首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The morphological features of the hemocytes of the crustacean Ligia exotica are similar to hemocytes of insects and millipedes. Jones system of hemocyte classification is extended to crustacean hemocytes. As in insects, seven classes of hemocytes, identified as prohemocytes, plasmatocytes, granular hemocytes, cystocytes, oenocytoids, spherule cells and adipohemocytes, occur. The prohemocytes can be subdivided into five categories that probably represent the precursor of major cell types. The structural and chemical features of other major cell classes are distinct and support the concept of Jones ('62) that these types might have different lineages and might not be capable of transforming into one another. Some of the prohemocytes, plasmatocytes and granular hemocytes are amoeboid. Cystocytes do not bring about any visible plasma coagulation similar to their counterpart in millipedes. Oneocytoids and adipohemocytes are rare. Plasmatocytes, cystocytes and oenocytoids occur in conglomerates, the significance of which is discussed. The cell types are compared with those of the hemocytes of other crustaceans. It is suggested that the nomenclature based on morphological characters is more suited for crustacean hemocytes than a nomenclature based on behavioural and physiological characters.  相似文献   

2.
Insect hemocytes have historically been identified on the basis of morphology, ultrastructure and hypothesized function. Among insects in the order Lepidoptera, five hemocyte classes are usually recognized: granular cells, plasmatocytes, spherule cells, oenocytoids and prohemocytes. We have generated a panel of monoclonal antibodies (mAbs) against hemocytes of the moth Pseudoplusia includens. In this study, hemocyte identification using 16 different mAbs was compared to identification methods using morphological characters. Three main categories of mAb binding activity were identified: (1) mAbs that specifically labeled only one morphological class of hemocytes, (2) mAbs that labeled granular cells and spherule cells, and (3) mAbs that labeled plasmatocytes and oenocytoids. With one exception, none of the antibodies bound to other tissues in P. includens. However, certain mAbs that specifically labeled granular cells and/or spherule cells in separated hemocyte populations also labeled plasmatocytes co-cultured with granular cells or cultured in granular cell conditioned medium. Overall, our results suggest that granular cells are antigenically related to spherule cells, and that plasmatocytes are antigenically related to oenocytoids. The use of mAbs as hemocyte markers are discussed.  相似文献   

3.
The hemocytes of selected stages of Hyalophora cecropia from first instar larvae to four-day-old adults were examined and compared with those of Samia cynthia and Antheraea polyphemus. Five classes and two subclasses of hemocytes are described in these moths: (1) prohemocytes, (2) plasmatocytes (of several morphological types), (3) spherule cells, (4) adipohemocytes (two subclasses), and (5) oenocytoids. All types except oenocytoids and subclass II adipohemocytes, are found in all stages examined. Mitotic figures were common among prohemocytes of most stages, but were seen only rarely among plasmatocytes and adipohemocytes, and were not seen among spherule cells or oenocytoids. Prohemocytes and plasmatocytes often contain lipid but rarely PAS positive material. Spherules of spherule cells are PAS positive, as are occasional cytoplasmic inclusions of oenocytoids. Adipohemocytes of both subclasses contain lipid and PAS positive materials in all stages examined. Adipohemocytes and plasmatocytes proved to be most active in phagocytizing ink. Relationships between hemocytes of these and other insects, and some possible functions of hemocytes are discussed.  相似文献   

4.
As part of program of research into insect cellular immunity, an integrated light and electron microscopic study of the hemocytes of seven members of the Order Dictyoptera has been made. In fresh hemolymph, five cell types, the prohemocytes, plasmatocytes, granular cells, spherule cells and cystocytes, are easilv distinguished. However, in thick Araldite sections and in thin sections in the electron microscope it is sometimes difficult to identify the various cell types. The reasons for this difficulty are discussed. Granules with a microtubular substrcture are found in the plasmatocytes, spherule cells and cystocytes. In the plasmatocytes these granules have a different ultrastructure than those in the spherule cells and cystocytes. The in vitro fragility of these granules in both the spherule cells and cystocytes during coagulation partially explains the previous confusion in distinguishing these two cell types. Evidence is presented which indicates that the plasmatocytes, granular cells and spherule cells represent a developmental series originating from the prohemocytes. Where exactly the cystocytes are derived from is unknown.  相似文献   

5.
Circulating hemocytes from larval stages of the paper wasp Polistes dominulus were characterized by light and transmission electron microscopy. Three types were identified: prohemocytes, plasmatocytes and granulocytes. The first two are agranular cells while the latter present typical cytoplasmic inclusions called granules. Plasmatocytes differ from prohemocytes being larger, showing lower nucleus/cytoplasm ratio and they possess many phagolysosomes. The substantial uniformity of most subcellular features and the presence of "intermediate forms" support the "single-cell theory" i.e., there is only one cell line that originates from the prohemocyte and leads to the granular cell passing through the plasmatocyte. This hypothesis seems to be confirmed by functional tests. Indeed, most part of cells adheres to the glass and is able to phagocytize fluorescent microspheres.  相似文献   

6.
Five hemocyte types were identified in the hemolymph of Panstrongylus megistus by phase contrast and common light microscopy using some histochemical methods. These are: Prohemocytes, small cells presenting a great nucleus/cytoplasm ratio; Plasmatocytes, the most numerous hemocytes, are polymorphic cells mainly characterized by a large amount of lysosomes; Granulocytes, hemocytes very similar to plasmatocytes which contain cytoplasmic granules and are especially rich in polysaccharides; Oenocytoids, cells presenting a small nucleus and a thick cytoplasm; they show many small round vacuoles when observed in Giemsa smears and many cytoplasmic granules under phase microscopy; Adipohemocytes, very large hemocytes, presenting many fat droplet inclusions which could correspond to free fat bodies which entered the hemolymph. Only prohemocytes and plasmatocytes can be clearly classified; all the other hemocyte types have a more ambiguous classification.  相似文献   

7.
Hemocytes collected from larvae of Pseudoplusia includens (Lepidoptera: Noctuidae) were separated by centrifugation on Percoll cushions. The procedure resulted in 95% purity of plasmatocytes and greater than 99% purity of granular and spherule cells. Medium supplemented with chicken serum enhanced cell viability and promoted spreading of plasmatocytes. Cell-free plasma and medium preconditioned by plasmatocytes or granular cells stabilized cells in vitro and also accelerated spreading of plasmatocytes relative to medium supplemented with chicken serum. Oenocytoids were the only morphotype that exhibited endogenous phenoloxidase activity, while granular cells and plasmatocytes were the only cells that endocytosed fluorescent beads in vitro. Granular cells and plasmatocytes ingested fluorescently labelled beads, both in mixed populations of hemocytes and after separation. Plasmatocytes were the only morphotype that encapsulated large foreign targets in vitro following separation. Separated granular cells attached and spread on the surface of foreign targets but never formed a multilayered capsule.  相似文献   

8.
红褐斑腿蝗血细胞的形态与分类   总被引:1,自引:0,他引:1  
王世贵  周志军  郑哲民 《昆虫知识》2007,44(2):241-244,F0004
利用光学显微镜和显微数码拍照系统,对红褐斑腿蝗Catantops pinguis(Stal)血细胞的形态进行观察和分类。结果在红褐斑腿蝗血淋巴中观察到5种血细胞,分别是原血胞、浆血胞、粒血胞、珠血胞和囊血胞。原血胞为小型圆形细胞,边缘圆滑、清晰,核质比例很大。粒血胞多为中型,形状不规则,边缘凹突不平,内含较大的异质性溶酶体颗粒。浆血胞多为中型,刚离体时形状较规则,常呈圆形、卵圆形。浆血胞内缺乏大的颗粒,细胞核大而圆形,细胞质内具许多小型颗粒状物质。浆血胞离体后形状变化较多,常发展出伪足,呈丝状、短芒状、钩状或片状伪足。珠血胞多为大、中型,外形大体呈圆形,但边缘由于大小不等的珠形内含物突出,呈花瓣状。囊血胞多为中型,圆形或椭圆形,细胞质内具有大小不一的带有折光性的颗粒或块状物,细胞边缘比较光滑。  相似文献   

9.
Hemocytes and hemocytopoiesis in Silkworms.   总被引:6,自引:0,他引:6  
J Beaulaton 《Biochimie》1979,61(2):157-164
A brief review is presented of the current state of ultrastructure, cytochemistry, and physiology of the hemocytes and meso- and metathoracic peri-imaginal-wing organs in silkworms. According to the accepted morphological classification, five circulating types of hemocytes are recognized in Bombyx mori as well as in Antheraea pernyi. They are prophemocytes or stem cells, plasmatocytes or pre-differentiated cells and three specialized cells, granulocytes, spherule cells and oenocytoids. During post-embryonic development the last four types are the most common in the circulating hemolymph. Plasmatocytes are considered to be pluripotent cells from which granulocytes, spherule cells and oenocytoids are derived. Contrary to the situation in most insects the plasmatocytes are not phagocytic in Antheraea. The granulocytes are efficient phagocytes. Both plasmatocytes and granulocytes are involved in pinocytosis. Another possible function of the granulocytes is hemolymph coagulation. The function of the spherule cells which contain a paracrystalline material (muco- or glycoproteins) is by no means clear. The phenoloxidase activity found within the cytosol of oenocytoids appears effective against the natural monophenol and diphenol substrates. The involvement of oenocytoids in the complex metabolism of phenols and particularly in the production of plasma phenolases has been reported. The mitotic division of five circulating hemocyte types is well known and was long regarded as the only mechanism of postembryonic hemocyte production. We present for silkworms, experimental evidence of the hemocytopoietic function of the meso- and metathoracic organs surrounding the imaginal wing discs. Ablation experiments demonstrate that the mitotic activity of free hemocytes is unable to maintain the normal hemocytogram in the absence of the two paris of organs. These organs are typically divided into cell islets ensheathed by a connective tissue membrane. Two types of islets may be classified by the disposition of the cells : the compact islets or aggregations of stem cells and the reticulate islets which are mainly composed of hemocytes at different steps of differentiation. The relative number of prohemocytes in the total hemocyte population ranges from 84 to 97 p. cent in organs of Antheraea pernyi. This well-defined cell type appears to be the major hemocyte type in hemocytopoietic organs. In Antheraea, the mitotic index (the relative number of mitotic hemocytes in the total cell population) varies from 0.5 to about 3 p. cent. Finally, our data direct attention to cyclic functional changes such as mitotic divisions and hemocyte differentiation which run parallel to the molting cycle.  相似文献   

10.
The fine structure of the hemocytes and nephrocytes in Argas (Persicargas) arboreus is described and compared with that of similar cells in other tick species and insects. The hemocytes are of three types: prohemocytes, with a relatively undifferentiated cytoplasm lacking granular inclusions and probably serving as progenitors of the other hemolymph cell types; plasmatocytes, containing abundant mitochondria, cisternae of rough endoplasmic reticulum (RER), and free ribosomes, as well as some small granular inclusions; granulocytes, the predominant cell type in the hemolymph, containing numerous granules of variable electron density and maturity, and pseudopodia-like processes on the cell surface. Plasmatocytes and granulocytes are phagocytic and possibly also have other functions in the tick body. Cells with intermediate features appear to be in a stage of transition from plasmatocyte to granulocyte. Nephrocytes contain vacuoles enclosing fibrillar material, some electrondense granules, and moderate amounts of the active organelles—mitochondria, RER, and ribosomes. The nephrocyte is surrounded by a basal lamina and its plasma membrane infolds to form many deep invaginations coated by a fine fibrillar material. Openings to these invaginations are closed by membranous diaphragms. Coated tubular elements connect the surface invaginations with large coated vesicles, which appear to be specialized for internalization of proteins from the hemolymph. The dense granules may represent an advanced stage of condensation of ingested protein and thus may be lysosomal residual bodies, or they may develop by accumulation of secretory products.  相似文献   

11.
Kind TV 《Tsitologiia》2003,45(1):14-25
On the basis of in vitro observation of live cells and examination of stained slides of larval and prepupal Calliphora vicina hemolymph, seven types of hemocytes have been detected: prohemocytes, stable and unstable hyaline cells, thrombocytoids, spindle cells, larval plasmatocytes, and plasmatocytes I-IV, a. The last representing sequential stages of one cell line differentiation. Prohemocytes are basic cells, from which other forms of hemocytes derive outside the hemopoietic tissue, i.e. in free hemolymph. At the last larval instar, three waves of hemopoiesis occur. Either wave tends to increase the general number of cells and to change the quality of hemocyte population. The first wave occurs at the close of larva feeding and is accompanied by increase in the number of hyaline hemocytes, thrombocytoids and larval plasmatocytes. The second wave of hemopoiesis occurs after the larva's crop emptying. In this period the main increase of hemocyte population occurs at the expense of prohemocytes and plasmatocytes I. The most significant (five-fold) explosion of the population of free hemocytes takes place at the onset of pupariation and correlates with the rise of ecdysone titer. At the first stage of this peak, the amount of plasmatocytes I sharply increases. Further on these are rapidly differentiated into plasmatocytes II and III. After the puparium formation, hemocytes are reduced in number. Plasmatocytes III phagocytose fragments of destroyed larval tissues, pass to the stage of plasmatocytes IV (macrophages), and partially settle on tissues.  相似文献   

12.
Five types of hemocytes, prohemocytes, typical plasmatocytes, coagulocytes, spherule cells, and oenocytoides, have been defined in the last larval instar of Heliothis armigera on the basis of ultrastructural microscopy, smears, and optical phase-contrast microscopy. Modifications in typical plasmatocytes and coagulocytes have been evidenced in the course of development in this instar, which suggests that these hemocytes are involved in physiological processes of development. Only coagulocytes exhibit endocytotic capacities. Phenoloxidase activity was observed in oenocytoides.  相似文献   

13.
In Drosophila melanogaster larvae, three classes of circulating cellular immune surveillance cells (hemocytes) can be identified: plasmatocytes, crystal cells, and lamellocytes. Plasmatocytes are professional phagocytes most similar to the mammalian monocyte/macrophage lineage and make up approximately 95% of circulating hemocytes. The other approximately 5% of circulating hemocytes consists of crystal cells, which secrete components necessary for the melanization of invading organisms, as well as for wound repair. A third cell type known as lamellocytes are rarely seen in healthy larvae and are involved in the encapsulation of invading pathogens. There are no obvious mammalian counterparts for crystal cells or lamellocytes, and there is no equivalent to the lymphoid lineage in insects. In this review, I will discuss what is currently known about Drosophila hemopoiesis and the cellular immune response and where possible compare it to vertebrate mechanisms.  相似文献   

14.
Five types of haemocytes: prohaemocytes, plasmatocytes, granular haemocytes, spherule cells and phagocytes, have been distinguished on the basis of ultrastructural studies. Prohaemocytes are ovoid cells with a simple structural organization. Plasmatocytes are larger; their cytoplasm contains well-developed rough endoplasmic reticulum, numerous mitochondria and free ribosomes. Granular haemocytes are the most numerous of the blood cells, characterized by the presence of electron-dense granules. The cytoplasm of spherule cells contains many spherules made up of filamentous material of medium electron density. Rough endoplasmic reticulum, free ribosomes and mitochondria are also found in the cytoplasm. Phagocytes are the largest haemocytes. Their cytoplasm contains an abundance of lysosomes and myelin structures. In addition to haemocytes, cells intermediate between plasmatocytes and granular haemocytes have been observed, which indicates that the granular haemocytes are derived from plasmatocytes.  相似文献   

15.
为了阐明幼虫密度对草地螟Loxostege sticticalis L.(鳞翅目: 螟蛾科)细胞免疫能力的影响, 本研究调查了在活体灰菜植株上1,5,10和20头/瓶(900 mL)4种密度条件下的其5龄幼虫血细胞种类、数量和组成。结果表明: 草地螟幼虫血淋巴中有原血细胞、浆血细胞、 颗粒血细胞、珠血细胞和类绛色血细胞等5种(类)血细胞。血细胞总数、 浆血细胞、颗粒血细胞数量随幼虫密度的增加而显著递增, 但原血细胞、珠血细胞和类绛色血细胞数量在幼虫密度间的差异不明显;各种血细胞所占血细胞总数的比例在4个密度中的排序相同, 但10和20头/瓶密度下的浆血细胞比例显著高于1头/瓶的,其余4种血细胞的比例在不同密度之间无显著差异。可见, 幼虫密度主要是通过影响草地螟幼虫浆血细胞和颗粒血细胞的数量及血细胞总数, 从而影响草地螟的细胞免疫能力。  相似文献   

16.
The hemocytes of Leiobunum limbatum, Mitopus morio, and Opilio ravennae number from about 8,000 (juveniles) to 41,000 (pregnant females) per microliter of hemolymph. Five different types of hemocytes occur in all three species and both sexes. According to their ultrastructural appearance and their similarities to other arthropod hemocytes these five types are designated as prohemocyte, plasmatocyte, granulocyte, coagulocyte, and spherulocyte. From the ultrastructural point of view the prohemocytes are interpreted as stem cells for plasmatocytes which on their part differentiate into granulocytes. Transitional stages which would indicate the origin of coagulocytes and spherulocytes could not be found. Granulocytes and spherulocytes are interpreted as being storage cells; coagulocytes burst when hemolymph is transferred to a microscopic slide. Plasmatocytes are involved in the removal of dead cells or cell fragments. Plasmatocytes are demonstrated as being able to phagocytize and digest bacteria.  相似文献   

17.
The hemocytes of Scutigera coleoptrata were investigated by light and electron microscopy. Four types of hemocytes were identified: prohemocytes, plasmatocytes, granulocytes, and spherulocytes. Only granulocytes could be distinguished from the three other types by May-Grünwald staining, as this is the only hemocyte type demonstrating an eosinophilic reaction. Shape and size give further indications for distinguishing the cell types. In addition, differentiation is possible on the basis of their ultrastructure. However, only a combination of all three methods (staining and light and electron microscopy) allows clear separation of the cell types. As transitional stages between the cell types occur in S. coleoptrata, it is likely that prohemocytes, plasmatocytes, and granulocytes are ontogenetic stages of a single cell lineage. Special cell components and their possible functions are described. Plasmatocytes exocytose tubular structures that probably play a role in coagulation processes. These tubular structures develop in the grana of plasmatocytes. Also, a special arrangement of microtubules and microfilaments was demonstrated. For the first time interactions between hemocytes and tracheae are documented within the Chilopoda. It is assumed that the hemocytes meet their oxygen requirements directly from the tracheae. Phylogenetic implications of the results are discussed.  相似文献   

18.
Using transmission electron microscopy, light microscopy (Giemsa May‐Grumwald), and the Periodic Acid‐Schif (PAS) and Sudan Black B staining techniques, hemocytes in the hemolymph of adult female Dactylopius coccus were characterized. The following, in order of abundance, were found: granulocytes, plasmatocytes, prohemocytes, and oenocytoids. Granulocytes varied in size with granulations in the cytoplasm, a large quantity of mitochondria, rugose endoplasmatic reticulum, ribosomes and vesicles, central or exocentric, spherical and occasionally lobulate nucleus. Plasmatocytes were polymorphic with irregularities in the plasma membrane; cytoplasm contained mitochondria, rugose endoplasmatic reticulum and vesicles, and exocentric, spherical, or irregular nucleus. In both types of hemocytes, scant polysaccharides and lipids were found. Prohemocytes were small and spherical with homogeneous cytoplasm and large exocentric nuclei. Oenocytoids were oval or irregular with dense homogeneous cytoplasm and elongated exocentric nuclei. The percentages of granulocytes on different days (d 1 and 10) during the life of the adult female were significantly different, as were those of plasmatocytes on d 30 and 50 and prohemocytes on d 1 and 50. © 2010 Wiley Periodicals, Inc.  相似文献   

19.
Cell-mediated responses of the moth immune system involve the interaction of two main classes of hemocytes—granular cells and plasmatocytes. During embryogenesis, granular cells arise much earlier than plasmatocytes, and the presence of granular cells is closely coupled with the formation of basal laminae that line the hemocoel occupied by hemocytes. Although epithelial cells contribute the large extracellular matrix protein lacunin to embryonic matrices before granular cells begin contributing this protein to basal laminae, the spatial pattern of lacunin expression in early embryos parallels the later distribution of granular cells over surfaces of basal laminae. Plasmatocytes arise late in embryogenesis, after the cessation of the major morphogenetic movements and the establishment of intact basal laminae. Granular cells are intimately involved with remodeling of basal laminae, and disruptions in the structure of basal laminae can trigger an autoimmune response of granular cells and plasmatocytes. By arising after basal laminae have been molded and remodeled by granular cells, plasmatocytes presumably do not encounter the cues that trigger their aggregation and an autoimmune response.Edited by P. Simpson  相似文献   

20.
The objective of this work was to characterize, and compare different morphological types of hemocytes of Rhodnius prolixus, Rhodnius robustus, Rhodnius neglectus, Triatoma infestans, Panstrongylus megistus, and Dipetalogaster maximus. This information provides the basis for studying the cellular immune systems of these insects. Seven morphological hemocyte types were identified by phase-contrast microscopy: prohemocytes, plasmatocytes, granular cells, cystocytes, oenocytoids, adipohemocytes and giant cells. All seven types of hemocytes are not present in every species. For example, adipohemocytes and oenocytoids were not observed in P. megistus and P. infestans, and giant cells were rarely found in any of the species studied. The hemocytes of Rhodnius and Dipetalogaster are more similar to each other than those from Triatoma and Panstronglus which in turn closely resemble each other. Emphasis is placed on methodological problems arising in this work which are discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号