首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
Over the last decade, Na‐ion batteries have been extensively studied as low‐cost alternatives to Li‐ion batteries for large‐scale grid storage applications; however, the development of high‐energy positive electrodes remains a major challenge. Materials with a polyanionic framework, such as Na superionic conductor (NASICON)‐structured cathodes with formula NaxM2(PO4)3, have attracted considerable attention because of their stable 3D crystal structure and high operating potential. Herein, a novel NASICON‐type compound, Na4MnCr(PO4)3, is reported as a promising cathode material for Na‐ion batteries that deliver a high specific capacity of 130 mAh g?1 during discharge utilizing high‐voltage Mn2+/3+ (3.5 V), Mn3+/4+ (4.0 V), and Cr3+/4+ (4.35 V) transition metal redox. In addition, Na4MnCr(PO4)3 exhibits a high rate capability (97 mAh g?1 at 5 C) and excellent all‐temperature performance. In situ X‐ray diffraction and synchrotron X‐ray diffraction analyses reveal reversible structural evolution for both charge and discharge.  相似文献   

3.
Lithium‐ion batteries (LIBs) have dominated the portable electronics industry and solid‐state electrochemical research and development for the past two decades. In light of possible concerns over the cost and future availability of lithium, sodium‐ion batteries (SIBs) and other new technologies have emerged as candidates for large‐scale stationary energy storage. Research in these technologies has increased dramatically with a focus on the development of new materials for both the positive and negative electrodes that can enhance the cycling stability, rate capability, and energy density. Two‐dimensional (2D) materials are showing promise for many energy‐related applications and particularly for energy storage, because of the efficient ion transport between the layers and the large surface areas available for improved ion adsorption and faster surface redox reactions. Recent research highlights on the use of 2D materials in these future ‘beyond‐lithium‐ion’ battery systems are reviewed, and strategies to address challenges are discussed as well as their prospects.  相似文献   

4.
Thanks to low costs and the abundance of the resources, sodium‐ion (SIBs) and potassium‐ion batteries (PIBs) have emerged as leading candidates for next‐generation energy storage devices. So far, only few materials can serve as the host for both Na+ and K+ ions. Herein, a cubic phase CuSe with crystal‐pillar‐like morphology (CPL‐CuSe) assembled by the nanosheets are synthesized and its dual functionality in SIBs and PIBs is comprehensively studied. The electrochemical measurements demonstrate that CPL‐CuSe enables fast Na+ and K+ storage as well as the sufficiently long duration. Specifically, the anode delivers a specific capacity of 295 mA h g?1 at current density of 10 A g?1 in SIBs, while 280 mA h g?1 at 5 A g?1 in PIBs, as well as the high capacity retention of nearly 100% over 1200 cycles and 340 cycles, respectively. Remarkably, CPL‐CuSe exhibits a high initial coulombic efficiency of 91.0% (SIBs) and 92.4% (PIBs), superior to most existing selenide anodes. A combination of in situ X‐ray diffraction and ex situ transmission electron microscopy tests fundamentally reveal the structural transition and phase evolution of CuSe, which shows a reversible conversion reaction for both cells, while the intermediate products are different due to the sluggish K+ insertion reaction.  相似文献   

5.
Graphene‐containing nanomaterials have emerged as important candidates for electrode materials in lithium‐ion batteries (LIBs) due to their unique physical properties. In this review, a brief introduction to recent developments in graphene‐containing nanocomposite electrodes and their derivatives is provided. Subsequently, synthetic routes to nanoparticle/graphene composites and their electrochemical performance in LIBs are highlighted, and the current state‐of‐the‐art and most recent advances in the area of graphene‐containing nanocomposite electrode materials are summarized. The limitations of graphene‐containing materials for energy storage applications are also discussed, with an emphasis on anode and cathode materials. Potential research directions for the future development of graphene‐containing nanocomposites are also presented, with an emphasis placed on practicality and scale‐up considerations for taking such materials from benchtop curiosities to commercial products.  相似文献   

6.
Rechargeable ion batteries have contributed immensely to shaping the modern world and been seriously considered for the efficient storage and utilization of intermittent renewable energies. To fulfill their potential in the future market, superior battery performance of high capacity, great rate capability, and long lifespan is undoubtedly required. In the past decade, along with discovering new electrode materials, the focus has been shifting more and more toward rational electrode designs because the performance is intimately connected to the electrode architectures, particularly their designs at the nanoscale that can alleviate the reliance on the materials' intrinsic nature. The utilization of nanoarchitectured arrays in the design of electrodes has been proven to significantly improve the battery performance. A comprehensive summary of the structural features and fabrications of the nanoarchitectured array electrodes is provided, and some of the latest achievements in the area of both lithium‐ and sodium‐ion batteries are highlighted. Finally, future challenges and opportunities that would allow further development of such advanced electrode configuration are discussed.  相似文献   

7.
Polymer binders with high ion and electron conductivities are prepared by assembling ionic polymers (polyethylene oxide and polyethylenimine) onto the electrically conducting polymer poly(3,4‐ethylenedioxythiophene): poly(styrenesulfonate) chains. Crosslinking, chemical reductions, and electrostatics increase the modulus of the binders and maintain the integrity of the anode. The polymer binder shows lithium‐ion diffusivity and electron conductivity that are 14 and 90 times higher than those of the widely used carboxymethyl cellulose (with acetylene black) binder, respectively. The silicon anode with the polymer binder has a high reversible capacity of over 2000 mA h g?1 after 500 cycles at a current density of 1.0 A g?1 and maintains a superior capacity of 1500 mA h g?1 at a high current density of 8.0 A g?1.  相似文献   

8.
Although potassium‐ion batteries (KIBs) have been considered to be promising alternatives to conventional lithium‐ion batteries due to large abundance and low cost of potassium resources, their development still stays at the infancy stage due to the lack of appropriate cathode and anode materials with reversible potassium insertion/extraction as well as good rate and cycling performance. Herein, a novel dual‐carbon battery based on a potassium‐ion electrolyte (named as K‐DCB), utilizing expanded graphite as cathode material and mesocarbon microbead as anode material is developed. The working mechanism of the K‐DCB is investigated, which is further demonstrated to deliver a high reversible capacity of 61 mA h g‐1 at a current density of 1C over a voltage window of 3.0–5.2 V, as well as good cycling performance with negligible capacity decay after 100 cycles. Moreover, the high working voltage with medium discharge voltage of 4.5 V also enables the K‐DCB to meet the requirement of some high‐voltage devices. With the merits of environmental friendliness, low cost and high energy density, the K‐DCB shows attractive potential for future energy storage application.  相似文献   

9.
10.
The polyanion Li7V15O36(CO3) is a nanosized molecular cluster (≈1 nm in size), that has the potential to form an open host framework with a higher surface‐to‐bulk ratio than conventional transition metal oxide electrode materials. Herein, practical rechargeable Na‐ion batteries and symmetric Li‐ion batteries are demonstrated based on the polyoxovanadate Li7V15O36(CO3). The vanadium centers in {V15O36(CO3)} do not all have the same VIV/V redox potentials, which permits symmetric devices to be created from this material that exhibit battery‐like energy density and supercapacitor‐like power density. An ultrahigh specific power of 51.5 kW kg?1 at 100 A g?1 and a specific energy of 125 W h kg?1 can be achieved, along with a long cycling life (>500 cycles). Moreover, electrochemical and theoretical studies reveal that {V15O36(CO3)} also allows the transport of large cations, like Na+, and that it can serve as the cathode material for rechargeable Na‐ion batteries with a high specific capacity of 240 mA h g?1 and a specific energy of 390 W h kg?1 for the full Na‐ion battery. Finally, the polyoxometalate material from these electrochemical energy storage devices can be easily extracted from spent electrodes by simple treatment with water, providing a potential route to recycling of the redox active material.  相似文献   

11.
An industry‐relevant method for pre‐lithiation of lithium‐ion capacitors to balance the first charge irreversibility is demonstrated, which addresses the prime bottleneck for their market integration. Based on a composite positive electrode that integrates pyrene monomers and an insoluble lithiated base, Li3PO4, a “cascade‐type” process involving two consecutive irreversible reactions is proposed: i) oxidative electropolymerization of the pyrene moieties releases electrons and protons; ii) protons are captured by Li3PO4 and exchanged for a stoichiometric amount of Li+ into the electrolyte. (1H, 19F, and 31P) NMR spectroscopy, operando X‐ray diffraction, and Raman spectroscopy support this mechanism. By decoupling the irreversible source of lithium ions from electrons, the cascade‐type pre‐lithiation allows the simultaneous enhancement of the capacity of the positive electrode, thanks to p‐doping of the resulting polymer. Remarkably, the proton scavenging properties of Li3PO4 also boost the polymerization process, which enables a 16% increase in capacity without detrimental effect on power properties and cyclability. Full cells integrating a cheap carbon black based negative electrode, show much‐improved capacity of 17 mAh g‐1electrodes (44 F g‐1electrodes, 3–4.4 V) and excellent stability over 2200 cycles at 1 A g‐1. Thanks to its versatile chemistry and flexibility this approach in principle can be applied to any kind of ion‐battery.  相似文献   

12.
Li‐ion batteries as energy storage devices need to be periodically charged for sustainably powering electronic devices owing to their limited capacities. Here, the feasibility of utilizing Li‐ion batteries as both the energy storage and scavenging units is demonstrated. Flexible Li‐ion batteries fabricated from electrospun LiMn2O4 nanowires as cathode and carbon nanowires as anode enable a capacity retention of 90% coulombic efficiency after 50 cycles. Through the coupling between triboelectrification and electrostatic induction, the adjacent electrodes of two Li‐ion batteries can deliver an output peak voltage of about 200 V and an output peak current of about 25 µA under ambient wind‐induced vibrations of a hexafluoropropene–tetrafluoroethylene copolymer film between the two Li‐ion batteries. The self‐charging Li‐ion batteries have been demonstrated to charge themselves up to 3.5 V in about 3 min under wind‐induced mechanical excitations. The advantages of the self‐charging Li‐ion batteries can provide important applications for sustainably powering electronics and self‐powered sensor systems.  相似文献   

13.
The development of alternative anode materials with higher volumetric and gravimetric capacity allowing for fast delithiation and, even more important, lithiation is crucial for next‐generation lithium‐ion batteries. Herein, the development of a completely new active material is reported, which follows an insertion‐type lithiation mechanism, metal‐doped CeO2. Remarkably, the introduction of carefully selected dopants, herein exemplified for iron, results in an increase of the achievable capacity by more than 200%, originating from the reduction of the dopant to the metallic state and additional space for the lithium ion insertion due to a significant off‐centering of the dopant atoms in the crystal structure, away from the original Ce site. In addition to the outstanding performance of such materials in high‐power lithium‐ion full‐cells, the selective reduction of the iron dopant under preservation of the crystal structure of the host material is expected to open up a new field of research.  相似文献   

14.
Identifying suitable electrode materials for sodium‐ion and potassium‐ion storage holds the key to the development of earth‐abundant energy‐storage technologies. This study reports an anode material based on self‐assembled hierarchical spheroid‐like KTi2(PO4)3@C nanocomposites synthesized via an electrospray method. Such an architecture synergistically combines the advantages of the conductive carbon network and allows sufficient space for the infiltration of the electrolyte from the porous structure, leading to an impressive electrochemical performance, as reflected by the high reversible capacity (283.7 mA h g?1 for Na‐ion batteries; 292.7 mA h g?1 for K‐ion batteries) and superior rate capability (136.1 mA h g?1 at 10 A g?1 for Na‐ion batteries; 133.1 mA h g?1 at 1 A g?1 for K‐ion batteries) of the resulting material. Moreover, the different ion diffusion behaviors in the two systems are revealed to account for the difference in rate performance. These findings suggest that KTi2(PO4)3@C is a promising candidate as an anode material for sodium‐ion and potassium‐ion batteries. In particular, the present synthetic approach could be extended to other functional electrode materials for energy‐storage materials.  相似文献   

15.
The ever‐increasing demand for large‐scale energy storage systems requires novel battery technologies with low‐cost and sustainable properties. Due to earth‐abundance and cost effectiveness, the development of rechargeable potassium ion batteries (PIBs) has recently attracted much attention. Since carbon‐based materials are abundant, inexpensive, nontoxic, and safe, extensive feasibility investigations have suggested that they can become promising anode materials for PIBs. This review not only attempts to provide better understanding of the potassium storage mechanism, but also summarizes the availability of new carbon‐based materials and their electrochemical performance covering graphite, graphene, and hard carbon materials plus carbon‐based composites. Finally, the critical issues, challenges, and perspectives are discussed to demonstrate the developmental direction of PIBs.  相似文献   

16.
Sodium‐based energy storage technologies are potential candidates for large‐scale grid applications owing to the earth abundance and low cost of sodium resources. Transition metal phosphides, e.g. MoP, are promising anode materials for sodium‐ion storage, while their detailed reaction mechanisms remain largely unexplored. Herein, the sodium‐ion storage mechanism of hexagonal MoP is systematically investigated through experimental characterizations, density functional theory calculations, and kinetics analysis. Briefly, it is found that the naturally covered surface amorphous molybdenum oxides layers on the MoP grains undergo a faradaic redox reaction during sodiation and desodiation, while the inner crystalline MoP remains unchanged. Remarkably, the MoP anode exhibits a pseudocapacitive‐dominated behavior, enabling the high‐rate sodium storage performance. By coupling the pseudocapacitive anode with a high‐rate‐battery‐type Na3V2O2(PO4)2F@rGO cathode, a novel sodium‐ion full cell delivers a high energy density of 157 Wh kg?1 at 97 W kg?1 and even 52 Wh kg?1 at 9316 W kg?1. These findings present the deep understanding of the sodium‐ion storage mechanism in hexagonal MoP and offer a potential route for the design of high‐rate sodium‐ion storage materials and devices.  相似文献   

17.
18.
19.
20.
Recently, anionic‐redox‐based materials have shown promising electrochemical performance as cathode materials for sodium‐ion batteries. However, one of the limiting factors in the development of oxygen‐redox‐based electrodes is their low operating voltage. In this study, the operating voltage of oxygen‐redox‐based electrodes is raised by incorporating nickel into P2‐type Na2/3[Zn0.3Mn0.7]O2 in such a way that the zinc is partially substituted by nickel. As designed, the resulting P2‐type Na2/3[(Ni0.5Zn0.5)0.3Mn0.7]O2 electrode exhibits an average operating voltage of 3.5 V and retains 95% of its initial capacity after 200 cycles in the voltage range of 2.3–4.6 V at 0.1C (26 mA g?1). Operando X‐ray diffraction analysis reveals the reversible phase transition: P2 to OP4 phase on charge and recovery to the P2 phase on discharge. Moreover, ex situ X‐ray absorption near edge structure and X‐ray photoelectron spectroscopy studies reveal that the capacity is generated by the combination of Ni2+/Ni4+ and O2?/O1? redox pairs, which is supported by first‐principles calculations. It is thought that this kind of high voltage redox species combined with oxygen redox could be an interesting approach to further increase energy density of cathode materials for not only sodium‐based rechargeable batteries, but other alkali‐ion battery systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号