首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Na3V2(PO4)3 (NVP) is regarded as a promising cathode for advanced sodium‐ion batteries (SIBs) due to its high theoretical capacity and stable sodium (Na) super ion conductor (NASICON) structure. However, strongly impeded by its low electronic conductivity, the general NVP delivers undesirable rate capacity and fails to meet the demands for quick charge. Herein, a novel and facile synthesis of layer‐by‐layer NVP@reduced graphene oxide (rGO) nanocomposite is presented through modifying the surface charge of NVP gel precursor. The well‐designed layered NVP@rGO with confined NVP nanocrystal in between rGO layers offers high electronic and ionic conductivity as well as stable structure. The NVP@rGO nanocomposite with merely ≈3.0 wt% rGO and 0.5 wt% amorphous carbon, yet exhibits extraordinary electrochemical performance: a high capacity (118 mA h g?1 at 0.5 C attaining the theoretical value), a superior rate capability (73 mA h g?1 at 100 C and even up to 41 mA h g?1 at 200 C), ultralong cyclability (70.0% capacity retention after 15 000 cycles at 50 C), and stable cycling performance and excellent rate capability at both low and high operating temperatures. The proposed method and designed layer‐by‐layer active nanocrystal@rGO strategy provide a new avenue to create nanostructures for advanced energy storage applications.  相似文献   

2.
Inspired by the great success of graphite in lithium‐ion batteries, anode materials that undergo an intercalation mechanism are considered to provide stable and reversible electrochemical sodium‐ion storage for sodium‐ion battery (SIB) applications. Though MoS2 is a promising 2D material for SIBs, it suffers from deformation of its layered structure during repeated intercalation of Na+, resulting in undesirable electrochemical behaviors. In this study, vertically oriented MoS2 on nitrogenous reduced graphene oxide sheets (VO‐MoS2/N‐RGO) is presented with designed spatial geometries, including sheet density and height, which can deliver a remarkably high reversible capacity of 255 mA h g?1 at a current density of 0.2 A g?1 and 245 mA h g?1 at a current density of 1 A g?1, with a total fluctuation of 5.35% over 1300 cycles. These results are superior to those obtained with well‐developed hard carbon structures. Furthermore, a SIB full cell composed of the optimized VO‐MoS2/N‐RGO anode and a Na2V3(PO4)3 cathode reaches a specific capacity of 262 mA h g?1 (based on the anode mass) during 50 cycles, with an operated voltage range of 2.4 V, demonstrating the potentially rewarding SIB performance, which is useful for further battery development.  相似文献   

3.
A hybrid nanoarchitecture aerogel composed of WS2 nanosheets and carbon nanotube‐reduced graphene oxide (CNT‐rGO) with ordered microchannel three‐dimensional (3D) scaffold structure was synthesized by a simple solvothermal method followed by freeze‐drying and post annealing process. The 3D ordered microchannel structures not only provide good electronic transportation routes, but also provide excellent ionic conductive channels, leading to an enhanced electrochemical performance as anode materials both for lithium‐ion batteries (LIBs) and sodium‐ion batteries (SIBs). Significantly, WS2/CNT‐rGO aerogel nanostructure can deliver a specific capacity of 749 mA h g?1 at 100 mA g?1 and a high first‐cycle coulombic efficiency of 53.4% as the anode material of LIBs. In addition, it also can deliver a capacity of 311.4 mA h g?1 at 100 mA g?1, and retain a capacity of 252.9 mA h g?1 at 200 mA g?1 after 100 cycles as the anode electrode of SIBs. The excellent electrochemical performance is attributed to the synergistic effect between the WS2 nanosheets and CNT‐rGO scaffold network and rational design of 3D ordered structure. These results demonstrate the potential applications of ordered CNT‐rGO aerogel platform to support transition‐metal‐dichalcogenides (i.e., WS2) for energy storage devices and open up a route for material design for future generation energy storage devices.  相似文献   

4.
Hard carbon (HC) is the state‐of‐the‐art anode material for sodium‐ion batteries (SIBs). However, its performance has been plagued by the limited initial Coulombic efficiency (ICE) and mediocre rate performance. Here, experimental and theoretical studies are combined to demonstrate the application of lithium‐pretreated HC (LPHC) as high‐performance anode materials for SIBs by manipulating the solid electrolyte interphase in tetraglyme (TEGDME)‐based electrolyte. The LPHC in TEGDME can 1) deliver > 92% ICE and ≈220 mAh g?1 specific capacity, twice of the capacity (≈100 mAh g?1) in carbonate electrolyte; 2) achieve > 85% capacity retention over 1000 cycles at 1000 mA g?1 current density (4 C rate, 1 C = 250 mA g?1) with a specific capacity of ≈150 mAh g?1, ≈15 times of the capacity (10 mAh g?1) in carbonate. The full cell of Na3V2(PO4)3‐LPHC in TEGDME demonstrated close to theoretical specific capacity of ≈98 mAh g?1 based on Na3V2(PO4)3 cathode, ≈2.5 times of the value (≈40 mAh g?1) with nontreated HC. This work provides new perception on the anode development for SIBs.  相似文献   

5.
The search for earth‐abundant and high‐performance electrode materials for sodium‐ion batteries represents an important challenge to current battery research. 2D transition metal dichalcogenides, particularly MoS2, have attracted increasing attention recently, but few of them so far have been able to meet expectations. In this study, it is demonstrated that another phase of molybdenum sulfide—amorphous chain‐like MoS3—can be a better choice as the anode material of sodium‐ion batteries. Highly compact MoS3 particles infiltrated with carbon nanotubes are prepared via the facile acid precipitation method in ethylene glycol. Compared to crystalline MoS2, the resultant amorphous MoS3 not only exhibits impressive gravimetric performance—featuring excellent specific capacity (≈615 mA h g?1), rate capability (235 mA h g?1 at 20 A g?1), and cycling stability but also shows exceptional volumetric capacity of ≈1000 mA h cm?3 and an areal capacity of >6.0 mA h cm?2 at very high areal loadings of active materials (up to 12 mg cm?2). The experimental results are supported by density functional theory simulations showing that the 1D chains of MoS3 can facilitate the adsorption and diffusion of Na+ ions. At last, it is demonstrated that the MoS3 anode can be paired with an Na3V2(PO4)3 cathode to afford full cells with great capacity and cycling performance.  相似文献   

6.
Tuning heterointerfaces between hybrid phases is a very promising strategy for designing advanced energy storage materials. Herein, a low‐cost, high‐yield, and scalable two‐step approach is reported to prepare a new type of hybrid material containing MoS2/graphene nanosheets prepared from ball‐milling and exfoliation of commercial bulky MoS2 and graphite. When tested as an anode material for a sodium‐ion battery, the as‐prepared MoS2/graphene nanosheets exhibit remarkably high rate capability (284 mA h g?1 at 20 A g?1 (≈30C) and 201 mA h g?1 at 50 A g?1 (≈75C)) and excellent cycling stability (capacity retention of 95% after 250 cycles at 0.3 A g?1). Detailed experimental measurements and density functional theory calculation reveal that the functional groups in 2D MoS2/graphene heterostructures can be well tuned. The impressive rate capacity of the as‐prepared MoS2/graphene hybrids should be attributed to the heterostructures with a low degree of defects and residual oxygen containing groups in graphene, which subsequently improve the electronic conductivity of graphene and decrease the Na+ diffusion barrier at the MoS2/graphene interfaces in comparison with the acid treated one.  相似文献   

7.
Due to an ever‐increasing demand for electronic devices, rechargeable batteries are attractive for energy storage systems. A novel rechargeable aluminum‐ion battery based on Al3+ intercalation and deintercalation is fabricated with Ni3S2/graphene microflakes composite as cathode material and high‐purity Al foil as anode. This kind of aluminum‐ion battery comprises of an electrolyte containing AlCl3 in an ionic liquid of 1‐ethyl‐3‐methylimidazolium chloride ([EMIm]Cl). Galvanostatic charge/discharge measurements have been performed in a voltage range of 0.1–2.0 V versus Al/AlCl4 ?. An initial discharge specific capacity of 350 mA h g?1 at a current density of 100 mA g?1 is achieved, and the discharge capacity remains over 60 mA h g?1 and coulombic efficiency of 99% after 100 cycles. Typically, for the current density at 200 mA g?1, the initial charge and discharge capacities are 300 and 235 mA h g?1, respectively. More importantly, it should be emphasized that the battery has a high discharge voltage plateau (≈1.0 V vs Al/AlCl4 ?). These meaningful results represent a significant step forward in the development of aluminum‐ion batteries.  相似文献   

8.
Na3V2(PO4)3 (denoted as NVP) has been considered as a promising cathode material for room temperature sodium ion batteries. Nevertheless, NVP suffers from poor rate capability resulting from the low electronic conductivity. Here, the feasibility to approach high rate capability by designing carbon‐coated NVP nanoparticles confined into highly ordered mesoporous carbon CMK‐3 matrix (NVP@C@CMK‐3) is reported. The NVP@C@CMK‐3 is prepared by a simple nanocasting technique. The electrode exhibits superior rate capability and ultralong cyclability (78 mA h g?1 at 5 C after 2000 cycles) compared to carbon‐coated NVP and pure NVP cathode. The improved electrochemical performance is attributed to double carbon coating design that combines a variety of advantages: very short diffusion length of Na+/e? in NVP, easy access of electrolyte, and short transport path of Na+ through carbon toward the NVP nanoparticle, high conductivity transport of electrons through the 3D interconnected channels of carbon host. The optimum design of the core–shell nanostructures with double carbon coating permits fast kinetics for both transported Na+ ions and electrons, enabling high‐power performance.  相似文献   

9.
Searching for a new material to build the next‐generation rechargeable lithium‐ion batteries (LIBs) with high electrochemical performance is urgently required. Owing to the low‐cost, non‐toxicity, and high‐safety, the family of manganese oxide including the Na‐Mn‐O system is regarded as one of the most promising electrode materials for LIBs. Herein, a new strategy is carried out to prepare a highly porous and electrochemically active Na0.55Mn2O4·1.5H2O (SMOH) compound. As an anode material, the Na‐Mn‐O nanocrystal material dispersed within a carbon matrix manifests a high reversible capacity of 1015.5 mA h g?1 at a current density of 0.1 A g?1. Remarkably, a considerable capability of 546.8 mA h g?1 remains even after 2000 discharge/charge cycles at the higher current density of 4 A g?1, indicating a splendid cyclability. The exceptional electrochemical properties allow SMOH to be a promising anode material toward LIBs.  相似文献   

10.
Sodium ion batteries (SIBs) have drawn significant attention owing to their low cost and inherent safety. However, the absence of suitable anode materials with high rate capability and long cycling stability is the major challenge for the practical application of SIBs. Herein, an efficient anode material consisting of uniform hollow iron sulfide polyhedrons with cobalt doping and graphene wrapping (named as CoFeS@rGO) is developed for high‐rate and long‐life SIBs. The graphene‐encapsulated hollow composite assures fast and continuous electron transportation, high Na+ ion accessibility, and strong structural integrity, showing an extremely small volume expansion of only 14.9% upon sodiation and negligible volume contraction during the desodiation. The CoFeS@rGO electrode exhibits high specific capacity (661.9 mAh g?1 at 100 mA g?1), excellent rate capability (449.4 mAh g?1 at 5000 mA g?1), and long cycle life (84.8% capacity retention after 1500 cycles at 1000 mA g?1). In situ X‐ray diffraction and selected‐area electron diffraction patterns show that this novel CoFeS@rGO electrode is based on a reversible conversion reaction. More importantly, when coupled with a Na3V2(PO4)3/C cathode, the sodium ion full battery delivers a superexcellent rate capability (496.8 mAh g?1 at 2000 mA g?1) and ≈96.5% capacity retention over 200 cycles at 500 mA g?1 in the 1.0–3.5 V window. This work indicates that the rationally designed anode material is highly applicable for the next generation SIBs with high‐rate capability and long‐term cyclability.  相似文献   

11.
The high‐capacity cathode material V2O5·n H2O has attracted considerable attention for metal ion batteries due to the multielectron redox reaction during electrochemical processes. It has an expanded layer structure, which can host large ions or multivalent ions. However, structural instability and poor electronic and ionic conductivities greatly handicap its application. Here, in cell tests, self‐assembly V2O5·n H2O nanoflakes shows excellent electrochemical performance with either monovalent or multivalent cation intercalation. They are directly grown on a 3D conductive stainless steel mesh substrate via a simple and green hydrothermal method. Well‐layered nanoflakes are obtained after heat treatment at 300 °C (V2O5·0.3H2O). Nanoflakes with ultrathin flower petals deliver a stable capacity of 250 mA h g?1 in a Li‐ion cell, 110 mA h g?1 in a Na‐ion cell, and 80 mA h g?1 in an Al‐ion cell in their respective potential ranges (2.0–4.0 V for Li and Na‐ion batteries and 0.1–2.5 V for Al‐ion battery) after 100 cycles.  相似文献   

12.
A simple ball‐milling method is used to synthesize a tin oxide‐silicon carbide/few‐layer graphene core‐shell structure in which nanometer‐sized SnO2 particles are uniformly dispersed on a supporting SiC core and encapsulated with few‐layer graphene coatings by in situ mechanical peeling. The SnO2‐SiC/G nanocomposite material delivers a high reversible capacity of 810 mA h g?1 and 83% capacity retention over 150 charge/discharge cycles between 1.5 and 0.01 V at a rate of 0.1 A g?1. A high reversible capacity of 425 mA h g?1 also can be obtained at a rate of 2 A g?1. When discharged (Li extraction) to a higher potential at 3.0 V (vs. Li/Li+), the SnO2‐SiC/G nanocomposite material delivers a reversible capacity of 1451 mA h g?1 (based on the SnO2 mass), which corresponds to 97% of the expected theoretical capacity (1494 mA h g?1, 8.4 equivalent of lithium per SnO2), and exhibits good cyclability. This result suggests that the core‐shell nanostructure can achieve a completely reversible transformation from Li4.4Sn to SnO2 during discharging (i.e., Li extraction by dealloying and a reversible conversion reaction, generating 8.4 electrons). This suggests that simple mechanical milling can be a powerful approach to improve the stability of high‐performance electrode materials involving structural conversion and transformation.  相似文献   

13.
Antimony (Sb) has emerged as an attractive anode material for both lithium and sodium ion batteries due to its high theoretical capacity of 660 mA h g?1. In this work, a novel peapod‐like N‐doped carbon hollow nanotube encapsulated Sb nanorod composite, the so‐called nanorod‐in‐nanotube structured Sb@N‐C, via a bottom‐up confinement approach is designed and fabricated. The N‐doped‐carbon coating and thermal‐reduction process is monitored by in situ high‐temperature X‐ray diffraction characterization. Due to its advanced structural merits, such as sufficient N‐doping, 1D conductive carbon coating, and substantial inner void space, the Sb@N‐C demonstrates superior lithium/sodium storage performance. For lithium storage, the Sb@N‐C exhibits a high reversible capacity (650.8 mA h g?1 at 0.2 A g?1), excellent long‐term cycling stability (a capacity decay of only 0.022% per cycle for 3000 cycles at 2 A g?1), and ultrahigh rate capability (343.3 mA h g?1 at 20 A g?1). For sodium storage, the Sb@N‐C nanocomposite displays the best long‐term cycle performance among the reported Sb‐based anode materials (a capacity of 345.6 mA h g?1 after 3000 cycles at 2 A g?1) and an impressive rate capability of up to 10 A g?1. The results demonstrate that the Sb@N‐C nanocomposite is a promising anode material for high‐performance lithium/sodium storage.  相似文献   

14.
Sodium‐ion capacitors (SICs) are emerging energy storage devices with high energy, high power, and durable life. Sn is a promising anode material for lithium storage, but the poor conductivity of the a‐NaSn phase upon sodaition hinders its implementation in SICs. Herein, a superior Sn‐based anode material consisting of plum pudding‐like Co2P/Sn yolk encapsulated with nitrogen‐doped carbon nanobox (Co2P/Sn@NC) for high‐performance SICs is reported. The 8–10 nm metallic nanoparticles produced in situ are uniformly dispersed in the amorphous Sn matrix serving as conductive fillers to facilitate electron transfer in spite of the formation of electrically resistive a‐NaSn phase during cycling. Meanwhile, the carbon shell buffers the large expansion of active Sn and provides a stable electrode–electrolyte interface. Owing to these merits, the yolk–shell Co2P/Sn@NC demonstrates a large capacity of 394 mA h g?1 at 100 mA g?1, high rate capability of 168 mA h g?1 at 5000 mA g?1, and excellent cyclability with 87% capacity retention after 10 000 cycles. By integrating the Co2P/Sn@NC anode with a peanut shell‐derived carbon cathode in the SIC, high energy densities of 112.3 and 43.7 Wh kg?1 at power densities of 100 and 10 000 W kg?1 are achieved.  相似文献   

15.
Molybdenum disulfide (MoS2) has been recognized as a promising anode material for high‐energy Li‐ion (LIBs) and Na‐ion batteries (SIBs) due to its apparently high capacity and intriguing 2D‐layered structure. The low conductivity, unsatisfied mechanical stability, and limited active material utilization are three key challenges associated with MoS2 electrodes especially at high current rates and mass active material loading. Here, vertical MoS2 nanosheets are controllably patterned onto electrochemically exfoliated graphene (EG). Within the achieved hierarchical architecture, the intimate contact between EG and MoS2 nanosheets, interconnected network, and effective exposure of active materials by vertical channels simultaneously overcomes the above three problems, enabling high mechanical integrity and fast charge transport kinetics. Serving as anode material for LIBs, EG‐MoS2 with 95 wt% MoS2 content delivered an ultrahigh‐specific capacity of 1250 mA h g?1 after 150 stable cycles at 1 A g?1, which is among the highest values in all reported MoS2 electrodes, and excellent rate performance (970 mA h g?1 at 5 A g?1). Moreover, impressive cycling stability (509 mA h g?1 at 1 A g?1 after 250 cycles) and rate capability (423 mA h g?1 at 2 A g?1) were also achieved for SIBs. The area capacities reached 1.27 and 0.49 mA h cm?2 at ≈1 mA cm?2 for LIBs and SIBs, respectively. This work may inspire the development of new 2D hierarchical structures for high efficiency energy storage and conversion.  相似文献   

16.
Energy‐storage technology is moving beyond lithium batteries to sodium as a result of its high abundance and low cost. However, this sensible transition requires the discovery of high‐rate and long‐lifespan anode materials, which remains a significant challenge. Here, the facile synthesis of an amorphous Sn2P2O7/reduced graphene oxide nanocomposite and its sodium storage performance between 0.01 and 3.0 V are reported for the first time. This hybrid electrode delivers a high specific capacity of 480 mA h g?1 at a current density of 50 mA g?1 and superior rate performance of 250 and 165 mA h g?1 at 2 and 10 A g?1, respectively. Strikingly, this anode can sustain 15 000 cycles while retaining over 70% of the initial capacity. Quantitative kinetic analysis reveals that the sodium storage is governed by pseudocapacitance, particularly at high current rates. A full cell with sodium super ionic conductor (NASICON)‐structured Na3V2(PO4)2F3 and Na3V2(PO4)3 as cathodes exhibits a high energy density of over 140 W h kg?1 and a power density of nearly 9000 W kg?1 as well as stability over 1000 cycles. This exceptional performance suggests that the present system is a promising power source for promoting the substantial use of low‐cost energy storage systems.  相似文献   

17.
Identifying suitable electrode materials for sodium‐ion and potassium‐ion storage holds the key to the development of earth‐abundant energy‐storage technologies. This study reports an anode material based on self‐assembled hierarchical spheroid‐like KTi2(PO4)3@C nanocomposites synthesized via an electrospray method. Such an architecture synergistically combines the advantages of the conductive carbon network and allows sufficient space for the infiltration of the electrolyte from the porous structure, leading to an impressive electrochemical performance, as reflected by the high reversible capacity (283.7 mA h g?1 for Na‐ion batteries; 292.7 mA h g?1 for K‐ion batteries) and superior rate capability (136.1 mA h g?1 at 10 A g?1 for Na‐ion batteries; 133.1 mA h g?1 at 1 A g?1 for K‐ion batteries) of the resulting material. Moreover, the different ion diffusion behaviors in the two systems are revealed to account for the difference in rate performance. These findings suggest that KTi2(PO4)3@C is a promising candidate as an anode material for sodium‐ion and potassium‐ion batteries. In particular, the present synthetic approach could be extended to other functional electrode materials for energy‐storage materials.  相似文献   

18.
A combined experimental and computational study of disodium pyridine‐2,5‐dicarboxylate (Na2PDC) is presented exploring the possibility of using it as a potential anode for organic sodium‐ion batteries. This electrode material can reversibly insert/release two Na cations per formula unit, resulting in high reversible capacity of 270 mA h g?1 (236 mA h g?1 after accounting for the contribution from Super P carbon) with excellent cyclability 225 mA h g?1, with retention of 83% capacity after 100 cycles, and good rate performance with reversible capacity of 138 mA h g?1 at a 5 C rate. The performance of disodium pyridine dicarboxylate is therefore found to be superior to that of the related and well investigated disodium terephthalate. The material shows two voltage plateaus at about 0.6 V up to Na2+1PDC and then 0.4 V up to full sodiation, Na2+2PDC. The first plateau is attributed to the coordination of inserted Na to nitrogen atoms with bond formation, i.e., a different mechanism from the terephthalate analog. The subsequent plateau is due to coordination to the carboxylic groups.  相似文献   

19.
Rechargeable sodium–iodine batteries represent a promising scalable electrochemical energy storage alternative as sodium and iodine are both low cost and widely abundant elements. Here, the authors demonstrate a rechargeable sodium–iodine battery that employs free‐standing iodine quantum dots (IQDs) decorated reduced graphene oxide (IQDs@RGO) as the cathode. Consistent with the density functional theory the authors find the Na+ ions to intercalate into the I unit cell forming stable NaI, and the battery exhibits high capacity, outstanding cycle stability (with a reversible specific capacity of 141 mA h g?1 after 500 cycles at current density of 100 mA g?1), and high rate performance (170, 146, 127, 112, and 95 mA h g?1 at current densities of 100, 200, 400, 600, and 1000 mA g?1, respectively). The reversible reactions, I2/I3 ? and I3 ?/I? redox couples on insertion of Na+ ions, are confirmed via in situ Raman spectroscopy. Notably, even after 500 cycles the morphology and structure of the IQDs exhibit no noticeable change implying their use as a stable cathode material for sodium–iodine batteries. Moreover, the IQDs based flexible full‐cells also exhibit high capacity and long cycle life (the capacity with 123 mA h g?1 at current density of 100 mA g?1 after 100 cycles).  相似文献   

20.
An all‐organic battery consisting of two redox‐polymers, namely poly(2‐vinylthianthrene) and poly(2‐methacrylamide‐TCAQ) is assembled. This all‐organic battery shows excellent performance characteristics, namely flat discharge plateaus, an output voltage exceeding 1.3 V, and theoretical capacities of both electrodes higher than 100 mA h g?1. Both organic electrode materials are synthesized in two respective three synthetic steps using the free‐radical polymerization technique. Li‐organic batteries manufactured from these polymers prove their suitability as organic electrode materials. The cathode material poly(2‐vinylthianthrene) (3) displays a discharging plateau at 3.95 V versus Li+/Li and a discharge capacity of 105 mA h g?1, corresponding to a specific energy of about 415 mW h g?1. The anode material poly(2‐methacrylamide‐TCAQ) (7) exhibits an initial discharge capacity of 130 mA h g?1, corresponding to 94% material activity. The combination of both materials results in an all‐organic battery with a discharge voltage of 1.35 V and an initial discharge capacity of 105 mA h g?1 (95% material activity).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号