首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study the genetic structure of Dicentrarchus labrax (14 samples from the Mediterranean) was analysed at six microsatellite loci, in order to test the hypothesis that some enzymatic loci undergo selection between marine and lagoon habitat. Eight of the 14 samples were analysed at both microsatellite and allozyme markers. The analysis of the genetic variation among the Mediterranean samples showed that (i) &Fcirc;ST values obtained with the six microsatellite loci were much smaller than those obtained with the 28 allozymes and (ii) microsatellite loci seemed to reflect more the geographical proximity than an ecological one. Thirteen enzymatic loci exhibited moderate to high values compared with microsatellites. This was interpreted as evidence that these allozymes are non-neutral. However, only six loci seemed to be implicated in differentiation between marine and lagoon samples, the causes of selection being unknown for the others. A possible scenario of population dynamics of the sea bass between marine and lagoon habitat is suggested.  相似文献   

2.
The euryhaline European sea bass Dicentrarchus labrax L., inhabiting the coasts of the eastern Atlantic Ocean and Mediterranean Sea, has had many opportunities for differentiation throughout its large natural range. However, evidence for this has been incompletely documented geographically and with an insufficient number of markers. Therefore, its full range was sampled at 22 sites and individuals were genotyped with a suite of mapped markers, including 14 microsatellite loci (N = 536) and 46 neutral or gene‐linked single nucleotide polymorphisms (SNPs; N = 644). We confirm that the Atlantic and Mediterranean basins harbour two distinct lineages. Within the Atlantic Ocean no pattern was obvious based on the microsatellite and SNP genotypes, except for a subtle difference between South‐eastern and North‐eastern Atlantic sea bass attributed to limited introgression of alleles of Mediterranean origin. SNP genotypes of the Mediterranean lineage differentiated into three groups, probably under the influence of geographical isolation. The Western Mediterranean group showed genetic homogeneity without evidence for outlier loci. The Adriatic group appeared as a distinct unit. The Eastern Mediterranean group showed a longitudinal gradient of genotypes and most interestingly an outlier locus linked to the somatolactin gene. Overall, the spatial pattern fits those observed with other taxa of between‐basin segregation and within‐basin connectivity, which concurs well with the swimming capabilities of European sea bass. Evidence from a few outlier loci in this and other studies encourages further exploration of its regional connectivity and adaptive evolution.  相似文献   

3.
Adaptive ecological differentiation among sympatric populations is promoted by environmental heterogeneity, strong local selection and restricted gene flow. High gene flow, on the other hand, is expected to homogenize genetic variation among populations and therefore prevent local adaptation. Understanding how local adaptation can persist at the spatial scale at which gene flow occurs has remained an elusive goal, especially for wild vertebrate populations. Here, we explore the roles of natural selection and nonrandom gene flow (isolation by breeding time and habitat choice) in restricting effective migration among local populations and promoting generalized genetic barriers to neutral gene flow. We examined these processes in a network of 17 breeding ponds of the moor frog Rana arvalis, by combining environmental field data, a common garden experiment and data on variation in neutral microsatellite loci and in a thyroid hormone receptor (TRβ) gene putatively under selection. We illustrate the connection between genotype, phenotype and habitat variation and demonstrate that the strong differences in larval life history traits observed in the common garden experiment can result from adaptation to local pond characteristics. Remarkably, we found that haplotype variation in the TRβ gene contributes to variation in larval development time and growth rate, indicating that polymorphism in the TRβ gene is linked with the phenotypic variation among the environments. Genetic distance in neutral markers was correlated with differences in breeding time and environmental differences among the ponds, but not with geographical distance. These results demonstrate that while our study area did not exceed the scale of gene flow, ecological barriers constrained gene flow among contrasting habitats. Our results highlight the roles of strong selection and nonrandom gene flow created by phenological variation and, possibly, habitat preferences, which together maintain genetic and phenotypic divergence at a fine‐grained spatial scale.  相似文献   

4.
The way environmental variation shapes neutral and adaptive genetic variation in natural populations is a key issue in evolutionary biology. Genome scans allow the identification of the genetic basis of local adaptation without previous knowledge of genetic variation or traits under selection. Candidate loci for divergent adaptation are expected to show higher FST than neutral loci influenced solely by random genetic drift, migration and mutation. The comparison of spatial patterns of neutral markers and loci under selection may help disentangle the effects of gene flow, genetic drift and selection among populations living in contrasting environments. Using the gastropod Radix balthica as a system, we analyzed 376 AFLP markers and 25 mtDNA COI haplotypes for candidate loci and associations with local adaptation among contrasting thermal environments in Lake Mývatn, a volcanic lake in northern Iceland. We found that 2% of the analysed AFLP markers were under directional selection and 12% of the mitochondrial haplotypes correlated with differing thermal habitats. The genetic networks were concordant for AFLP markers and mitochondrial haplotypes, depicting distinct topologies at neutral and candidate loci. Neutral topologies were characterized by intense gene flow revealed by dense nets with edges connecting contrasting thermal habitats, whereas the connections at candidate loci were mostly restricted to populations within each thermal habitat and the number of edges decreased with temperature. Our results suggest microgeographic adaptation within Lake Mývatn and highlight the utility of genome scans in detecting adaptive divergence.  相似文献   

5.
Comparisons among patterns exhibited by functionally distinct genetic markers have been widely used to infer the impacts of demography and selection in structuring genetic variation in natural populations. However, such multilocus comparisons remain an indirect evaluation of selection at particular candidate loci; ideally, the identification of a candidate gene by comparative genetic methodologies should be complemented by functional analyses and experimental manipulations of genotypes in the laboratory or field. We examined genotype frequency variation among replicated intertidal habitats at two spatial scales in the grazing snail Littorina obtusata. Both of the candidate allozyme markers varied predictably with environment, and these patterns were consistent at both spatial scales. Three of four reference loci were spatially homogeneous, but one microsatellite exhibited significant structure at both geographical and mesoscales. To initiate a direct examination of whether the observed genotype frequency variation at one of the candidate markers, mannose-6-phosphate isomerase (MPI), was impacted by differential survivorship of genotypes, we conducted a series of laboratory-based thermal stress assays using snails from two geographically disparate source populations. When snails were exposed to bouts of thermal/desiccation stress, patterns of mortality were nonrandom with respect to MPI genotype. Furthermore, patterns of mortality in the laboratory manipulation coincided with the observed distribution of genotypes in the field. The data suggest the operation of selection at the Mpi or a linked locus, but functional studies and further experimentation are required to establish the relationship between MPI genotype and fitness across heterogeneous intertidal environments.  相似文献   

6.
One of the main questions in evolutionary and conservation biology is how geographical and environmental features of the landscape shape neutral and adaptive genetic variation in natural populations. The identification of genomic polymorphisms that account for adaptive variation can aid in finding candidate loci for local adaptation. Consequently, a comparison of spatial patterns in neutral markers and loci under selection may help disentangle the effects of gene flow, genetic drift and selection at the landscape scale. Many amphibians breed in wetlands, which differ in environmental conditions and in the degree of isolation, enhancing the potential for local adaptation. We used microsatellite markers to measure genetic differentiation among 17 local populations of Rana arvalis breeding in a network of wetlands. We found that locus RC08604 deviated from neutral expectations, suggesting that it is a good candidate for directional selection. We used a genetic network analysis to show that the allele distribution in this locus is correlated with habitat characteristics, whereas this was not the case at neutral markers that displayed a different allele distribution and population network in the study area. The graph approach illustrated the genomic heterogeneity (neutral loci vs. the candidate locus for directional selection) of gene exchange and genetic divergence among populations under directional selection. Limited gene flow between wetlands was only observed at the candidate genomic region under directional selection. RC08604 is partially located inside an up‐regulated thyroid‐hormone receptor (TRβ) gene coordinating the expression of other genes during metamorphosis and appears to be linked with variation in larval life‐history traits found among R. arvalis populations. We suggest that directional selection on genes coding larval life‐history traits is strong enough to maintain the divergence in these genomic regions, reducing the effective recombination of locally adapted alleles but not in other regions of the genome. Integrating this knowledge into conservation plans at the landscape scale will improve the design of management strategies to preserve adaptive genetic diversity in wetland networks.  相似文献   

7.
Climate changes on various time scales often shape genetic novelty and adaptive variation in many biotas. We explored molecular signatures of directional selection in populations of the ice goby Leucopsarion petersii inhabiting a unique sea basin, the Sea of Japan, where a wide variety of environments existed in the Pleistocene in relation to shifts in sea level by repeated glaciations. This species consisted of two historically allopatric lineages, the Japan Sea (JS) and Pacific Ocean (PO) lineages, and these have lived under contrasting marine environments that are expected to have imposed different selection regimes caused by past climatic and current oceanographic factors. We applied a limited genome‐scan approach using seven candidate genes for phenotypic differences between two lineages in combination with 100 anonymous microsatellite loci. Neuropeptide Y (NPY) gene, which is an important regulator of food intake and potent orexigenic agent, and three anonymous microsatellites were identified as robust outliers, that is, candidate loci potentially under directional selection, by multiple divergence‐ and diversity‐based outlier tests in comparisons focused on multiple populations of the JS vs. PO lineages. For these outlier loci, populations of the JS lineage had putative signals of selective sweeps. Additionally, real‐time quantitative PCR analysis using fish reared in a common environment showed a higher expression level for NPY gene in the JS lineage. Thus, this study succeeded in identifying candidate genomic regions under selection across populations of the JS lineage and provided evidence for lineage‐specific adaptive evolution in this unique sea basin.  相似文献   

8.
Local adaptation is considered to be the result of fitness trade‐offs for particular phenotypes across different habitats. However, it is unclear whether such phenotypic trade‐offs exist at the level of individual genetic loci. Local adaptation could arise from trade‐offs of alternative alleles at individual loci or by complementary sets of loci with different fitness effects of alleles in one habitat but selective neutrality in the alternative habitat. To evaluate the genome‐wide basis of local adaptation, we performed a field‐based quantitative trait locus (QTL) mapping experiment on recombinant inbred lines (RILs) created from coastal perennial and inland annual races of the yellow monkeyflower (Mimulus guttatus) grown reciprocally in native parental habitats. Overall, we detected 19 QTLs affecting one or more of 16 traits measured in two environments, most of small effect. We identified 15 additional QTL effects at two previously identified candidate QTLs [DIV ERGENCE (DIV)]. Significant QTL by environment interactions were detected at the DIV loci, which was largely attributable to genotypic differences at a single field site. We found no detectable evidence for trade‐offs for any one component of fitness, although DIV2 showed a trade‐off involving different fitness traits between sites, suggesting that local adaptation is largely controlled by non‐overlapping loci. This is surprising for an outcrosser, implying that reduced gene flow prevents the evolution of individuals adapted to multiple environments. We also determined that native genotypes were not uniformly adaptive, possibly reflecting fixed mutational load in one of the populations.  相似文献   

9.
As a widely distributed species along the Irtysh River, Phoxinus phoxinus ujmonensis (Kaschtschenko, 1899) was used as a model to investigate genetic diversity and population structure as well as the influence of environmental factors on population genetics. In this study, we specifically developed 12 polymorphic microsatellite loci. The analysis of microsatellite and mtDNA markers revealed a high and a moderate genetic diversity across seven populations, respectively. Moderate differentiation was also detected among several populations, indicating the impact of habitat fragmentation and divergence. The absence of isolation by distance implied an extensive gene flow, while the presence of isolation by adaptation implied that these populations might be in the process of adapting to divergent habitats. Correlation analysis showed that abiotic factors like dissolved oxygen, pH, total dissolved solids, and conductivity in water as well as biotic factors like plankton diversity and fish species diversity had impact on genetic diversity and divergence in P. phoxinus ujmonensis populations. The results of this study will provide an insight into the effect of environmental factors on genetic diversity and contribute to the study of population genetics of sympatric species.  相似文献   

10.
To study effects from natural selection acting on brown trout in a natural stream habitat compared with a hatchery environment, 3,781 single nucleotide polymorphism (SNP) markers were analyzed in three closely related groups of brown trout (Salmo trutta L.). Autumn (W/0+, = 48) and consecutive spring (W/1+, = 47) samples of brown trout individuals belonging to the same cohort and stream were retrieved using electrofishing. A third group (H/1+, = 48) comprised hatchery‐reared individuals, bred from a mixture of wild parents of the strain of the two former groups and from a neighboring stream. Pairwise analysis of FST outliers and analysis under a hierarchical model by means of ARLEQUIN software detected 421 (10.8%) candidates of selection, before multitest correction. BAYESCAN software detected 10 candidate loci, all of which were included among the ARLEQUIN candidate loci. Body length was significantly different across genotypes at 10 candidate loci in the W/0+, at 34 candidate loci in the W/1+ and at 21 candidate loci in the H/1+ group. The W/1+ sample was tested for genotype‐specific body length at all loci, and significant differences were found in 10.6% of all loci, and of these, 14.2% had higher frequency of the largest genotype in the W/1+ sample than in W/0+. The corresponding proportion among the candidate loci of W/1+ was 22.7% with genotype‐specific body length, and 88.2% of these had increased frequency of the largest genotype from W/0+ to W/1+, indicating a linkage between these loci and traits affecting growth and survival under this stream's environmental conditions. Bayesian structuring of all loci, and of the noncandidate loci suggested two (= 2), alternatively four clusters (= 4). This differed from the candidate SNPs, which suggested only two clusters. In both cases, the hatchery fish dominated one cluster, and body length of W/1+ fish was positively correlated with membership of one cluster both from the = 2 and the = 4 structure. Our analysis demonstrates profound genetic differentiation that can be linked to differential selection on a fitness‐related trait (individual growth) in brown trout living under natural vs. hatchery conditions. Candidate SNP loci linked to genes affecting individual growth were identified and provide important inputs into future mapping of the genetic basis of brown trout body size selection.  相似文献   

11.
Low dispersal marine intertidal species facing strong divergent selective pressures associated with steep environmental gradients have a great potential to inform us about local adaptation and reproductive isolation. Among these, gastropods of the genus Littorina offer a unique system to study parallel phenotypic divergence resulting from adaptation to different habitats related with wave exposure. In this study, we focused on two Littorina fabalis ecotypes from Northern European shores and compared patterns of habitat‐related phenotypic and genetic divergence across three different geographic levels (local, regional and global). Geometric morphometric analyses revealed that individuals from habitats moderately exposed to waves usually present a larger shell size with a wider aperture than those from sheltered habitats. The phenotypic clustering of L. fabalis by habitat across most locations (mainly in terms of shell size) support an important role of ecology in morphological divergence. A genome scan based on amplified fragment length polymorphisms (AFLPs) revealed a heterogeneous pattern of differentiation across the genome between populations from the two different habitats, suggesting ecotype divergence in the presence of gene flow. The contrasting patterns of genetic structure between nonoutlier and outlier loci, and the decreased sharing of outlier loci with geographic distance among locations are compatible with parallel evolution of phenotypic divergence, with an important contribution of gene flow and/or ancestral variation. In the future, model‐based inference studies based on sequence data across the entire genome will help unravelling these evolutionary hypotheses, improving our knowledge about adaptation and its influence on diversification within the marine realm.  相似文献   

12.
Successful urban colonization by formerly rural species represents an ideal situation in which to study adaptation to novel environments. We address this issue using candidate genes for behavioural traits that are expected to play a role in such colonization events. We identified and genotyped 16 polymorphisms in candidate genes for circadian rhythms, harm avoidance and migratory and exploratory behaviour in 12 paired urban and rural populations of the blackbird Turdus merula across the Western Palaearctic. An exonic microsatellite in the SERT gene, a candidate gene for harm avoidance behaviour, exhibited a highly significant association with habitat type in an analysis conducted across all populations. Genetic divergence at this locus was consistent in 10 of the 12 population pairs; this contrasts with previously reported stochastic genetic divergence between these populations at random markers. Our results indicate that behavioural traits related to harm avoidance and associated with the SERT polymorphism experience selection pressures during most blackbird urbanization events. These events thus appear to be influenced by homogeneous adaptive processes in addition to previously reported demographic founder events.  相似文献   

13.
The commercial comber Serranus cabrilla is widely distributed in the Atlanto‐Mediterranean region, inhabiting a great variety of habitats and depths. We developed primers for 12 polymorphic microsatellite loci to analyse the genetic structure between comber populations and between their colour morphs in order to establish correct fisheries management. Characterization of 25 individuals from Columbretes Islands (Spain) showed an average large number of alleles (9.5 ± 1.3) and observed heterozygosity (0.657 ± 0.06). Only two loci showed significant departure from Hardy–Weinberg equilibrium. We found no evidence of linkage disequilibrium between pairs of loci. We rejected for primer design one clone with a microsatellite within the transposable element TX_FR2.  相似文献   

14.
We examined the growth and reproductive rates of freshwater snails, Physa acuta, in two habitat types. In the Asabata habitat, snails lived in isolated water pools, which occasionally joined to form a single large pool; in the Kakegawa habitat, they lived in a slow-running water way. Genetic structure assessments using three microsatellite loci supports the idea that a stable panmictic population occupies the Kakegawa habitat. The Asabata habitat, however, is occupied with an alternate mixing population as revealed by microsatellite data. The Asabata population might alternate between localized mating within isolated pools (as revealed by high F IS and F IT values) when the water levels are low and panmixia (as revealed by the low F ST values and AMOVA analysis) when the habitat is flooded. Laboratory experiments, using snails collected from the two habitats, showed that juvenile snails grew faster, laid more eggs, and laid them earlier in the Asabata habitat than in the Kakegawa habitat. Growth rates were lower at high density than at low density in the Kakegawa habitat; the inverse was true in the Asabata habitat. Density-dependent response of individual snail reproduction was higher in the Kakagawa habitat than in the Asabata habitats. The results support the hypothesis that spatial structure affects the evolution of density-dependent growth rates and of timing for reproduction.  相似文献   

15.
Microsatellite loci were isolated from the sea hibiscus (Hibiscus tiliaceus L., Malvaceae), a pantropical plant with sea‐drifted seeds. This study describes six dinucleotide microsatellite loci for which the primers produced clear and polymorphic amplification patterns with different levels of variability (between three and nine alleles). Six markers were amplified in four other species of hibiscus, greatly increasing the utility of these markers.  相似文献   

16.
Coastal and demersal chondrichthyans, such as the small-spotted catshark, are expected to exhibit genetic differentiation in areas of complex geomorphology like the Mediterranean Basin because of their limited dispersal ability. To test this hypothesis, we used a fragment of the mitochondrial cytochrome c oxidase subunit I gene and 12 nuclear microsatellite loci in order to investigate the genetic structure and historical demography of this species, and to identify potential barriers to gene flow. Samples were collected from the Balearic Islands, the Algerian Basin, the Ionian Sea, the Corinthian Gulf and various locations across the Aegean Sea. Additional sequences from the Atlantic and the Levantine Basin retrieved from GenBank were included in the mitochondrial DNA analysis. Both mitochondrial and nuclear microsatellite DNA data revealed a strong genetic subdivision, mainly between the western and eastern Mediterranean, whereas the Levantine Basin shared haplotypes with both areas. The geographic isolation of the Mediterranean basins seems to enforce the population genetic differentiation of the species, with the deep sea acting as a strong barrier to its dispersal. Contrasting historical demographic patterns were also observed in different parts of the species'' distribution, most notably a population growth trend in the western Mediterranean/Atlantic area and a slight decreasing one in the Aegean Sea. The different effects of the Pleistocene glacial periods on the habitat availability may explain the contrasting demographic patterns observed. The current findings suggest that the small-spotted catshark exhibits several genetic stocks in the Mediterranean, although further study is needed.  相似文献   

17.
Ten tetranucleotide microsatellite loci were isolated from an enriched library for the gecko Oedura reticulata. The species is endemic to the southwest of Western Australia, known to be a habitat specialist, and exposed to severe habitat fragmentation in the Western Australian wheatbelt. These highly polymorphic markers (two to 25 alleles) will facilitate the population genetic analyses of this species. In particular, they will enable estimates of gene flow between remnant populations — a critical element in assessing extinction dynamics in fragmented populations.  相似文献   

18.
Twenty microsatellite markers were first developed from the Japanese sea cucumber Stichopus japonicus using an enrichment protocol. Of the 20 microsatellite loci, 19 loci were polymorphic in the population examined. At these polymorphic loci, the number of alleles per locus varied from 2 to 15, and the observed heterozygosities ranged from 0.03 to 0.97, which is considerably higher than those previously found for allozymes. The high variability of the microsatellite markers identified in this study will make them excellent tools for genetic analyses of S. japonicus.  相似文献   

19.
Summary Plants of an F2 generation derived from crosses between two ecotypes of Plantago lanceolata L. had previously been studied in a greenhouse. In the present experiment, F2 plants were transplanted into their original habitats (a hayfield and a pasture). Six allozyme loci were used as markers in the analysis of survival and performance of the segregating genotypes. Fitness differences between the plants were large enough to detect natural selection. In both transplantation sites selection appeared to operate, though in different ways. In the hayfield habitat directional selection was hypothesized and both survival and performance of the plants were related to genotype, with the genotypes originating from the hayfield almost always performing better. In the pasture habitat where the habitat is not uniform and unpredictable hazardous droughts occur, survival was nearly genotype independent and environmentally determined, whereas performance of the plants was genotype dependent. The expression of two morphological characteristics, number of leaves and leaf length, was often not in concordance with the greenhouse results and was contradictory in both sites. Expression of both characters in the field, therefore, appeared to be strongly dependent on the general performance and growth conditions of the plant and not on the genotype.Grassland Species Research Group Publication no. 143  相似文献   

20.
Herbivore outbreaks often trigger catastrophic overgrazing events in marine macrophyte ecosystems. The sea urchin Paracentrotus lividus, the dominant herbivore of shallow Mediterranean seascapes, is capable of precipitating shifts to barrens when its populations explode. Paracentrotus lividus is found ubiquitously in rocky macroalgal communities and in sandy seagrass meadows of Posidonia oceanica, two of the most important subtidal habitats in the Mediterranean. We explored if habitat‐specific regulation across the principal stages of the urchin life cycle could help explain the persistence of these populations in connected mosaics. We measured each of three relevant ecological processes (i.e. settlement, post‐settlement survival and predation) across a wide stretch of the Mediterranean coast (ca 600 km). Our results show that habitat‐specific regulation is critical in determining urchin populations: each habitat limited urchin sub‐populations at different life stages. Settlement was never limiting; urchins settled at similar rates in both habitats across the coast. Post‐settlement survival was a clear bottleneck, particularly in seagrass meadows where no juvenile urchins were recorded. Despite this bottleneck in seagrasses, adult urchin populations were very similar in both seagrass and macroalgal habitats indicating that other processes (potentially migration) could be key in determining adult distributions across the mosaic. The fact that population regulation is clearly habitat‐specific suggests that sea urchin populations may be significantly buffered from bottlenecks in mixed seascapes where both habitats co‐occur. Sea urchin populations can therefore persist across the seascape despite strong habitat‐specific regulation either by maintaining reproductive output in one habitat or by migrating between them. By affording these regulatory escapes to habitat‐modifying species, patchy mosaics may be much more prone to herbivore outbreaks and a host of cascading effects that come in their wake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号