首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Datura innoxia plants were wick fed with angelic acid-[1-14C] and l-isoleucine-[U-14C] to act as a positive control. After 7 days the root alkaloids 3α-tigloyloxytropane, 3α,6β-ditigloyloxytropane, and 3α,6β-ditigloyloxytropan-7β-ol were isolated and it was determined that angelic acid is not a precursor for the tigloyl moiety of these alkaloids. Tiglic acid-[1-14C] which was fed via the roots to hydroponic cultures of Datura innoxia, was incorporated to a considerable degree after 8 days.  相似文献   

2.
Five-month-old Datura meteloides plants were fed via the roots with 3-hydroxy-2-methylbutanoic acid-[1-14C] and isoleucine-[U-14C] as a positive control. After 5 days the plants were collected and in each case the root alkaloids 3α,6β-ditigloyloxytropane, 3α,6β-ditigloyloxytropan-7β-ol, meteloidine, hyoscine and hyoscyamine were isolated. Whereas isoleucine served as a precursor for the tiglic acid moieties 3-hydroxy-2-methylbutanoic acid did not.  相似文献   

3.
3α-Tigloyloxytropane-[14CO] [N-14Me], ratio 1·6:1 and valtropine-[14CO] [N-14Me], ratio 1·75:1 were separately fed via cotton wicks to 4-month-old Datura innoxia plants. After 8 days the root alkaloids 3α-tigloyloxytropane, 3α,6β-ditigloyloxytropane and 3α,6β-ditigloyloxytropan-7β-ol were isolated and the distribution of radioactivity in the acid and alkamine moieties was determined by hydrolysis. The precursor ratios were not maintained in the isolated ditigloyl esters, a result which does not support our hypothesis that the ditigloyl esters are formed by the progressive hydroxylation of 3α-tigloyloxytropane.  相似文献   

4.
Datura innoxia plants were fed via the roots with cinnamic acid-[214C], (±)-phenyllactic (2-hydroxy-3-phenylpropanoic) acid-[214C] and phenylalanine-[2-14C]. In each case apohyoscine, hyoscine, hyoscyamine and littorine were isolated from the aerial parts, and hyoscine, hyoscyamine and littorine from the roots. Cinnamic acid was not incorporated into the acid moieties of the alkaloids. Phenyllactic acid served as a better precursor than phenylalanine for tropic acid (hyoscine and hyoscyamine) and atropic acid (apohyoscine). Phenylalanine served as an effective precursor for the phenyllactic acid moiety of Littorine.  相似文献   

5.
Five-month-old Datura innoxia plants were fed via the roots with either d(+)-hygrine-[2′-14C] or l(?)-hygrine-[2′-14C]. After 7 days the root alkaloids 3α,6β-ditigloyloxytropane, 3α,6β-ditigloyloxytropan-7β-ol, hyoscine, hyoscyamine and cuscohygrine were isolated from both groups of plants. d(+) but not l(?)-hygrine acts as a precursor for the tropane alkaloids whereas both enantiomers appeared to serve equally well in the biosynthesis of cuscohygrine.  相似文献   

6.
The administration of 3α-tigloyl-[1-14C]-oxytropane-[3β-3H] (3H/14C = 11·0 to Datura innoxia plants for 7 days led to the formation of radioactive meteloidine (3H/14C = 11·6). Degradation of the meteloidine indicated that the alkaloid was labeled specifically with 3H at C-3 of its teloidine moiety, and on the carbonyl group of its tigloyl residue with 14C. These results strongly favor the hypothesis that hydroxylation of tropine occurs after formation of its tigloyl ester.  相似文献   

7.
Datura meteloides; plants were fed with tiglic acid-[-14C] via the roots and after 2 days the percentage incorporation into the alkaloids 3α-tigloyloxytropane, 3α,6β-ditigloyloxytropane, meteloidine and 3α,6β-ditigloyloxytropan-7β-ol were 15·2, 1·82, 2·2 and 1·8 respectively. 3α,6β-Ditigloyloxytropane was partially hydrolysed to 6β-hydroxy-3α-tigloyloxytropane which contained 58·1% of the radioactivity of the original base, whereas 3α,6β-ditigloyloxytropan-7β-ol gave meteloidine containing only 9·2% of the original activity. The results suggest that the di- and tri-hydroxytropanes may be formed by different routes.  相似文献   

8.
A method is described for the chemical synthesis of stigmasta-5,24-dien-3β-ol-[26-14C] and (24S)-24-ethylcholesta-5,25-dien-3β-ol-[26-14C] (clerosterol). 28-Isofucosterol-[7-3H2] fed to developing barley seedlings (Hordeum vulgare) was incorporated into sitosterol and stigmasterol confirming the utilisation of a 24-ethylidene sterol intermediate in 24α-ethyl sterol production in this plant. Also, the use of mevalonic acid-[2-14C(4R)-4-3H1] verified the loss of the C-25 hydrogen of 28-isofucosterol during its conversion into sitosterol and stigmasterol in agreement with the previously postulated isomerisation of the 24-ethylidene sterol to a Δ24(25)-sterol prior to reduction. However, feeding stigmasta-5,24-dien-3β-ol [26-14C] to barley seedlings gave very low incorporation into sitosterol. Attempts to trap radioactivity from mevalonic-[2-14C(4R)-4-3H1] in stigmasta-5,24-dien-3β-ol when this unlabelled sterol was administered to barley seedlings gave only a very small incorporation although both 28-isofucosterol and sitosterol were labelled.  相似文献   

9.
Datura innoxia plants were fed the R- and S-isomers of [3-14C]-3-hydroxy-3-phenylpropanoic acid, and [3-14C]cinnamic acid along with dl-[4-3H]phenylalanine. The hyoscyamine and scopolamine isolated from the plants 7 days later were labeled with tritium, but devoid of 14C, indicating that 3-hydroxy-3-phenylpropanoic acid and cinnamic acid are not intermediates between phenylalanine and tropic acid. The [3H] tropic acid obtained by hydrolysis of the hyoscyamine was degraded and shown to have essentially all its tritium located at the para position of its phenyl group, a result consistent with previous work.  相似文献   

10.
α,β-Dipyridyl isolated from Nicotiana tabacum plants which had been fed anatabine-[2′-14C, 13C], and then allowed to dry in air for 20 days was radioactive (82% specific incorporation)An examination of its 13C NMR spectra established that it was enriched only at C-2, indicative of its direct formation from anatabineThe labelled anatabine was also fed to Nglauca and Nglutinosa plants, which were extracted immediately after harvestingIn these experiments no radioactive α,β-dipyridyl was detected, suggesting that α,β-dipyridyl is an artifact produced by the oxidation of anatabine in the drying leaves of tobaccoAnabasine isolated from the Nicotiana species which had been fed anatabine-[2′- 14C, 13C] was unlabelled, indicating that none of this alkaloid is formed by the reduction of anatabine.  相似文献   

11.
The ability of bovine liver and fat to metabolize progesterone and also to form glucuronide conjugates with these progestins in vitro was investigated. Tissue supernatants were incubated with [4-14C] progesterone, UDP-glucuronic acid, and a NADPH generating system for 5 hr, at 37°C. Steroids were identified by thin-layer chromatography, high performance liquid chromatography, and recrystallization to a constant specific activity. The total original radioactivity which could not be removed by exhaustive ether extraction (presumptive conjugates) was 44.7 ± 14.2% in liver, 5.0 ± 3.6% in subcutaneous fat, and 3.7 ± 2.2% in kidney fat samples. Progestins identified in liver samples include 5β-pregnane-3α, 20α-diol (free and conjugate), 5β-pregnane-3α, 20β-diol (free and conjugate), 3α-hydroxy-5sB-pregnan-20-one (free and conjugate), 3β-hydroxy-5β-pregnan-20-one (free), 5β-pregnane-3, 20-dione (free), and progesterone (conjugate). Progestins identified in both the free and conjugate fractions of subcutaneous fat and kidney fat samples include progesterone, 3α-hydroxy-5β-pregnan-20-one, 20β-hydroxy-4-pregnen-3-one, and 20α-hydroxy-4-pregnen-3-one. Differences due to sex of bovine used were noted. These results confirm the ability of bovine liver to readily metabolize progesterone and form glucuronide conjugates of these compounds and suggest that adipose tissues take an active role in these actions in cattle.  相似文献   

12.
A new alkaloid, shown by spectroscopic and degradative means to be 6β-propanoyloxy-3α-tigloyloxytropane has been isolated from Datura innoxia r  相似文献   

13.
Ergosterol, episterol, 4α-methyl-5α-ergosta-8,24(28)-dien-3β-ol and 24-methylene-24,25-dihydrolanosterol, isolated from Phycomyces blakesleeanus grown in the presence of methionine-[methyl-2H3], each contained two deuterium atoms; lanosterol, however, was unlabelled. The 14C:3H atomic ratio of the following sterols isolated from P. blakesleeanus grown in the presence of mevalonic acid-[2-14C,(4R)-4-3H1], was: ergosterol, 5:3; episterol, 5:4; ergosta-5,7,24(28)-trien-3β-ol, 5:3; 4α-methyl-5α-ergosta-8,24(28)-dien-3β-ol, 5:4; 24-methylene-24,25-dihydrolanosterol, 6:5; lanosterol, 6:5. The significance of these results in terms of ergosterol biosynthesis is discussed.  相似文献   

14.
When (±)-abscisic acid-[2-14C] or (±)-abscisic acid-[4′-18O] was fed to bean (Phaseolus vulgaris) shoots, phaseic acid (PA) and dihydrophaseic acid (DPA) were the major metabolites, while epi-dihydrophaseic acid (epi-DPA) appeared as a minor metabolite. In the acidic fraction the amount of epi-DPA ranged from 18 to 42% of the DPA content, in the conjugated form from 50 to 200%. The content of endogenous epi-DPA amounted to only 1–2% of that of the DPA. These data indicate that the applied abscisic acid is not metabolised in a manner identical with that of the endogenous material. DPA and epi-DPA were shown to be formed separately from PA and could not be inter-converted either by the extraction conditions employed or when fed to bean shoots during short term experiments.  相似文献   

15.
Edward Leete 《Phytochemistry》1973,12(9):2203-2205
The administration of RS-α-methylbutyric-[1-14C] acid to Datura meteloides plants resulted in the formation of radioactive meteloidine. A systematic degradation indicated that essentially all the activity was located at C-1 of the tiglic acid moiety of the alkaloid.  相似文献   

16.
(±)-7β,8α-Dihydroxy-9β,10β-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (diol epoxide-1) and (±)-7β,8α-dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (diol epoxide-2) are highly mutagenic diol epoxide diastereomers that are formed during metabolism of the carcinogen (±)-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene. Remarkable stereoselectivity has been observed on metabolism of the optically pure (+)- and (?)-enantiomers of the dihydrodiol which are obtained by separation of the diastereomeric diesters with (?)-α-methoxy-α-trifluoromethylphenylacetic acid. The high stereoselectivity in the formation of diol epoxide-1 relative to diol epoxide-2 was observed with liver microsomes from 3-methylcholanthrene-treated rats and with a purified cytochrome P-448-containing monoxygenase system where the (?)-enantiomer produced a diol epoxide-2 to diol epoxide-1 ratio of 6 : 1 and the (+)-enantiomer produced a ratio of 1 : 22. Microsomes from control and phenobarbital-treated rats were less stereospecific in the metabolism of enantiomers of BP 7,8-dihydrodiol. The ratio of diol epoxide-2 to diol epoxide-1 formed from the (?)- and (+)-enantiomers with microsomes from control rats was 2 : 1 and 1 : 6, respectively. Both enantiomers of BP 7,8-dihydrodiol were also metabolized to a phenolic derivative, tentatively identified as 6,7,8-trihydroxy-7,8-dihydrobenzo[a]pyrene, which accounted for ~30% of the total metabolites formed by microsomes from control and phenobarbital-pretreated rats whereas this metabolite represents ~5% of the total metabolites with microsomes from 3-methylcholanthrene-treated rats. With benzo[a]pyrene as substrate, liver microsomes produced the 4,5-, 7,8- and 9,10-dihydrodiol with high optical purity (>85%), and diol epoxides were also formed. Most of the optical activity in the BP 7,8-dihydrodiol was due to metabolism by the monoxygenase system rather than by epoxide hydrase, since hydration of (±)-benzo[a]pyrene 7,8-oxide by liver microsomes produced dihydrodiol which was only 8% optically pure. Thus, the stereospecificity of both the monoxygenase system and, to a lesser extent, epoxide hydrase plays important roles in the metabolic activation of benzo[a]pyrene to carcinogens and mutagens.  相似文献   

17.
Convallaria majalis plants were fed dl-methionine-[1-14C]. [1-14C, 4-3H], and [1-14C, 2-3H], S-adenosyl-l-methionine-[1-14C], and dl-homoserine-[1-14C], resulting in the formation of labeled azetidine-2-carboxylic acid (A-2-C). The complete retention of tritium relative to carbon-14 in the feeding experiment involving methionine-[1-14C, 4-3H] indicates that aspartic acid or aspartic-β-semialdehyde are not intermediates between methionine and A-2-C. However, since the A-2-C derived from methionine-[1-14C, 2-3H] had lost 95% of the tritium relative to the C-14, it is not considered that methionine or its S-adenosyl derivative are the immediate precursors of A-2-C. Our data and that of others is consistent with the intermediate formation of γ-amino-α-ketobutyric acid which on cyclization yields 1-azetine-2-carboxylic acid, A-2-C then being formed on reduction.  相似文献   

18.
4-Androstene-3,17-dione-[4-14C] was applied to the leaves of growing pea plants, Pisum sativum. Within a week, 28% of the administered steroid was specifically reduced to testosterone. Part of the testosterone was present in esterified form, and 5α-androstane-3β,17β-diol was also identified as a metabolite, but neither epitestosterone nor estrogens were detected.  相似文献   

19.
Datura meteloides plants were fed via the roots with [1″,2′-14C]tigloyl hygroline and as a control, [2′-14C]hygrine. After a week the alkaloids were isolated and degraded. Despite hydrolysis of the putative precursor it was possible, by label ratio, to show that esterification occurs after, and not before, the tropane ring has been synthesized. Hygroline is proposed as a possible intermediate.  相似文献   

20.
The administration of cinnamoyl-[2-14C]-tropine-[N-methyl-14C] to Datura stramonium plants resulted in the formation of labeled atropine and scopolamine. However the atropine was found to have almost all its radioactivity located on the N-methyl group of the alkaloid, indicating that the administered ester had undergone hydrolysis in the plant affording tropine and cinnamic acid, the latter not being utilized for the biosynthesis of tropic acid. Dual labeled RS-littorine (3β-(2-hydroxy-3-phenylpropionyloxy-[1-14C]-tropane-[3β-3H]) was also fed to D. stramonium and radioactive atropine was obtained. However the drastic change in the 3H:14C ratio found in the atropine indicated that the littorine was not converted directly to the alkaloid, and it is suggested that the littorine is hydrolysed in vivo to tropine and phenyl-lactic acid, the latter undergoing rearrangement to tropic acid prior to esterification with tropine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号