首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Novel ordered hierarchical mesoporous/microporous carbon (OHMMC) derived from mesoporous titanium‐carbide/carbon composites was prepared for the first time by synthesizing ordered mesoporous nanocrystalline titanium‐carbide/carbon composites, followed by chlorination of titanium carbides. The mesostructure and microstructure can be conveniently tuned by controlling the TiC contents of mesoporous TiC/C composite precursor, and chlorination temperature. By optimal condition, the OHMMC has a high surface area (1917 m2g?1), large pore volumes (1.24 cm3g?1), narrow mesopore‐size distributions (centered at about 3 nm), and micropore size of 0.69 and 1.25 nm, and shows a great potential as electrode for supercapacitor applications: it exhibits a high capacitance of 146 Fg?1 in noaqueous electrolyte and excellent rate capability. The ordered mesoporous channel pores are favorable for retention and immersion of the electrolyte, providing a more favorable path for electrolyte penetration and transportation to achieve promising rate capability performance. Meanwhile, the micropores drilled on the mesopore‐walls can increase the specific surface area to provide more sites for charge storage.  相似文献   

2.
Overcoming ionic diffusion limitations is essential for the development of high‐efficiency dye‐sensitized solar cells based on cobalt redox mediators. Here, improved mass transport is reported for photoanodes composed of mesoporous TiO2 beads of varying pore sizes and porosities in combination with the high extinction YD2‐o‐C8 porphyrin dye. Compared to a photoanode made of 20 nm‐sized TiO2 particles, electrolyte diffusion through these films is greatly improved due to the large interstitial pores between the TiO2 beads, resulting in up to 70% increase in diffusion‐limited current. Simultaneously, transient photocurrent measurements reveal no mass transport limitations for films of up to 10 μm thickness. In contrast, standard photoanodes made of 20 nm‐sized TiO2 particles show non‐linear behavior in photocurrent under 1 sun illumination for a film thickness as low as 7 μm. By including a transparent thin mesoporous TiO2 underlayer in order to reduce optical losses at the fluorine‐doped tin oxide (FTO)‐TiO2 interface, an efficiency of 11.4% under AM1.5G 1 sun illumination is achieved. The combination of high surface area, strong scattering behavior, and high porosity makes these mesoporous TiO2 beads particularly suitable for dye‐sensitized solar cells using bulky redox couples and/or viscous electrolytes.  相似文献   

3.
Sodium‐ion batteries have attracted ever‐increasing attention in view of the natural abundance of sodium resources. Sluggish sodiation kinetics, nevertheless, remain a tough challenge, in terms of achieving high rate capability and high energy density. Herein, a sheet‐in‐sphere nanoconfiguration of 2D titania–carbon superlattices vertically aligned inside of mesoporous TiO2@C hollow nanospheres is constructed. In such a design, the ultrathin 2D superlattices consist of ordered alternating monolayers of titania and carbon, enabling interpenetrating pathways for rapid transport of electrons and Na+ ions as well as a 2D heterointerface for Na+ storage. Kinetics analysis discloses that the combination of 2D heterointerface and mesoporosity results an intercalation pseudocapacitive charge storage mechanism, which triggers ultrafast sodiation kinetics. In situ transmission electron microscope imaging and in situ synchrotron X‐ray diffraction techniques elucidate that the sheet‐in‐sphere architecture can maintain robust mechanical and crystallographic structural stability, resulting an extraordinary high rate capability, remarkable stable cycling with a low capacity fading ratio of 0.04% per cycle over 500 cycles at 0.2 C, and exceptionally long‐term cyclability up to 20 000 cycles at 50 C. This study offers a method for the realization of a high power density and long‐term cyclability battery by designing of a hierarchical nanoarchitecture.  相似文献   

4.
We report a comparative study on the use of four different mesoporous titanium dioxide (TiO2) photo‐electrodes for the fabrication of solid‐state dye‐sensitized solar cells (sDSSCs). The photovoltaic parameters of the device correlate with several intrinsic properties of the film, based not only on its morphological features, as commonly considered in standard characterizations, but also on the transport and the electronic properties of the photo‐electrode. These properties differ significantly for TiO2 electrodes processed using different colloidal pastes, and are decisive for the photovoltaic efficiency, ranging from 3.7% up to 5.1%. In particular, the dielectric permittivity of each mesoporous layer (εeff) and the number of traps (Nt) determined by the space‐charge‐limited current (SCLC) theory are found to be a bottle‐neck for the charge transport, greatly influencing the fill factor (FF) and open circuit voltage (Voc) of the cells. In addition, a direct correlation between TiO2 surface potential with the Voc was established. Cross‐analysis of key macroscopic parameters of the films prior to integration in the devices, in particular focusing on the determination of the capacitance and surface potential shift of the TiO2 mesoporous anode, represents a straightforward yet powerful method to screen and select the most suitable TiO2 for applications in sDSSCs.  相似文献   

5.
In this work, a new strategy to design low‐temperature (≤200 °C) sintered dye‐sensitized solar cells (lt‐DSSC) is reported to enhance charge collection efficiencies (ηcoll), photoconversion efficiencies (η), and stabilities under continuous operation conditions. Realization of lt‐DSSC is enabled by the integration of hybrid nanoparticles based on TiO2‐Ru(II) complex (TiO2_Ru_IS)—obtained by in situ bottom‐up construction of Ru(II) N3 dye‐sensitized titania—into the photoelectrode. Incentives for the use of TiO2_Ru_IS are i) dye stability due to its integration into the TiO2 anatase network and ii) enhanced charge collection yield due to its significant resistance toward electron recombination with electrolytes. It is demonstrated that devices with single‐layer photoelectrodes featuring blends of P25 and TiO2_Ru_IS give rise to a 60% ηcoll relative to a 46% ηcoll for devices with P25‐based photoelectrodes. Responsible for this trend is a better charge transport and a reduced electron recombination. When using a multilayered photoelectrode architecture with a top layer based only on TiO2_Ru_IS, devices with an even higher ηcoll (74%) featuring a η of around 8.75% and stabilities of 600 h are achieved. This represents the highest values reported for lt‐DSSC to date.  相似文献   

6.
Multiphasic titanium dioxide (TiO2) possessing abundant heterophase junctions have been widely used for various photocatalytic applications. Current synthesis of multiphasic TiO2 mainly involves the process of thermal treatment and multiple steps of rigorous reactions, which is adverse to controlling the crystal phases and phase ratios of multiphasic TiO2. Meanwhile, the resulting products have relatively low surface area and nonporous structure. Here, a facile polymer‐assisted coordination‐mediated self‐assembly method to synthesize mesoporous TiO2 polymorphs with controllable heterophase junctions and large surface area by using polyethylenimine as the porogen in an acidic aqueous synthesis system is reported. Using this approach, the crystal phases (triphase, biphase, and monophase) and phase compositions (0–100%) are easily tailored by selecting the suitable acidic media. Furthermore, the specific surface areas (77–228 m2 g?1) and pore sizes (2.9–10.1 nm) are readily tailored by changing the reaction temperature. The photocatalytic activity of mesoporous TiO2 polymorphs is evaluated by photocatalytic hydrogen evolution. The triphasic TiO2 exhibits an excellent photocatalytic H2 generation rate of 3.57 mmol h?1 g?1 as compared to other polymorphs, which is attributed to the synergistic effects of heterophase junctions and mesostructure. The band diagram of possible electron transfer pathway for triphasic TiO2 is also elucidated.  相似文献   

7.
A novel nanocomposite cathode consisting of sulfur and hollow‐mesoporous titania (HMT) embedded within carbon nanotubes (CNT), which is designated as S‐HMT@CNT, has been obtained by encapsulating elemental sulfur into the pores of hollow‐mesoporous, spherical TiO2 particles that are connected via CNT. A carbon‐paper interlayer, referred to as dual functional porous carbon wall (DF‐PCW), has been obtained by filling the voids in TiO2 spheres with carbon and then etching the TiO2 template with a chemical process. The DF‐PCW interlayer provides a medium for scavenging the lithium polysulfides and suppressing them from diffusing to the anode side when it is inserted between the sulfur cathode and the separator. Lithium–sulfur cells fabricated with the thus prepared S‐HMT@CNT cathode and the DF‐PCW interlayer exhibit superior performance due to the containment of sulfur in TiO2 and improved lithium–ion and electron transports. The Li–S cells display high capacity with excellent capacity retention at rates as high as 1C, 2C, and 5C rates.  相似文献   

8.
A new self‐assembly platform for the fast and straightforward synthesis of bicontinuous, mesoporous TiO2 films is presented, based on the triblock terpolymer poly(isoprene ‐ b ‐ styrene ‐ b ‐ ethylene oxide). This new materials route allows the co‐assembly of the metal oxide as a fully interconnected minority phase, which results in a highly porous photoanode with strong advantages over the state‐of‐the‐art nanoparticle‐based photoanodes employed in solid‐state dye‐sensitized solar cells. Devices fabricated through this triblock terpolymer route exhibit a high availability of sub‐bandgap states distributed in a narrow and low enough energy band, which maximizes photoinduced charge generation from a state‐of‐the‐art organic dye, C220. As a consequence, the co‐assembled mesoporous metal oxide system outperformed the conventional nanoparticle‐based electrodes fabricated and tested under the same conditions, exhibiting solar power‐conversion efficiencies of over 5%.  相似文献   

9.
A 3D transparent conducting oxide (3D‐TCO) has been fabricated by growing Sn‐doped indium oxide (ITO) nanowire arrays on glass substrates via a vapor transport method. The 3D TCO charge‐collection properties have been compared to those of conventional two‐dimensional TCO (2D‐TCO) thin films. For use as a photoelectrode in dye‐sensitized solar cells, ITO‐TiO2 core‐shell nanowire arrays were prepared by depositing a 45 nm‐thick mesoporous TiO2 shell layer consisting of ~6 nm anatase nanoparticles using TiCl4 treatments. Dye‐sensitized solar cells fabricated using these ITO‐TiO2 core‐shell nanowire arrays show extremely fast charge collection owing to the shorter electron paths across the 45 nm‐thick TiO2 shell compared to the 2D TCO. Interestingly, the charge‐collection time does not increase with the overall electrode thickness, which is counterintuitive to conventional diffusion models. This result implies that, in principle, maximum light harvesting can be achieved without hindering the charge collection. The proposed new 3D TCO should also be attractive for other photovoltaic applications where the active layer thickness is limited by poor charge collection.  相似文献   

10.
It is frequently assumed that sodium‐ion battery chemistry exhibits a behavior that is similar to the more frequently investigated lithium‐ion chemistry. However, in this work it is shown that there are great, and rather surprising, differences, at least in the case of anatase TiO2. While the generally more reducing lithium ion is reversibly inserted in the anatase TiO2 lattice, sodium ions appear to partially reduce the rather stable oxide and form metallic titanium, sodium oxide, and amorphous sodium titanate, as revealed by means of in situ X‐ray diffraction, ex situ X‐ray photoelectron spectroscopy, scanning electron microscopy, and Raman spectroscopy. Nevertheless, once the electrochemical transformation of anatase TiO2 is completed, the newly formed material presents a very stable long‐term cycling performance, excellent high rate capability, and superior coulombic efficiency, highlighting it as a very promising anode material for sodium‐ion battery applications.  相似文献   

11.
Graphitic carbons with ordered mesostructure and high surface areas (of great interest in applications such as energy storage) have been synthesized by a direct triblock‐copolymer‐templating method. Pluronic F127 is used as a structure‐directing agent, with a low‐molecular‐weight phenolic resol as a carbon source, ferric oxide as a catalyst, and silica as an additive. Inorganic oxides can be completely eliminated from the carbon. Small‐angle XRD and N2 sorption analysis show that the resultant carbon materials possess an ordered 2D hexagonal mesostructure, uniform bimodal mesopores (about 1.5 and 6 nm), high surface area (~1300 m2/g), and large pore volumes (~1.50 cm3/g) after low‐temperature pyrolysis (900 °C). All surface areas come from mesopores. Wide‐angle XRD patterns demonstrate that the presence of the ferric oxide catalyst and the silica additive lead to a marked enhancement of graphitic ordering in the framework. Raman spectra provide evidence of the increased content of graphitic sp2 carbon structures. Transmission electron microscopy images confirm that numerous domains in the ordered mesostructures are composed of characteristic graphitic carbon nanostructures. The evolution of the graphitic structure is dependent on the temperature and the concentrations of the silica additive, and ferric oxide catalyst. Electrochemical measurements performed on this graphitic mesoporous carbon when used as an electrode material for an electrochemical double layer capacitor shows rectangular‐shaped cyclic voltammetry curves over a wide range of scan rates, even up to 200 mV/s, with a large capacitance of 155 F/g in KOH electrolyte. This method can be widely applied to the synthesis of graphitized carbon nanostructures.  相似文献   

12.
The synthesis of in situ polymer‐functionalized anatase TiO2 particles using an anchoring block copolymer with hydroxamate as coordinating species is reported, which yields nanoparticles (≈11 nm) in multigram scale. Thermal annealing converts the polymer brushes into a uniform and homogeneous carbon coating as proven by high resolution transmission electron microscopy and Raman spectroscopy. The strong impact of particle size as well as carbon coating on the electrochemical performance of anatase TiO2 is demonstrated. Downsizing the particles leads to higher reversible uptake/release of sodium cations per formula unit TiO2 (e.g., 0.72 eq. Na+ (11 nm) vs only 0.56 eq. Na+ (40 nm)) while the carbon coating improves rate performance. The combination of small particle size and homogeneous carbon coating allows for the excellent electrochemical performance of anatase TiO2 at high (134 mAh g?1 at 10 C (3.35 A g?1)) and low (≈227 mAh g?1 at 0.1 C) current rates, high cycling stability (full capacity retention between 2nd and 300th cycle at 1 C) and improved coulombic efficiency (≈99.8%).  相似文献   

13.
A new form of TiO2 microspheres comprised of anatase/TiO2‐B ultrathin composite nanosheets has been synthesized successfully and used as Li‐ion storage electrode material. By comparison between samples obtained with different annealing temperatures, it is demonstrated that the anatase/TiO2‐B coherent interfaces may contribute additional lithium storage venues due to a favorable charge separation at the boundary between the two phases. The as‐prepared hierarchical nanostructures show capacities of 180 and 110 mAh g?1 after 1000 cycles at current densities of 3400 and 8500 mA g?1. The ultrathin nanosheet structure which provides short lithium diffusion length and high electrode/electrolyte contact area also accounts for the high capacity and long‐cycle stability.  相似文献   

14.
A crucial issue regarding emerging nanotechnologies remains the up‐scaling of new functional nanostructured materials towards their implementation in high performance applications on a large scale. In this context, we demonstrate high efficiency solid‐state dye‐sensitized solar cells prepared from new porous TiO2 photoanodes based on laser pyrolysis nanocrystals. This strategy exploits a reduced number of processing steps as well as non‐toxic chemical compounds to demonstrate highly porous TiO2 films. The possibility to easily tune the TiO2 nanocrystal physical properties allows us to demonstrate all solid‐state dye‐sensitized devices based on a commercial benchmark materials (organic indoline dye and molecular hole transporter) presenting state‐of‐the‐art performance comparable with reference devices based on a commercial TiO2 paste. In particular, a drastic improvement in pore infiltration, which is found to balance a relatively lower surface area compared to the reference electrode, is evidenced using laser‐synthesized nanocrystals resulting in an improved short‐circuit current density under full sunlight. Transient photovoltage decay measurements suggest that charge recombination kinetics still limit device performance. However, the proposed strategy emphasizes the potentialities of the laser pyrolysis technique for up‐scaling nanoporous TiO2 electrodes for various applications, especially for solar energy conversion.  相似文献   

15.
This paper introduces oxygen‐deficient black TiO2 with hierarchically ordered porous structure fabricated by a simple hydrogen reduction as a carbon‐ and binder‐free cathode, demonstrating superior energy density and stability. With the high electrical conductivity derived from oxygen vacancies or Ti3+ ions, this unique electrode features micrometer‐sized voids with mesoporous walls for the effective accommodation of Li2O2 toroid and for the rapid transport of reaction molecules without the electrode being clogged. In the highly ordered architecture, toroidal Li2O2 particles are guided to form with a regular size and separation, which induces the most of Li2O2 external surface to be directly exposed to the electrolyte. Therefore, large Li2O2 toroids (≈300 nm) grown from solution can be effectively charged by incorporating a soluble catalyst, resulting in a very small polarization (≈0.37 V). Furthermore, disordered nanoshell in black TiO2 is suggested to protect the oxygen‐deficient crystalline core, by which oxidation of Ti3+ is kinetically impeded during battery operation, leading to the enhanced electrode stability even in a highly oxidizing environment under high voltage (≈4 V).  相似文献   

16.
The ion insertion properties of MoS2 continue to be of widespread interest for energy storage. While much of the current work on MoS2 has been focused on the high capacity four‐electron reduction reaction, this process is prone to poor reversibility. Traditional ion intercalation reactions are highlighted and it is demonstrated that ordered mesoporous thin films of MoS2 can be utilized as a pseudocapacitive energy storage material with a specific capacity of 173 mAh g?1 for Li‐ions and 118 mAh g?1 for Na‐ions at 1 mV s?1. Utilizing synchrotron grazing incidence X‐ray diffraction techniques, fast electrochemical kinetics are correlated with the ordered porous structure and with an iso‐oriented crystal structure. When Li‐ions are utilized, the material can be charged and discharged in 20 seconds while still achieving a specific capacity of 140 mAh g?1. Moreover, the nanoscale architecture of mesoporous MoS2 retains this level of lithium capacity for 10 000 cycles. A detailed electrochemical kinetic analysis indicates that energy storage for both ions in MoS2 is due to a pseudocapacitive mechanism.  相似文献   

17.
As a wide‐bandgap semiconductor, titanium dioxide (TiO2) with a porous structure has proven useful in dye‐sensitized solar cells, but its application in low‐cost, high‐efficiency inorganic photovoltaic devices based on materials such as Cu(InGa)Se2 or Cu2ZnSnS4 is limited. Here, a thin film made from solution‐processed TiO2 nanocrystals is demonstrated as an alternative to intrinsic zinc oxide (i‐ZnO) as the window layer of CuInSxSe1?x solar cells. The as‐synthesized, well‐dispersed, 6 nm TiO2 nanocrystals are assembled into thin films with controllable thicknesses of 40, 80, and 160 nm. The TiO2 nanocrystal films with thicknesses of 40 and 80 nm exhibit conversion efficiencies (6.2% and 6.33%, respectively) that are comparable to that of a layer of the typical sputtered i‐ZnO (6.42%). The conversion efficiency of the devices with a TiO2 thickness of 160 nm decreases to 2.2%, owing to the large series resistance. A 9‐hour reaction time leads to aggregated nanoparticles with a much‐lower efficiency (2%) than that of the well‐dispersed TiO2 nanoparticles prepared using a 15‐hour reaction time. Under optimized conditions, the champion TiO2 nanocrystal‐film‐based device shows even higher efficiency (9.2%) than a control device employing a typical i‐ZnO film (8.6%).  相似文献   

18.
Three‐dimensional mesoporous TiO2‐Sn/C core‐shell nanowire arrays are prepared on Ti foil as anodes for lithium‐ion batteries. Sn formed by a reduction of SnO2 is encapsulated into TiO2 nanowires and the carbon layer is coated onto it. For additive‐free, self‐supported anodes in Li‐ion batteries, this unique core‐shell composite structure can effectively buffer the volume change, suppress cracking, and improve the conductivity of the electrode during the discharge‐charge process, thus resulting in superior rate capability and excellent long‐term cycling stability. Specifically, the TiO2‐Sn/C nanowire arrays display rechargeable discharge capacities of 769, 663, 365, 193, and 90 mA h g?1 at 0.1C, 0.5C, 2C 10C, and 30C, respectively (1C = 335 mA g?1). Furthermore, the TiO2‐Sn/C nanowire arrays exhibit a capacity retention rate of 84.8% with a discharge capacity of over 160 mA h g?1, even after 100 cycles at a high current rate of 10C.  相似文献   

19.
The siliciclastic ~1 Ga‐old strata of the Torridon Group, Scotland, contain some of the most exquisitely preserved three‐dimensional organic‐walled microfossils (OWMs) of the Precambrian. A very diverse microfossil assemblage is hosted in a dominantly phosphatic and clay mineral matrix, within the Diabaig and the Cailleach Head (CH) Formations. In this study, we report on several microfossil taxa within the CH Formation (Leiosphaeridia minutissima, Leiosphaeridia crassa, Synsphaeridium spp. and Myxococcoides spp.) that include populations of cells containing an optically transparent and highly refringent mineral, here identified using electron microscopy as anatase (TiO2). Most anatase crystals occur entirely within individual cells, surrounded by unbroken carbonaceous walls. Rarely, an anatase crystal may protrude outside a cell, interpreted to correspond to zones where the cell wall had broken down prior to anatase precipitation. Where an anatase crystal entombs an organic intracellular inclusion (ICI), the ICI is large and well preserved. These combined observations indicate that the intracellular anatase is an authigenic sedimentary phase, making this the first report of in situ precipitated anatase intimately associated with microfossils. The ability of anatase to preserve relatively large volumes of intracellular and cell wall organic material in these cells suggests that the crystallisation of anatase entombed cellular contents particularly quickly, soon after the death of the cell. This is consistent with the strong affinity of Ti for organic material, the low solubility of TiO2, and reports of Ti occurring in living organisms. With the data currently available, we propose a mineralisation pathway for anatase involving Ti complexation with organic ligands within specific cells, leading to localised post‐mortem anatase nucleation inside these cells as the complexes broke down. Further overgrowth of the anatase crystals was likely fuelled by very early diagenetic mobilisation of Ti that had been bound to more labile organic material nearby in the sediments.  相似文献   

20.
Li‐ion hybrid supercapacitors (Li‐HSCs) hold great promise in future electrical energy storage due to their relatively high power and energy density. However, a major challenge lies in the slow kinetics of Li‐ion intercalation/extraction within metal‐oxide electrodes. Here, it is shown that ultrafast charge storage is realized by confining anatase TiO2 nanoparticles in carbon nanopores to enable a high‐rate anode for Li‐HSCs. The porous carbon with interconnected pore walls and open channels not only works as a conductive host to protect TiO2 from structural degradation but also provides fast pathways for ion/electron transport. As a result, the assembled cells exhibit remarkable rate capabilities with a specific capacity of ≈140 mAh g?1 at a slow charge and ≈60 mAh g?1 at a 3.5 s fast charge. While the charge/discharge process can be completed as fast as that of state‐of‐the‐art electrical double‐layer capacitors (EDLCs), the produced nanocomposites show three to seven times higher volumetric capacitance than activated carbons used in commercial EDLCs with acetonitrile‐based electrolytes. Equally important for some applications in cold climates or the space, the Li‐HSCs can operate at subzero temperatures as low as ?40 °C, which is likely only limited by thermal properties of the acetonitrile (melting point of ?45 °C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号