首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Population characteristics of pallid sturgeon Scaphirhynchus albus in the lower Missouri River are relatively unknown. Therefore, data collected from the Nebraska Game and Parks Commission Pallid Sturgeon Population Assessment Program was synthesized to (i) document the population structure of pallid sturgeon by origin (hatchery‐reared or wild), gender, and reproductive readiness, (ii) document the minimum size and age‐at‐maturity by gender, and (iii) document the fecundity rates of the fish that were successfully spawned in the hatchery. During this 4‐year study (2008–2011), relative abundance for wild and hatchery‐reared pallid sturgeon collected with gill nets did not significantly change whereas relative abundance for wild fish using trot lines declined significantly. The proportion of hatchery‐reared pallid sturgeon increased annually, with the population being composed primarily of hatchery‐reared fish. The proportion of reproductively ready females to non‐reproductively ready females was 1 : 2.0, compared to male ratios at 1 : 0.9. Minimum fork length‐at‐maturity was estimated for females at 788 mm and for males at 798 mm. Minimum age‐at‐maturity for hatchery‐reared released fish was age‐9 for females and age‐7 for males. Highest relative fecundity, based on the ovosomatic index, was 10% with an overall mean of 7%. The number of eggs per ml (egg size) was not correlated with fork length (P = 0.0615) or weight (P = 0.0957). Relative condition factor (Kn) for females was significantly different by reproductive condition (P = 0.0014) and Kn for males did not differ between reproductive conditions (P = 0.2634). Detecting shifts in population characteristics are essential not only to understand population dynamics since hatchery inputs and natural perturbations continue to change the population structure but also to assess species recovery efforts to ensure long‐term species sustainability.  相似文献   

2.
Major histocompatibility complex (MHC) and immune‐relevant gene markers were used to evaluate differences in reproductive success (RS) among naturally spawning coho salmon Oncorhynchus kisutch mate pairs involving an alternative male reproductive phenotype, known as jacks. These mate pairs included both hatchery‐reared and wild origin fish such that three classes were evaluated in two consecutive years (2005 and 2006) using a previously constructed multigenerational genetic pedigree: wild × wild (W × W), hatchery × hatchery (H × H) and wild × hatchery (W × H). Oncorhynchus kisutch jack mate pairs mated randomly based on immune‐relevant genotype in both years; a result consistent with the opportunistic mating strategy of jacks. An association between greater number of alleles shared at three immune‐relevant gene markers and increased RS was found for: W × H mate pairs in 2005 (BHMS429), W × H pairs in 2006 (SsalR016TKU) and W × W pairs in 2006 (OMM3085). No correlation between immune gene diversity and RS was found for H × H pairs in either year. The results suggest that the influence of immune‐relevant genotype on mating success may be different for jacks when compared with previous studies of large adult male O. kisutch.  相似文献   

3.
We estimated the daily age and growth of wild age‐0 alligator gar (Atractosteus spatula) from Choke Canyon Reservoir and the Guadalupe and Trinity rivers, Texas, USA. Growth rates of wild age‐0 alligator gar were compared across systems, as well as to alligator gar reared in a Texas hatchery. Estimated ages of alligator gar ranged from 7 to 80 days in Choke Canyon Reservoir (n = 140), 11–73 days in the Guadalupe River (n = 16), and 4–115 days in the Trinity River samples (n = 245). Alligator gar growth was faster in the Trinity and Guadalupe rivers than growth in Choke Canyon Reservoir. Growth of alligator gar in Choke Canyon Reservoir (3.60 ± 0.08 mm/day), the Guadalupe River (4.76 ± 0.35 mm/day), and the Trinity River (5.13 ± 0.07 mm/day) was faster than growth of hatchery reared fish (3.41 ± 0.08 mm/day). This study represents the first account of early growth of age‐0 alligator gar in the wild, and documents some of the fastest growth of age‐0 fish among freshwater fishes. We attribute the rapid growth of wild alligator gar to their quick transition to piscivory at early stages, and their effective use of habitat and resources on inundated floodplains during flood pulses. Future studies should explore the effects of environmental factors on the hatching success, growth, and survival of age‐0 alligator gar.  相似文献   

4.
As pallid sturgeon, Scaphirhynchus albus (Forbes & Richardson, 1905), natural reproduction and recruitment remains very minimal in the lower Missouri River from Gavins Point Dam (river kilometer [rkm] 1305.2) to the confluence with the Mississippi River (rkm 0.0), hatchery supplementation and river‐wide monitoring efforts have continued. Annual survival estimates of hatchery‐reared pallid sturgeon stocked in the lower Missouri River were previously estimated during 1994–2008. Low recapture rates prior to 2006 limited the data available to estimate survival, which resulted in considerable uncertainty for the estimate of annual survival of age‐1 fish. Therefore, the objective was to provide more precise estimates of annual survival of pallid sturgeon using five additional years of stocking and sampling. The Cormack‐Jolly‐Seber model structure provided in program MARK was used to estimate the age‐specific survival estimates. Over 135 000 hatchery‐reared pallid sturgeon were released during 1994–2011 and recaptured at a rate of 1.9%, whereby estimates for the annual survival of age‐0 (Ø = 0.048) and >age‐1 (Ø = 0.931) were similar to those previously reported, but the age‐1 (Ø = 0.403) survival estimate was 52% lower. Post hoc analysis using time‐specific survival estimates indicated lower survival for age‐1 fish post‐2003 year classes, relative to the pre‐2002 year classes. An analysis confirms that hatchery‐reared pallid sturgeon continue to survive in the wild. However, low survival during the first 2 years of life is a management concern as efforts are aimed at maximizing genetic diversity and population growth. A follow‐up analysis also demonstrated the variability of capture rates and survival over time, which reinforces the need to continue to monitor and evaluate mark‐recapture data. The mark‐recapture efforts have provided demographic parameter estimates that remain a critical component for species recovery as these data are incorporated into population models.  相似文献   

5.
The pallid sturgeon Scaphirhynchus albus conservation propagation program has augmented declining wild populations since the 1990s and the older age classes of hatchery‐origin fish are beginning to reach sexual maturity in the wild. Currently, the majority of the information available on the age and size at first maturity and spawning periodicity for pallid sturgeon in the upper basin is from captive hatchery‐origin pallid sturgeon (i.e. age and size at first maturity and spawning periodicity) or from wild pallid sturgeon artificially spawned in the propagation program (i.e. spawning periodicity). The purpose of this study was to document age and size at first maturity and spawning periodicity of known age hatchery‐origin pallid sturgeon that have reached maturity in the wild. Radio‐tagged pallid sturgeon in the upper Missouri River upstream of Fort Peck Reservoir were serially sampled in the early‐spring over multiple years and assigned to reproductive classifications each year based on sex‐steroid concentrations. The youngest reproductively‐active male hatchery‐origin pallid sturgeon sampled was 14.5 years old and the youngest female was 18. Hatchery‐origin males were observed having annual (N = 3) and biennial (N = 2) reproductive cycles. The observed spawning periodicity was similar to what has been reported elsewhere for the species. The youngest mature fish in this study are older and larger than what has been reported for those retained in captivity, indicating that body size alone is not a reliable predictor of maturity for pallid sturgeon.  相似文献   

6.
Survival rates and growth parameters of hatchery‐reared sea trout (Salmo trutta trutta L.) fry were determined after stocking in the wild. The larvae were hatchery‐reared for 12 weeks in two groups: fry were fed either on live zooplankton and live chironomidae larvae (LFG), or fed a pellet diet (PFG). The survival rate and specific growth rates were higher in the LFG than in the PFG group. Most effective for hatchery‐reared fish intended for stocking was the natural, live feed. The mean number of chironomid larvae found in the stomachs of fish that were initially captured in the wild was significantly higher in the LFG than in the PFG group. The live diet supplied in the rearing period had a positive impact on the foraging skills of the sea trout fry and their survival in the wild after their release on 24 April 2010.  相似文献   

7.
Supplementation of wild salmonids with captive-bred fish is a common practice for both commercial and conservation purposes. However, evidence for lower fitness of captive-reared fish relative to wild fish has accumulated in recent years, diminishing the apparent effectiveness of supplementation as a management tool. To date, the mechanism(s) responsible for these fitness declines remain unknown. In this study, we showed with molecular parentage analysis that hatchery coho salmon (Oncorhynchus kisutch) had lower reproductive success than wild fish once they reproduced in the wild. This effect was more pronounced in males than in same-aged females. Hatchery spawned fish that were released as unfed fry (age 0), as well as hatchery fish raised for one year in the hatchery (released as smolts, age 1), both experienced lower lifetime reproductive success (RS) than wild fish. However, the subset of hatchery males that returned as 2-year olds (jacks) did not exhibit the same fitness decrease as males that returned as 3-year olds. Thus, we report three lines of evidence pointing to the absence of sexual selection in the hatchery as a contributing mechanism for fitness declines of hatchery fish in the wild: (i) hatchery fish released as unfed fry that survived to adulthood still had low RS relative to wild fish, (ii) age-3 male hatchery fish consistently showed a lower relative RS than female hatchery fish (suggesting a role for sexual selection), and (iii) age-2 jacks, which use a sneaker mating strategy, did not show the same declines as 3-year olds, which compete differently for females (again, implicating sexual selection).  相似文献   

8.
Juvenile wild and hatchery‐reared European grayling Thymallus thymallus were tagged with radio‐transmitters and tracked in the Blanice River, River Elbe catchment, Czech Republic, to study their behavioural response to stocking and environmental variation. Both wild and hatchery‐reared T. thymallus increased their diel movements and home range with increasing light intensity, flow, temperature and turbidity, but the characteristics of their responses differed. Environmental variables influenced the movement of wild T. thymallus up to a specific threshold, whereas no such threshold was observed in hatchery‐reared T. thymallus. Hatchery‐reared fish displayed greater total migration distance over the study period (total migration) than did wild fish, which was caused mainly by their dispersal in the downstream direction.  相似文献   

9.
Inbreeding is of concern in supportive breeding programmes in Pacific salmonids, Oncorhynchus spp, where the number of breeding adults is limited by rearing space or poor survival to adulthood, and large numbers are released to supplement wild stocks and fisheries. We reconstructed the pedigree of 6602 migratory hatchery steelhead (Oncorhynchus mykiss) over four generations, to determine the incidence and fitness consequences of inbreeding in a northwest USA programme. The hatchery maintained an effective population size,  = 107.9 from F0 to F2, despite an increasing census size (N), which resulted in a decreasing Ne/N ratio (0.35 in F0 to 0.08 in F2). The reduced ratio was attributed to a small broodstock size, nonrandom transfers and high variance in reproductive success (particularly in males). We observed accumulation of inbreeding from the founder generation (in F4, percentage individuals with inbreeding coefficients Δf > 0 = 15.7%). Generalized linear mixed models showed that body length and weight decreased significantly with increasing Δf, and inbred fish returned later to spawn in a model that included father identity. However, there was no significant correlation between Δf and age at return, female fecundity or gonad weight. Similarly, there was no relationship between Δf and reproductive success of F2 and F3 individuals, which might be explained by the fact that reproductive success is partially controlled by hatchery mating protocols. This study is one of the first to show that small changes in inbreeding coefficient can affect some fitness‐related traits in a monitored population propagated and released to the wild.  相似文献   

10.
In order to increase the size of declining salmonid populations, supplementation programmes intentionally release fish raised in hatcheries into the wild. Because hatchery-born fish often have lower fitness than wild-born fish, estimating rates of gene flow from hatcheries into wild populations is essential for predicting the fitness cost to wild populations. Steelhead trout (Oncorhynchus mykiss) have both freshwater resident and anadromous (ocean-going) life history forms, known as rainbow trout and steelhead, respectively. Juvenile hatchery steelhead that 'residualize' (become residents rather than go to sea as intended) provide a previously unmeasured route for gene flow from hatchery into wild populations. We apply a combination of parentage and grandparentage methods to a three-generation pedigree of steelhead from the Hood River, Oregon, to identify the missing parents of anadromous fish. For fish with only one anadromous parent, 83% were identified as having a resident father while 17% were identified as having a resident mother. Additionally, we documented that resident hatchery males produced more offspring with wild anadromous females than with hatchery anadromous females. One explanation is the high fitness cost associated with matings between two hatchery fish. After accounting for all of the possible matings involving steelhead, we find that only 1% of steelhead genes come from residualized hatchery fish, while 20% of steelhead genes come from wild residents. A further 23% of anadromous steelhead genes come from matings between two resident parents. If these matings mirror the proportion of matings between residualized hatchery fish and anadromous partners, then closer to 40% of all steelhead genes come from wild trout each generation. These results suggest that wild resident fish contribute substantially to endangered steelhead 'populations' and highlight the need for conservation and management efforts to fully account for interconnected Oncorhynchus mykiss life histories.  相似文献   

11.
This study examined the growth, activity, metabolism and post‐release survival of three groups of Florida largemouth bass Micropterus floridanus: wild‐caught fish, hatchery fish reared according to standard practice (hatchery standard) and hatchery fish reared under reduced and unpredictable food provisioning (hatchery manipulated). Hatchery‐standard fish differed from wild‐caught fish in all measured variables, including survival in semi‐natural ponds. Hatchery‐standard and hatchery‐manipulated fish showed higher activity levels, faster growth and lower standard metabolic rates than wild‐caught fish in the hatchery. Fish reared under the manipulated feeding regime showed increased metabolic rates and increased post‐release growth, similar to wild‐caught fish. Their activity levels and post‐release survival, however, remained similar to those of hatchery‐standard fish. Activity was negatively correlated with post‐release survival and failure of the feed manipulation to reduce activity may have contributed to its failure to improve post‐release survival. Activity and post‐release survival may be influenced by characteristics of the rearing environment other than the feeding regime, such as stock density or water flow rates.  相似文献   

12.
  1. Atlantic salmon (Salmo salar) smolts are often stocked into rivers to supplement natural reproduction, yet hatchery-reared fish have lower survival compared to wild conspecifics. However, few studies have assessed riverine migratory performance and survival differences in hatchery and wild smolts, or more specifically naturally reared smolts (hatchery fish released earlier as parr), particularly in rivers with weirs which may further reduce survival.
  2. Using acoustic telemetry, including a subset of fish with novel transmitters that identify predation events, we assessed survival and migration patterns of hatchery- (2017: n = 32; 2018: n = 30) and naturally reared Atlantic salmon smolts (2017: n = 8; 2018: n = 30) in a Lake Ontario tributary with two weirs to better understand their ecology and assess the influence of environmental parameters on migration.
  3. Naturally reared smolts were 13.9 times more likely to survive than hatchery-reared smolts and mark–recapture models indicated that weirs did not reduce survival for either group. Survival per km was lowest at the release site, indicating pre-migration mortality, and specifically high stocking-related mortality of hatchery-reared smolts. Speed and times of day fish migrated (i.e. migratory performance) did not vary by rearing group, suggesting that the high mortality of hatchery-reared smolts may be due to other factors related to hatchery and stocking operations. Overall mean (± SD) migration speed for smolts was 0.70 ± 0.39 km/hr and movements occurred significantly more frequently at night (18:00–06:00).
  4. Smolts were detected in Lake Ontario after they left the river; however, the array in Lake Ontario was not conducive to providing much detail regarding movement patterns. There was no predation of the two predation tags detected in Lake Ontario, indicating that movements were made by smolts and not predators.
  5. With ongoing restoration efforts of Atlantic salmon in Lake Ontario, it was important to understand the smolt migration patterns and success of the stocked fish. Our findings of similar migratory performance yet different relative survival of hatchery- and naturally reared smolts help inform management with regards to stocking strategies that could improve Atlantic salmon reintroduction success.
  相似文献   

13.
To study effects from natural selection acting on brown trout in a natural stream habitat compared with a hatchery environment, 3,781 single nucleotide polymorphism (SNP) markers were analyzed in three closely related groups of brown trout (Salmo trutta L.). Autumn (W/0+, = 48) and consecutive spring (W/1+, = 47) samples of brown trout individuals belonging to the same cohort and stream were retrieved using electrofishing. A third group (H/1+, = 48) comprised hatchery‐reared individuals, bred from a mixture of wild parents of the strain of the two former groups and from a neighboring stream. Pairwise analysis of FST outliers and analysis under a hierarchical model by means of ARLEQUIN software detected 421 (10.8%) candidates of selection, before multitest correction. BAYESCAN software detected 10 candidate loci, all of which were included among the ARLEQUIN candidate loci. Body length was significantly different across genotypes at 10 candidate loci in the W/0+, at 34 candidate loci in the W/1+ and at 21 candidate loci in the H/1+ group. The W/1+ sample was tested for genotype‐specific body length at all loci, and significant differences were found in 10.6% of all loci, and of these, 14.2% had higher frequency of the largest genotype in the W/1+ sample than in W/0+. The corresponding proportion among the candidate loci of W/1+ was 22.7% with genotype‐specific body length, and 88.2% of these had increased frequency of the largest genotype from W/0+ to W/1+, indicating a linkage between these loci and traits affecting growth and survival under this stream's environmental conditions. Bayesian structuring of all loci, and of the noncandidate loci suggested two (= 2), alternatively four clusters (= 4). This differed from the candidate SNPs, which suggested only two clusters. In both cases, the hatchery fish dominated one cluster, and body length of W/1+ fish was positively correlated with membership of one cluster both from the = 2 and the = 4 structure. Our analysis demonstrates profound genetic differentiation that can be linked to differential selection on a fitness‐related trait (individual growth) in brown trout living under natural vs. hatchery conditions. Candidate SNP loci linked to genes affecting individual growth were identified and provide important inputs into future mapping of the genetic basis of brown trout body size selection.  相似文献   

14.
Daily increment validation in fish otolith is fundamental to studies on fish otolith microstructure, age determination and life history traits, and thus is critical for species conservation and fishery management. However, it has never been done for Schizothoracine fish, which is the dominant component of fish fauna in the Tibetan Plateau. This study validated the daily increment formation of Gymnocypris selincuoensis, as a representative of Schizothoracine fish, by monitoring the growth of hatchery‐reared larvae group and wild‐caught post‐yolk‐sac larvae group under controlled experiments. The results from monitoring the hatchery‐reared larvae group showed that sagittae and lapilli were found in yolk‐sac larvae, and formed 5–7 days before hatching, but asterisci were not found until 11 days post‐hatching. The first increment in sagittae and lapilli was formed in the first day after hatching. The daily periodicity of increment formation was examined and confirmed in sagittae and lapilli of both larvae groups. However, sagittae were better for age determination than lapilli for larvae at earlier days. For larval G. selincuoensis older than 50 days, lapilli were the only otolith pair suitable for larvae daily age determination. This study validated the daily increment formation in Schizothoracine fish for the first time has primary implications to other fishes from this subfamily.  相似文献   

15.
Mating ability, survival, and fitness of mass‐produced sterile insects when released into the wild, are critical to the success of the sterile insect technique (SIT) as a pest management strategy, but their field performance remains one of the greatest challenges. Thermal stress tolerance by irradiated insects is a determinant of sterile insect quality, hence knowledge of their physiological competitiveness is essential for developing the SIT. Here, we report the results of experiments investigating effects of laboratory rearing and increasing radiation dosage on thermal limits to activity of the adult stage of Eldana saccharina Walker (Lepidoptera: Pyralidae). The critical thermal maximum (CTmax) and critical thermal minimum (CTmin) were assayed using a dynamic method on both sexes of E. saccharina moths in laboratory vs. wild populations (to determine effect of rearing history). Furthermore, the laboratory population was exposed to 150, 200, and 250 Gy, to determine the effect of radiation dose. Laboratory‐reared E. saccharina were more heat tolerant compared to wild moths for both sexes (CTmax = 44.5 vs. 44.3 °C), whereas in the case of CTmin (3.7 vs. 4.4 °C), wild moths were more cold tolerant than their laboratory‐reared counterparts. Irradiation had a negative effect on both CTmax and CTmin. Moths treated at the lowest radiation dose were more cold and heat tolerant than those treated at the highest dosages (CTmin = 4.5 vs. 6.2 °C; CTmax = 43.9 vs. 43.5 °C), thereby reinforcing the importance of lower dosages rather than those that induce full sterility against E. saccharina. In general, sex had no influence on critical thermal limits in all moth treatments except for those irradiated at 150 Gy. The data presented in this article provide evidence that increasing radiation dose impacts on fitness of laboratory‐produced moths relative to their wild counterparts, which in turn could affect the effectiveness of the SIT programme.  相似文献   

16.
The growth, and dispersal of stocked European grayling Thymallus thymallus, reared in a hatchery (fed dry food pellets) or in a pond (fed natural food), compared with their wild conspecifics was assessed from the recapture of individually tagged fish 168 days after their release into the Blanice River, Czech Republic. Recapture rates and site fidelity were higher for wild T. thymallus than for artificially reared fish. Specific growth rate and upstream or downstream dispersal did not significantly differ between any of the groups of fish. An influence of rearing conditions (pond v. hatchery) on the overall performance of stocked fish was not demonstrated. Initially, lower condition factors of reared T. thymallus were equal to wild fish after recapture, suggesting adaptation of artificially reared fish that remained in the sections studied.  相似文献   

17.
Mating frequency and the amount of sperm transferred during mating have important consequences on progeny sex ratio and fitness of haplodiploid insects. Production of female offspring may be limited by the availability of sperm for fertilizing eggs. This study examined multiple mating and its effect on fitness of the cabbage aphid parasitoid Diaeretiella rapae McIntosh (Hymenoptera: Aphidiidae). Female D. rapae mated once, whereas males mated with on average more than three females in a single day. The minimum time lag between two consecutive matings by a male was 3 min, and the maximum number of matings a male achieved in a day was eight. Sperm depletion occurred as a consequence of multiple mating in D. rapae. The number of daughters produced by females that mated with multiple‐mated males was negatively correlated with the number of matings achieved by these males. Similarly, the proportion of female progeny decreased in females that mated with males that had already mated three times. Although the proportion of female progeny resulting from multiple mating decreased, the decrease was quicker when the mating occurred on the same day than when the matings occurred once per day over several days. Mating success of males initially increased after the first mating, but then males became ‘exhausted’ in later matings; their mating success decreased with the number of prior matings. The fertility of females was affected by mating with multiple‐mated males. The study suggests that male mating history affects the fitness of male and female D. rapae.  相似文献   

18.
The critically endangered Pangasianodon gigas is endemic to the Mekong River. Despite its importance, little is known about its genetic diversity and conservation efforts are hampered. Ten polymorphic dinucleotide microsatellite primer pairs were developed from DNA of P. gigas. The analysis of 20 individuals from hatchery stocks using these primers resulted in two to six alleles/locus; HO = 0.05–0.95; HE = 0.05–0.81. All but one locus (Pg‐3) conformed to Hardy–Weinberg expectation. Eight, six and seven primer pairs were amplified with the DNA from Pangasianodon hypophthalmus, Pangasius larnaudii and Pangasius sanitwongsei, respectively. These markers will be useful for genetic monitoring of wild and hatchery stocks of these pangasiids.  相似文献   

19.
In this study, we contrast brain morphology from hatchery and wild reared stocks to examine the hypothesis that in salmonid fishes, captive rearing produces changes in brain development. Using rainbow trout, Oncorhynchus mykiss, as a model, we measured eight regions of the salmonid brain to examine differences between wild and hatchery reared fish. We find using multiple analysis of covariance (MANCOVA), analysis of covariance (ANCOVA) and discriminant function analysis (DFA) that the brains of hatchery reared fish are relatively smaller in several critical measures than their wild counterparts. Our work may suggest a mechanistic basis for the observed vulnerability of hatchery fish to predation and their general low survival upon release into the wild. Our results are the first to highlight the effects of hatchery rearing on changes in brain development inbreak fishes.  相似文献   

20.
Behavioral differences between individuals that are consistent over time characterize animal personality. The existence of such consistency contrasts to the expectation based on classical behavioral theory that facultative behavior maximizes individual fitness. Here, we study two personality traits (aggression and breath rate during handling) in a wild population of blue tits during 2007–2012. Handling aggression and breath rate were moderately heritable (h2 = 0.35 and 0.20, respectively) and not genetically correlated (rA = 0.06) in adult blue tits, which permits them to evolve independently. Reciprocal cross‐fostering (2007–2010) showed that offspring reared by more aggressive males have a higher probability to recruit. In addition, offspring reared by pairs mated assortatively for handling aggression had a higher recruitment probability, which is the first evidence that both parents' personalities influence their reproductive success in the wild in a manner independent of their genetic effects. Handling aggression was not subjected to survival selection in either sex, but slow‐breathing females had a higher annual probability of survival as revealed by capture–mark–recapture analysis. We find no evidence for temporal fluctuations in selection, and thus conclude that directional selection (via different fitness components) acts on these two heritable personality traits. Our findings show that blue tit personality has predictable fitness consequences, but that facultative adjustment of an individual's personality to match the fitness maximum is likely constrained by the genetic architecture of personality. In the face of directional selection, the presence of heritable variation in personality suggests the existence of a trade‐off that we have not identified yet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号