pBR322 DNA, followed by electrophoresis in agarose gels produces a "smear"-like fragmentation pattern with weak superimposed bands, while micrococcal nuclease generates a different and much more distinct pattern. These data show that the sequence specificity of the enzyme is less pronounced than that of micrococcal nuclease and that the sites preferentially cleaved are not the same.  相似文献   

4.
Specific cleavage of chromatin by restriction nucleases.   总被引:11,自引:11,他引:0       下载免费PDF全文
Digestion of mouse and rat liver nuclei with a restriction nuclease from Bacillus subtilis (Bsu) is examined in continuation of previous work from this laboratory (Pfeiffer et al., 1975, Nature 258, 450). The finding of more than 95% C in the 5'-termini of the DNA fragments generated during digestion with Bsu shows that the participation of endogenous nucleases in Bsu digestion is extremely small. The restriction nuclease Hae III, an isoschizomer of Bsu, yields identical degradation patterns. The patterns conform to what one expects from statistical calculations based on a nucleosome structure of chromatin with a region preferentially accessible to the nuclease of 40-50 nucleotide pairs per nucleosome. Integrity of the histones is maintained during digestion with restriction nucleases. Digestion of mouse liver nuclei with EcoRII shows that most if not all of the satellite DNA is organized in a nucleosome structure. Also in rat liver, much of the repetitive DNA appears to be present in nucleosomes.  相似文献   

5.
In mouse myeloma T the productive kappa light chain gene differs from its aberrantly rearranged allele in the patterns of DNAase I hypersensitive sites. In the region of the alleles where they are identical in sequence they have one site in common which lies 0.8 kb downstream of the coding region; but two sites upstream of and within the C gene segment (2) are found only on the non-productive allele. Within the region of different sequences both alleles have analogously located DNAase I hypersensitive sites; they lie 0.15 kb upstream of the respective leader segments and cover putative promoter sequences. Only one of the six DNAase I hypersensitive sites is also very sensitive towards micrococcal nuclease due to its particular DNA sequence. The non-rearranged gene studied in liver nuclei has no DNAase I hypersensitive sites but is preferentially cleaved in A/T rich regions.  相似文献   

6.
DNA isolated from (a) liver chromatin digested in situ with endogenous Ca2+, Mg2+-dependent endonuclease, (b) prostate chromatin digested in situ with micrococcal nuclease or pancreatic DNAase I, and (c) isolated liver chromatin digested with micrococcal nuclease or pancreatic DNAase I has been analyzed electrophoretically on polyacrylamide gels. The electrophoretic patterns of DNA prepared from chromatin digested in situ with either endogenous endonuclease (liver nuclei) or micrococcal nuclease (prostate nuclei) are virtually identical. Each pattern consists of a series of discrete bands representing multiples of the smallest fragment of DNA 200 +/- 20 base pairs in length. The smallest DNA fragment (monomer) accumulates during prolonged digestion of chromatin in situ until it accounts for nearly all of the DNA on the gel; approx. 20% of the DNA of chromatin is rendered acid soluble during this period. Digestion of liver chromatin in situ in the presence of micrococcal nuclease results initially in the reduction of the size of the monomer from 200 to 170 base pairs of DNA and subsequently results in its conversion to as many as eight smaller fragments. The electrophoretic pattern obtained with DNA prepared from micrococcal nuclease digests of isolated liver chromatin is similar, but not identical, to that obtained with liver chromatin in situ. These preparations are more heterogeneous and contain DNA fragments smaller than 200 base pairs in length. These results suggest that not all of the chromatin isolated from liver nuclei retains its native structure. In contrast to endogenous endonuclease and micrococcal nuclease digests of chromatin, pancreatic DNAase I digests of isolated chromatin and of chromatin in situ consist of an extremely heterogeneous population of DNA fragments which migrates as a continuum on gels. A similar electrophoretic pattern is obtained with purified DNA digested by micrococcal nuclease. The presence of spermine (0.15 mM) and spermidine (0.5 mM) in preparative and incubation buffers decreases the rate of digestion of chromatin by endogenous endonuclease in situ approx. 10-fold, without affecting the size of the resulting DNA fragments. The rates of production of the smallest DNA fragments, monomer, dimer, and trimer, are nearly identical when high molecular weight DNA is present in excess, indicating that all of the chromatin multimers are equally susceptible to endogenous endonuclease. These observations points out the effects of various experimental conditions on the digestion of chromatin by nucleases.  相似文献   

7.
Fragmentation of the actively transcribed kappa immunoglobulin gene in mouse myeloma nuclei with micrococcal nuclease and the restriction nuclease Bsp RI reveals a chromatin structure without the regularity of repeating nucleosomes found in bulk chromatin. Such regularity is restored about 2.2 kb 3' of the coding region. An only moderately increased micrococcal nuclease sensitivity and a 65% average protection of the Bsp RI sites indicates a DNA-protein interaction in the transcribed region which is not very different from that of an inactive gene. As determined by indirect endlabeling the frequency of Bsp RI cleavage both, after very mild and exhaustive digestion, varied moderately from site to site along the gene. In addition, it was not in each case the same at analogous sites on both alleles which are both transcribed. Thus, the experiments demonstrate differences between the chromatin structures of the genes which may be related to regulatory phenomena and thereby corroborate earlier findings made with DNAase I.  相似文献   

8.
We examined the chromatin organizations of approximately 3 kb of DNA in the 5'-end flanking region of the ovalbumin gene in chicken erythrocyte and oviduct cell nuclei. With specific DNA probes and an indirect end-labeling technique, we analysed the pattern of the DNA fragments obtained after micrococcal nuclease digestion and generated comparative maps of the nuclease cuts. This region of the chicken genome displays a "typical" chromatin arrangement in erythrocyte nuclei, with nucleosomes apparently positioned at random. In contrast, in oviduct nuclei, the same region has an "altered" chromatin structure, and lacks a typical nucleosomal array. The existence of specifically positioned proteins and of alterations in the DNA secondary structure in this region of the oviduct chromatin is suggested by comparison of the nuclease cleavage maps which reveals specific changes: disappearance of nuclease cuts present in "naked" and erythrocyte chromatin DNAs, and appearance of new cuts absent from these DNAs.  相似文献   

9.
The chromatin structure of the ribosomal DNA in Xenopus laevis was studied by micrococcal nuclease digestions of blood, liver and embryonic cell nuclei. We have found that BglI-restricted DNA from micrococcal nuclease-digested blood cell nuclei has an increased electrophoretic mobility compared to the undigested control. Micrococcal nuclease digestion of liver cell nuclei causes a very slight shift in mobility, only in the region of the spacer containing the "Bam Islands". In contrast, the mobility of ribosomal DNA in chromatin of embryonic cells, under identical digestion conditions, remains unaffected by the nuclease activity. Denaturing gels or ligase action on the nuclease-treated DNA abolishes the differences in the electrophoretic mobility. Ionic strength and ethidium bromide influence the relative electrophoretic migration of the two DNA fragment populations, suggesting that secondary structure may play an important role in the observed phenomena. In addition, restriction analysis under native electrophoretic conditions of DNA prepared from blood, liver and embryonic cells shows that blood cell DNA restriction fragments always have a faster mobility than the corresponding fragments of liver and embryo cell DNA. We therefore propose that nicking activity by micrococcal nuclease modifies the electrophoretic mobility of an unusual DNA conformation, present in blood cell, and to a lesser extent, in liver cell ribosomal chromatin. A possible function for these structures is discussed. The differences of the ribosomal chromatin structures in adult and embryonic tissues may reflect the potential of the genes to be expressed.  相似文献   

10.
Evidence for a subunit structure of chromatin in mouse myeloma cells   总被引:2,自引:0,他引:2  
If micrococcal nuclease is allowed to digest chromatin as it exists inside intact nuclei isolated from mouse myeloma tissue culture cells, more than 60% of the DNA can be isolated as a homogeneous fragment on a sucrose gradient. Analytical ultracentrifugation indicates that the protected DNA is native, unnicked, and about 140 +/- 10 base pairs long. After less extensive nuclease digestion, the protected DNA migrates in gels in lengths which are integral multiples of this 140 base pair "monomer" band. A submonomer band, 105 "/- 10 base pairs long, can also be detected. Similar digestion patterns were obtained by two different nuclear isolation procedures and even when intact cells were gently lysed directly in the digestion medium. These results confirm and extend the chromatin digestion studies of previous investigators and provide support for a subunit model for eukaryotic chromatin. The single strand specific S1 nuclease did not digest intranuclear chromatin under the conditions used.  相似文献   

11.
12.
2318 bp downstream of the CK (1) gene segment were sequenced in a clone (L1-D) derived from mouse liver DNA. The 966 bp at the 5' side of this stretch were found to be identical to a sequence which had been determined previously in a myeloma T derived clone, i.e. no somatic mutations had occurred in the transition from the germline to the rearranged configuration. The remaining 1352 bp had not been known and extend the sequenced part of the mouse JK-CK region to about 7.5 kb. Within the newly sequenced area three BspRI sites have been located which were used in chromatin studies (Weischet et al., accompanying publications). In L1-D sequences have been found which are possible targets of aberrant recombination events.  相似文献   

13.
14.
Compact structure of ribosomal chromatin in Xenopus laevis.   总被引:4,自引:3,他引:1       下载免费PDF全文
Micrococcal nuclease digestion was used as a tool to study the organization of the ribosomal chromatin in liver, blood and embryo cells of X. laevis. It was found that in liver and blood cells, ribosomal DNA is efficiently protected from nuclease attack in comparison to bulk chromatin. Although ribosomal chromatin is fragmented in a typical nucleosomal pattern, a considerable portion of ribosomal DNA retains a high molecular weight even after extensive digestion. A greater accessibility of the coding region in comparison to the non-coding spacer was found. In embryos, when ribosomal DNA is fully transcribed, these genes are even more highly protected than in adult tissues: in fact, the nucleosomal ladder can hardly be detected and rDNA is preserved in high molecular weight. Treatment of chromatin with 0.8 M NaCl abolishes the specific resistance of the ribosomal chromatin to digestion. The ribosomal chromatin, particularly in its active state, seems to be therefore tightly complexed with chromosomal proteins which protect its DNA from nuclease degradation.  相似文献   

15.
DNase I was used to probe the molecular organization of the chicken ovalbumin (OV) gene and glyceraldehyde 3-phosphate dehydrogenase (GPD) gene in interphase nuclei and in metaphase chromosomes of cultured chicken lymphoblastoid cells (MSB-1 line). The OV gene was not transcribed in this cell line, whereas the GPD gene was constitutively expressed. The GPD gene was more sensitive to DNase I digestion than the OV gene in both interphase nuclei and metaphase chromosomes, as determined by Southern blotting and liquid hybridization techniques. In addition, we observed DNase I hypersensitive sites around the 5' region of the GPD gene. These hypersensitive sites were not always at the same locations between the interphase nuclei and metaphase chromosomes. Our results suggest that chromatin condensation and decondensation during cell cycle alters nuclease hypersensitive cleavage sites.  相似文献   

16.
17.
The structural properties of barley oligonucleosomes are investigated and compared to those of rat liver oligomers. Extraction of barley chromatin was performed using mild nuclease digestion of isolated nuclei leading to a low ionic strength soluble fraction. Oligonucleosomes were fractionated on sucrose gradients and characterized for DNA and histone content. Physico-chemical studies (sedimentation, circular dichroism and electric birefringence) showed that barley oligonucleosomes exhibit properties very close to those of the H1-depleted rat liver counterparts. Moreover, in situ, barley linker DNA was more sensitive to micrococcal nuclease digestion than that of rat liver. These results suggest that barley oligonucleosomes show a less compact structure than their rat liver counterparts and appear to be in contradiction with the very condensed organization of barley chromatin previously suggested.  相似文献   

18.
19.
20.
Micrococcal-nuclease digestion of adenovirus 2(ad 2) infected HeLa cell nuclei early after infection has been used to investigate the nucleoprotein nature of parental viral DNA. Viral DNA is more susceptible to nuclease digestion than cellular DNA. The pattern of digestion products changes as digestion proceeds from an indistinct pattern 1 hour post infection(pi) to a nucleosome-like pattern at 6 hours pi. The major differences between viral and cellular nucleoprotein products were i) a subnucleosome fraction from viral DNA and ii) the repeat size of DNA in viral nucleosomes was 165 base pairs and in cellular nucleosomes, 195 base pairs. Up to 50% viral DNA in nuclei 6 hours pi seems to be in nucleosome-like structures. Such patterns are not seen on digestion of partially-uncoated virus or isolated cores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号